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Abstract

Perturbation theory is developed for the Cholesky decomposition of an n × n

symmetric positive semi-definite matrix A of rank r. The matrix W = A
−1
11 A12 is

found to play a key role in the perturbation bounds, where A11 and A12 are r × r

and r × (n − r) submatrices of A respectively.

A backward error analysis is given; it shows that the computed Cholesky fac-

tors are the exact ones of a matrix whose distance from A is bounded by 4r(r +

1)
(
‖W‖2 +1

)2
u‖A‖2 +O(u2), where u is the unit roundoff. For the complete pivot-

ing strategy it is shown that ‖W‖2
2 ≤ 1

3(n− r)(4r − 1), and empirical evidence that

‖W‖2 is usually small is presented. The overall conclusion is that the Cholesky

algorithm with complete pivoting is stable for semi-definite matrices.

Similar perturbation results are derived for the QR decomposition with column

pivoting and for the LU decomposition with complete pivoting. The results give

new insight into the reliability of these decompositions in rank estimation.
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1 Introduction

The Cholesky decomposition A = RTR of a positive definite matrix A, in which R

is upper triangular with positive diagonal elements, is a fundamental tool in matrix

computations. The standard algorithm for its computation dates from the early part of

this century (Dongarra et al. 1979, p. 3.16; Householder 1964, p. 208) and it is one of

the most numerically stable of all matrix algorithms (Wilkinson 1968, Meinguet 1983,

Kielbasinski 1987).

The Cholesky decomposition exists and is unique when A is positive definite (see,

e.g., Golub and Van Loan (1983, p. 88)). The questions of existence and uniqueness of a

Cholesky decomposition when A is positive semi-definite are answered by the following

result (Dongarra et al. 1979, p. 8.3; Householder 1964, p. 13; Moler and Stewart 1978).

Lemma 1.1. Let A be positive semi-definite, of rank r.

(a) There exists at least one upper triangular R with nonnegative diagonal elements

such that A = RTR.

(b) There is a permutation Π such that ΠTAΠ has a unique Cholesky decomposition,

which takes the form

ΠTAΠ = RTR, R =

(
R11 R12

0 0

)
, (1.1)

where R11 is r × r upper triangular with positive diagonal elements.

Proof. (a): Let the symmetric positive semi-definite square root X of A have the

QR decomposition X = QR with rii ≥ 0. Then A = X2 = XT X = RT QT QR = RTR.

(b): The algorithm with pivoting described below amounts to a constructive proof.

Note that the factorisation in part (a) is not in general unique. For example,

(
0 0

0 1

)
≡
(

0 0

cos θ sin θ

)(
0 cos θ

0 sin θ

)
.

In several applications it is necessary to compute a decomposition of the form (1.1).

One example is in the solution of rank-deficient least squares problems, where “A =

XT X” is the matrix of the normal equations (Björck 1987, Dongarra et al. 1979, Stewart

1984). Another example occurs in physics in the study of the spectra of molecules with

high degrees of symmetry (Fox and Krohn 1977); in this application A is idempotent

(A2 = A) and of low rank. A further example is in optimisation problems with matrix

semi-definiteness constraints (Fletcher 1985).

Software for computing a decomposition (1.1) is readily available, notably in LIN-

PACK, in the routine SCHDC (Dongarra et al. 1979, Ch. 8). However, as pointed out in
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Dongarra et al. (1979, p. 8.15) there is no published error analysis for the Cholesky de-

composition of a semi-definite matrix, except for the case where A is idempotent (Moler

and Stewart 1978). Our aim here is to fill this gap in the literature, by examining the

mathematical and numerical properties of the Cholesky algorithm applied to semi-definite

matrices, with particular reference to SCHDC.

This report is organised as follows. In section 2 we develop perturbation theory for

the Schur complements associated with the Cholesky decomposition. A backward error

analysis of the Cholesky algorithm is presented in section 3; unlike most backward error

analyses this one draws on perturbation theory—that of section 2. The implications of

the error analysis are discussed in section 4. In section 5 our perturbation theory is

used to derive some new results concerning the reliability of the QR decomposition with

column pivoting, and of Gaussian elimination with complete pivoting, for rank estimation.

Numerical experiments are presented in section 6.

In the remainder of the introduction we describe the Cholesky algorithm as it is imple-

mented in LINPACK’s SCHDC. Note that this is one of several possible implementations

of the Cholesky method, all of them equivalent both mathematically and numerically (for

other versions see Dongarra et al. (1979, Ch. 3), Golub and Van Loan (1983, p. 89)).

The algorithm consists of r = rank(A) steps, in the kth of which a rank one matrix

is subtracted from A so as to introduce zeros into positions k, . . . , n in the kth row and

column. Ignoring pivoting for the moment, at the start of the kth stage we have

A(k) =
(
a

(k)
ij

)
= A −

k−1∑

i=1

rir
T
i =




k−1 n−k+1

k−1 0 0

n−k+1 0 Ak


 (1.2)

where rT
i = (0, . . . , 0, rii, . . . , rin).

The reduction is carried one stage further by computing

rkk =

√
a

(k)
kk ,

rkj = a
(k)
kj /rkk, j = k + 1, . . . , n, (1.3)

a
(k+1)
ij = a

(k)
ij − rkirkj, i, j = k + 1, . . . , n.

Overall we have,

A =
r∑

i=1

rir
T
i = RTR, RT = (r1, . . . , rr).

To avoid breakdown when a
(k)
kk vanishes (or is negative because of rounding errors),

pivoting is incorporated into the algorithm as follows. At the start of the kth stage an

element a
(k)
ss > 0 (s ≥ k) is selected as pivot, and rows and columns k and s of Ak, and
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the kth and sth elements of ri (i = 1, . . . , k − 1), are interchanged. The overall effect is

to compute the decomposition (1.1), where the permutation Π takes account of all the

interchanges.

The strategy used by SCHDC in its pivoting option is defined by

s = min{j : a
(k)
jj = max

k≤i≤n
a

(k)
ii }.

This is equivalent to complete pivoting in Gaussian elimination, since Ak is positive semi-

definite so its largest element lies on the diagonal. We note for later reference that this

pivoting strategy produces a matrix R that satisfies (Dongarra et al. 1979, p. 8.4)

r2
kk ≥

min{j,r}∑

i=k

r2
ij, j = k + 1, . . . , n, k = 1, . . . , r. (1.4)

Finally, a word on notation. We will use two matrix norms, the spectral norm

‖A‖2 = sup
x 6=0

‖Ax‖2

‖x‖2

(
‖x‖2 = (xT x)

1

2

)
,

and the Frobenius norm

‖A‖F =

√∑

i,j

a2
ij =

√
trace(AT A).

It will be convenient to denote by cp(A) = ΠTAΠ the permuted matrix obtained from

the Cholesky algorithm with complete pivoting.

2 Perturbation Theory

We begin by analysing the effect on the Cholesky decomposition of perturbations in the

data. This perturbation theory will be used in the error analysis of the next section, and

in section 5, but it is also of intrinsic interest.

Throughout this section A is assumed to be a positive semi-definite matrix of rank r

whose leading principal submatrix of order r is positive definite. For 1 ≤ k ≤ r we will

write

A =




k n − k

k A11 A12

n − k AT
12 A22


 (2.1)

and other matrices will be partitioned conformally.
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We have the identity

A =




k

k RT
11

n − k RT
12


 ( R11, R12 ) +

(
0 0

0 Sk(A)

)
, (2.2)

where R11 is the Cholesky factor of A11, R12 = R−T
11 A12, and

Sk(A) = A22 − AT
12A

−1
11 A12

is the Schur complement of A11 in A. Note that Sr(A) ≡ 0 and so for k = r, (2.2) is the

(unique) Cholesky decomposition of A. The following lemma shows how Sk(A) changes

when A is perturbed.

Lemma 2.1. Let E be symmetric and assume ‖A−1
11 E11‖2 < 1. Then

Sk(A + E) = Sk(A) + E22 − (ET
12W + W T E12) + W T E11W + O

(
‖E‖2

2

)
, (2.3)

where W = A−1
11 A12. The second order term (which will be required in section 5) takes

the form

−ET
12A

−1
11 E12 + ET

12A
−1
11 E11W + W T E11A

−1
11 E12 − W T E11A

−1
11 E11W + O

(
‖E11‖3

2

)
.

Proof. The condition ‖A−1
11 E11‖2 < 1 ensures that A11 +E11 is nonsingular and that

we can expand

(A11 + E11)
−1 = A−1

11 − A−1
11 E11A

−1
11 + A−1

11 E11A
−1
11 E11A

−1
11 + O

(
‖E11‖3

2

)
.

The result is obtained by substituting this expansion into Sk(A + E) = (A22 + E22) −
(A12 + E12)

T (A11 + E11)
−1(A12 + E12), and collecting terms.

Lemma 2.1 shows that the sensitivity of Sk(A) to perturbations in A is governed by

the matrix W = A−1
11 A12. The question arises of whether, for a given A, the potential

‖W‖2
2 magnification of E indicated by (2.3) is attainable. For the no-pivoting strategy,

Π = I, the answer is trivially “yes”, since we can take E =
(

γI
0

0
0

)
, with |γ| small, to

obtain ‖Sk(A + E)−Sk(A)‖2 = ‖W‖2
2‖E‖2 + O

(
‖E‖2

2

)
. For complete pivoting, however,

the answer is complicated by the possibility that the sequence of pivots will be different

for A + E than for A, in which case Lemma 2.1 is not applicable. Fortunately, a mild

assumption on A is enough to rule out this technical difficulty, for small ‖E‖2. In the

next lemma we redefine A := cp(A) in order to simplify the notation.

5



Lemma 2.2. Let A := cp(A). Suppose that

(
Si(A)

)
11

>
(
Si(A)

)
jj

, 2 ≤ j ≤ n − i, 0 ≤ i ≤ r − 1 (2.4)

(where S0(A) := A). Then, for sufficiently small ‖E‖2, A + E = cp(A + E). For

E =
(

γI
0

0
0

)
, with |γ| sufficiently small,

‖Sk

(
cp(A + E)

)
− Sk(A)‖2 = ‖W‖2

2‖E‖2 + O
(
‖E‖2

2

)
.

Proof. Note that since A = cp(A), (2.4) simply states that there are no ties in the

pivoting strategy (since
(
Si(A)

)
11

≡ a
(i+1)
i+1,i+1 in (1.2)). Applying Lemma 2.1 inductively,

since

Si(A + E) = Si(A) + O
(
‖E‖2

)
,

then in view of (2.4), for sufficiently small ‖E‖2,

(
Si(A + E)

)
11

>
(
Si(A + E)

)
jj

, 2 ≤ j ≤ n − i, 0 ≤ i ≤ r − 1.

This shows that A + E = cp(A + E). The last part then follows from Lemma 2.1.

We now examine the quantity ‖W‖2 = ‖A−1
11 A12‖2. In general, this can be arbitrarily

large; for example, consider the positive semi-definite matrix

A =

(
αIk,k Ik,n−k

In−k,k α−1In−k,n−k

)

for small α > 0, where Ip,q is the p × q identity matrix. However, for A := cp(A), ‖W‖2

can be bounded solely in terms of n and k. The essence of the proof, in the next lemma,

is that large elements in A−1
11 are countered by small elements in A12. Hereafter we set

k = r, the value of interest in the following sections.

Lemma 2.3. Let A := cp(A) and set k = r. Then

‖A−1
11 A12‖2,F ≤

√
1

3
(n − r)(4r − 1). (2.5)

There is a parametrised family of rank-r matrices A(θ) = cp(A(θ)), θ ∈ (0, π
2
], for which

‖A11(θ)
−1A12(θ)‖2,F →

√
1

3
(n − r)(4r − 1) as θ → 0.

Proof. From (2.2) we have W = A−1
11 A12 = R−1

11 R−T
11 A12 = R−1

11 R12, so we may work

with R instead of A. Writing D = diag(r11, . . . , rrr) we have

W = R−1
11 D · D−1R12 ≡ T−1

11 T12
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where, in view of the inequalities (1.4), the elements of T11 = (tij) satisfy

tii = 1, |tij| ≤ 1 for j > i, i = 1, . . . , r,

and each element of T12 is bounded in absolute value by 1. It is easy to show that if

|xi| ≤ 1 for all i, then

|T−1
11 x| ≤ (2r−1, 2r−2, . . . , 1)T =: y,

where absolute values and inequalities for vectors or matrices are defined elementwise. It

follows that

|W | = |T−1
11 T12| ≤ yeT , eT = (1, 1, . . . , 1) ∈ R

n−r.

Hence for the 2– or Frobenius norms, ‖W‖ ≤ ‖yeT‖. But ‖yeT‖2
2 = ‖yeT‖2

F = trace(eyT yet) =

(n − r)yT y = 1
3
(n − r)(4r − 1), which completes the proof of (2.5).

For the last part, let A(θ) = R(θ)T R(θ), where

R(θ) = diag(1, s, . . . , sr−1)




1 −c −c . . . −c −c . . . −c

1 −c . . . −c −c . . . −c

1
...

...
...

. . .
...

...
...

1 −c . . . −c




∈ R
r×n, (2.6)

with c = cos θ, s = sin θ. (This is the r × n version of a matrix introduced by Kahan

(1966); see also Lawson and Hanson (1974, p.31.)) R satisfies the inequalities (1.4) (as

equalities) and so A(θ) = cp(A(θ)). Some computations analogous to those in the first

part show that

R11(θ)
−1R12(θ) = −czeT , where z =

(
(1 + c)r−1, (1 + c)r−2, . . . , 1

)T
.

Thus

‖R11(θ)
−1R12(θ)‖2

2,F = c(n − r)
(1 + c)2r − 1

(1 + c)2 − 1
→ 1

3
(n − r)(4r − 1) as θ → 0. (2.7)

Example 2.1 We conclude this section with a “worst-case” example for the Cholesky

decomposition with complete pivoting. Let U(θ) = diag(r, r − 1, . . . , 1)R(θ), where R(θ)

is given by (2.6), and define the rank-r matrix C(θ) = U(θ)T U(θ). Then C(θ) satisfies

the conditions of Lemma 2.2. Also,

‖W‖2 = ‖C11(θ)
−1C12(θ)‖2 = ‖U11(θ)

−1U12(θ)‖2 = ‖R11(θ)
−1R12(θ)‖2

→
√

1

3
(n − r)(4r − 1) as θ → 0,

from (2.7). Thus, from Lemma 2.2, for E =
(

γI
0

0
0

)
, with |γ| and θ sufficiently small,

‖Sr

(
cp
(
C(θ) + E)

))
‖2 ≈

1

3
(n − r)(4r − 1)‖E‖2.
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3 Backward Error Analysis

In this section we present a backward error analysis for the Cholesky algorithm. Let A

be a symmetric matrix of floating point numbers. Because of potential rounding errors

in forming or storing A, it is unrealistic to assume that A is positive semi-definite and

singular. Therefore we will write

A = Ã + ∆A,

where Ã is positive semi-definite of rank r < n, and ∆A is assumed “small”. A natural

choice for Ã is a nearest positive semi-definite matrix to A (Higham 1986).

The analysis makes no assumptions about the pivoting strategy, but to simplify the

notation we will assume that any necessary interchanges are done at the start of the

algorithm; thus A := ΠTAΠ. For the analysis it is convenient to reorganise the equations

(1.3) into the computationally equivalent form

rkk =

(
akk −

k−1∑

i=1

r2
ik

) 1

2

, (3.1)

rkj =

(
akj −

k−1∑

i=1

rikrij

)/
rkk, j = k + 1, . . . , n. (3.2)

To analyse the evaluation of these expressions in floating point arithmetic we will use the

following lemma. Here, and throughout, a hat is used to denote computed quantities.

Lemma 3.1. Let

s =

(
c −

k−1∑

i=1

aibi

)/
d (3.3)

be evaluated in floating point arithmetic. Assume

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /,

where u is the unit roundoff, and assume that ku < 1. Then

ŝd +
k−1∑

i=1

aibi = c + e,

where

|e| ≤ ǫk

(k−1∑

i=1

|ai||bi| + |ŝ||d|
)

, (3.4)

and where ǫk = ku/(1 − ku). If d = 1 then ǫk in (3.4) may be replaced by ǫk−1.

Assume also that

fl(
√

x) =
√

x(1 + δ), |δ| ≤ u;
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then, if the division in (3.3) is replaced by a square root,

ŝ 2 +
k−1∑

i=1

aibi = c + e,

where

|e| ≤ ǫk+1

(k−1∑

i=1

|ai||bi| + ŝ 2

)
.

Proof. Straightforward. See, for example, Stoer and Bulirsch (1980, pp. 25–27).

Applying Lemma 3.1 to (3.1) we obtain

k∑

i=1

r̂ 2
ik = akk + ekk,

|ekk| ≤ ǫk+1

k∑

i=1

r̂ 2
ik





k = 1, . . . , r. (3.5)

Similarly, for (3.2),

k∑

i=1

r̂ikr̂ij = akj + ekj,

|ekj| ≤ ǫk

k∑

i=1

|r̂ik||r̂ij|





j = k + 1, . . . , n, k = 1, . . . , r. (3.6)

The elements in the Schur complement Ar+1 (see (1.2)) are given by

a
(r+1)
ij = aij −

r∑

k=1

rkirkj, i, j = r + 1, . . . , n.

Applying Lemma 3.1 to this expression we obtain

â
(r+1)
ij +

r∑

k=1

r̂kir̂kj = aij + eij,

|eij| ≤ ǫr

( r∑

k=1

|r̂ki||r̂kj| + |â(r+1)
ij |

)





i, j = r + 1, . . . , n. (3.7)

Collecting (3.5–3.7) into one matrix equation we have

A − R̂T
r R̂r = E + Â(r+1) (3.8)

where

R̂r =
( r n − r

r R̂11 R̂12

)
,
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Â(r+1) =




r n − r

r 0 0

n − r 0 Âr+1


,

and

|E| ≤ ǫr+1

(
|R̂T

r ||R̂r| + |Â(r+1)|
)
. (3.9)

Now we take norms in (3.9) and use the inequalities ‖B‖2 ≤ ‖|B|‖2 ≤
√

rank(B)‖B‖2.

We obtain
‖E‖2 ≤ ǫr+1

(
r‖R̂T

r ‖2‖R̂r‖2 +
√

n − r‖Â(r+1)‖2

)

= ǫr+1

(
r‖R̂T

r R̂r‖2 +
√

n − r‖Â(r+1)‖2

)

= ǫr+1

(
r‖A − E − Â(r+1)‖2 +

√
n − r‖Â(r+1)‖2

)

≤ ǫr+1

(
r‖A‖2 + r‖E‖2 + n‖Â(r+1)‖2

)
,

which implies

‖E‖2 ≤
ǫr+1

1 − rǫr+1

(
r‖A‖2 + n‖Â(r+1)‖2

)
. (3.10)

Our aim is to obtain an a priori bound for ‖A − R̂T
r R̂r‖2. It is clear from (3.8–3.10)

that to do this we have only to bound ‖Â(r+1)‖2. To this end we interpret (3.8) and (3.9)

in such a way that the perturbation theory of section 2 may be applied.

Equation (3.8) shows that Â(r+1) is the true Schur complement for the matrix

A − E = Ã + (∆A − E) =: Ã + F. (3.11)

Hence we can apply Lemma 2.1 to Ã to deduce that

‖Â(r+1)‖2 = ‖Âr+1‖2 ≤ ‖F22‖2 + 2‖F12‖2‖W‖2 + ‖W‖2
2‖F11‖2 + O

(
‖F‖2

2

)
, (3.12)

where W = Ã−1
11 Ã12. We can weaken (3.12) to

‖Â(r+1)‖2 ≤ ‖F‖2

(
‖W‖2 + 1

)2
+ O

(
‖F‖2

2

)
.

Using ‖F‖2 ≤ ‖∆A‖2 + ‖E‖2, substituting from (3.10), and rearranging, we find

‖Â(r+1)‖2 ≤ Ω

(
rǫr+1

1 − rǫr+1

‖A‖2 + ‖∆A‖2

)(
‖W‖2 + 1

)2
+ O

(
‖F‖2

2

)
, (3.13)

where

Ω =

(
1 − nǫr+1

1 − rǫr+1

(
‖W‖2 + 1

)2
)−1

. (3.14)

Finally, using (3.8), (3.10) and (3.13), we have certainly

‖A − R̂T
r R̂r‖2 ≤ Ω

(
1 +

nǫr+1

1 − rǫr+1

)(
2rǫr+1

1 − rǫr+1

‖A‖2 + ‖∆A‖2

)(
‖W‖2 + 1

)2
+ O

(
‖F‖2

2

)
.

(3.15)

On imposing conditions that ensure the above analysis is valid, we obtain the following

backward error analysis result.
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Theorem 3.1. Let A = Ã + ∆A be a symmetric n × n matrix of floating point

numbers, where Ã is positive semi-definite of rank r < n, and partition Ã and ∆A

conformally with (2.1) with k = r. Assume that

max

{‖∆A11‖2

‖A11‖2

,
‖∆A‖2

‖A‖2

}
= θu, where θ is a small constant; (3.16)

that A11 is positive definite with

max

{
20r3/2u, 2

(
θu +

rǫr+1

1 − rǫr+1

)}
κ2(A11) < 1; (3.17)

and that
nǫr+1

1 − rǫr+1

(
‖W‖2 + 1

)2
<

1

2
, (3.18)

where W = Ã−1
11 Ã12 and ǫr+1 = (r +1)u/(1− (r +1)u). Then in floating point arithmetic

with unit roundoff u the Cholesky algorithm applied to A successfully completes r stages,

and the computed r × n Cholesky factor R̂r satisfies

‖A − R̂T
r R̂r‖2 ≤ 2

(
2r(r + 1) + θ

)(
‖W‖2 + 1

)2
u‖A‖2 + O(u2). (3.19)

Proof. The assumptions are explained as follows. Condition (3.16) enables us to

replace O
(
‖F‖2

2

)
, and ǫr+1‖∆A‖2, by O(u2) in (3.15). The second condition serves two

purposes. First, the definiteness of A11, together with the “20r3/2u” part of (3.17), en-

sures that Cholesky factorisation of A11 succeeds (Wilkinson 1968), that is, the Cholesky

algorithm applied to A completes r stages without breakdown. As we show next, the

second part of (3.17) ensures that Lemma 2.1 is applicable to (3.11), that is, that Ã11 is

positive definite and ‖Ã−1
11 F11‖2 < 1. The definiteness of Ã11 = A11 −∆A11 is immediate

since, certainly,

κ2(A11)
‖∆A11‖2

‖A11‖2

≤ κ2(A11)θu <
1

2
.

To show that ‖Ã−1
11 F11‖2 < 1 we use the bounds

‖Ã−1
11 ‖2 = ‖(A11 − ∆A11)

−1‖2 ≤
‖A−1

11 ‖2

1 − ‖A−1
11 ∆A11‖2

≤ 2‖A−1
11 ‖2

and

‖E11‖2 ≤
rǫr+1

1 − rǫr+1

‖A11‖2

(which is proved in a similar way to (3.10)), obtaining, since F = ∆A − E,

‖Ã−1
11 F11‖2 ≤ 2‖A−1

11 ‖2

(
θu‖A11‖2 +

rǫr+1

1 − rǫr+1

‖A11‖2

)
< 1

by (3.17).

Finally, the bound (3.19) is obtained from (3.15) on using (3.16), (3.18) and rǫr+1/(1−
rǫr+1) = r(r + 1)u + O(u2).
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4 Discussion

First, it is important to note that Theorem 3.1 is just about the best result that could

have been expected. For the bound (3.19) is essentially the same as the bound obtained

on taking norms in Lemma 2.1; in other words (3.19) simply reflects the inherent math-

ematical sensitivity of A − RT
r Rr to small perturbations in A.

We turn now to the issue of stability. Ideally, for A as defined in Theorem 3.1, the

computed Cholesky factor R̂r produced after r stages of the algorithm would satisfy

‖A − R̂T
r R̂r‖2 ≤ ǫ‖A‖2,

where ǫ is a modest multiple of u. Theorem 3.1 shows that stability “depends” on the size

of γ = ‖Ã−1
11 Ã12‖2. Of course, because of the many inequalities used in its derivation we

cannot say that the bound (3.19) will always be sharp when γ is large—but the analysis

of section 2 shows that there certainly are perturbations E, which, if present in (3.8),

would make (3.19) sharp.

If no form of pivoting is used then γ can be arbitrarily large for fixed n (see section 2)

and the Cholesky algorithm must in this case be classed as unstable. But for complete

pivoting we know from Lemma 2.3 that there holds the upper bound

γ ≤
√

1

3
(n − r)(4r − 1).

Thus the Cholesky algorithm with complete pivoting is stable if r is small, but stability

cannot be guaranteed, and seems unlikely in practice, if γ (and hence, necessarily, r

and n) is large. We investigate the stability empirically in section 6.

Next we consider the implications of our analysis for LINPACK’s SCHDC, assuming

the use of the complete pivoting option. SCHDC follows the LINPACK philosophy

of avoiding machine dependent constants and tests for “small” numbers, and leaving

decisions about rank to the user. Consequently, SCHDC proceeds with the Cholesky

algorithm until a nonpositive pivot is encountered, that is, up to and including stage

k − 1, where k is the smallest integer for which

â
(k)
ii ≤ 0, i = k, . . . , n. (4.1)

Usually, k > r + 1, due to the effect of rounding errors. A potential danger is that

continuing beyond the rth stage will lead to instability, induced by eliminating from

indefinite submatrices consisting entirely of roundoff. To investigate this we consider the

(r + 1)st stage of the Cholesky algorithm and we write, using (1.3) and (3.3),

â
(r+2)
ij =

(
â

(r+1)
ij −

â
(r+1)
r+1,i â

(r+1)
r+1,j

â
(r+1)
r+1,r+1

(1 + δ1)(1 + δ2)

)
(1 + δ3), |δi| ≤ u.

12



If maxr+1≤i,j≤n |â(r+1)
ij | = cr+1u then

|â(r+2)
ij | ≤ cr+1u + O(u2) +

(cr+1u)2

â
(r+1)
r+1,r+1

(
1 + O(u)

)

=

(
cr+1 +

c2
r+1

dr

)
u + O(u2),

where â
(r+1)
r+1,r+1 = dr+1u. Thus

‖Âr+2‖2 ≤ (n − r − 1)

(
1 +

cr+1

dr+1

)
‖Âr+1‖2 + O(u2)

and so the factorisation remains stable provided that cr+1/dr+1 is not too large. It does

not seem possible to obtain an a priori bound for cr+1/dr+1. We note, however, that any

instability that is encountered is confined to the submatrix of the residual consisting of

the intersection of rows and columns r + 1, . . . , n.

A more sophisticated termination criterion is to stop as soon as

‖Âk‖ ≤ ǫ‖A‖ or â
(k)
ii ≤ 0, i = k, . . . , n, (4.2)

for some readily computed norm ‖·‖ and a suitable tolerance ǫ. This criterion terminates

as soon as a stable factorisation is achieved, avoiding unnecessary work in eliminating

negligible elements in the computed Schur complement Âk. Note that ‖Âk‖ is indeed a

reliable order-of-magnitude estimate of the true residual since by (3.8) and (3.10) A −
R̂T

k−1R̂k−1 = E + Â(k) with ‖E‖ = O(u)
(
‖A‖ + ‖Â(k)‖

)
.

Another possible stopping criterion is

max
k≤i≤n

â
(k)
ii ≤ ǫâ

(1)
11 . (4.3)

This is related to (4.2) in that if A and Âk are positive semi-definite then a
(1)
11 =

maxi,j |aij| ≈ ‖A‖2, and similarly maxk≤i≤n â
(k)
ii ≈ ‖Âk‖2. Note that (4.3) bounds

κ2(R̂k−1), since

κ2(R̂k−1) ≤
∣∣∣∣

r̂11

r̂k−1,k−1

∣∣∣∣ =

(
â

(1)
11

â
(k−1)
k−1,k−1

)1/2

≤ ǫ−1/2.

The effectiveness of these three stopping criteria for obtaining a stable decomposition

is investigated empirically in section 6.

5 Rank-Revealing Decompositions

5.1 The Cholesky Decomposition

As mentioned in the introduction, one use of the Cholesky algorithm with complete piv-

oting is for computing a rank-revealing Cholesky decomposition of a “nearly” positive
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semi-definite matrix A. From the results of section 2, however, we know that the algo-

rithm in general is unreliable, since the distance to a rank r matrix may be overestimated

by as much as 1
3
(n − r)(4r − 1) (see Example 2.1).

5.2 The QR Decomposition

Let B ∈ R
m×n (m ≥ n) have the QR decomposition with column pivoting

BΠ = Q︸︷︷︸
m×n

R︸︷︷︸
n×n

, QT Q = I, rii ≥ 0. (5.2.1)

Then

ΠT BTBΠ = RTR (5.2.2)

is the Cholesky decomposition of BTB with complete pivoting. In this section we apply

the perturbation theory of section 2 to the Cholesky decomposition (5.2.2), in order to

obtain a new perturbation result for the QR decomposition (5.2.1) in the case where B

is rank-deficient.

Let rank(B) = r < n, so that

R =




r n − r

r R11 R12

n − r 0 0


. (5.2.3)

We wish to examine the effect of a perturbation F in B on the (2,2) block of R. Let

G = QT FΠ, so that

(B + F )Π = Q(R + G), (5.2.4)

and let B + F have the QR decomposition with column pivoting

(B + F )Π = Q R.

Our aim is to bound ‖R22‖2. Define

A = ΠT BTBΠ = RTR, (5.2.5)

A + E = Π
T
(B + F )T (B + F )Π = R

T
R. (5.2.6)

It is easy to see that

R
T

22R22 = Sr(A + E), (5.2.7)

and so our task is to bound ‖Sr(A+E)‖2. Assume that A satisfies conditions (2.4); then,

for sufficiently small ‖E‖2, Π = Π, and from (5.2.4–5.2.6),

E = RT G + GT R + GT G. (5.2.8)
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We are now in a position to invoke the perturbation theory of section 2. On applying

Lemma 2.1, we find that for the very special E in (5.2.8) the first order perturbation

term vanishes, and the second order term is of a simple form.

Lemma 5.1. Under the above assumptions, if ‖A−1
11 E11‖2 < 1 then

Sr(A + E) = −GT
12G12 + GT

12G11W + W T GT
11G12 − W T GT

11G11W + O
(
‖G‖3

2

)
,

where W = A−1
11 A12 = R−1

11 R12.

Proof. The result is obtained from Lemma 2.1 on using Sr(A) = 0 and substituting

for E from (5.2.8). We omit the tedious algebra.

We obtain the following result.

Theorem 5.2. Let B ∈ R
m×n, where m ≥ n and rank(B) = r < n. Let B have the

QR decomposition with column pivoting BΠ = QR, where R is given by (5.2.3), and

assume A = BTB satisfies the conditions (2.4). Then for sufficiently small ‖F‖2, B + F

has the QR decomposition with column pivoting (B + F )Π = Q R, and

‖R22‖2

‖B‖2

≤ ‖F‖2

‖B‖2

(
1 + ‖W‖2

)
+ O

(‖F‖2

‖B‖2

)2

. (5.2.9)

Proof. Using Lemma 5.1 together with (5.2.7) and ‖G‖2 = ‖F‖2 one obtains

‖R22‖2
2 ≤ ‖F‖2

2

(
1 + ‖W‖2

)2
+ O

(
‖F‖3

2

)
,

which, on dividing by ‖B‖2
2, is equivalent to (5.2.9).

Theorem 5.2 sheds new light on the behaviour of the QR decomposition with column

pivoting. For it shows that the quality of ‖R22‖2 as an estimate of ‖F‖2, which itself is

an upper bound for the distance σr+1(B+F ) from B+F to the rank r matrices, depends

on the size of W = W (B) = R−1
11 R12. (Here σk(X) denotes the kth largest singular value

of X.) If we regard B+F as the given matrix, and we choose F so that B := (B+F )−F

has rank r with ‖F‖2 = σr+1(B + F ), then we obtain a bound similar to the following

one, from Lawson and Hanson (1974, Theorem 6.31):

|rr+1,r+1| ≤
1

3

√
4r+1 + 6(r + 1) − 1 σr+1(B + F )

(
(B + F )Π = Q R

)
. (5.2.10)

Our result is stronger in the sense that for a particular matrix ‖W‖2 may be much smaller

than its upper bound ‖W‖2 ≤
√

1
3
(n − r)(4r − 1) from Lemma 2.3 (see the test results

of the next section); on the other hand (5.2.10) has the advantage of holding for all F .
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While Theorem 5.2 is important theoretically, we do not feel that it leads to any new

practical approaches to the use of the QR decomposition with column pivoting in rank

estimation. The main reason for this is the difficulty of verifying that the perturbation

F , which in practice must also include the backward error, is “sufficiently small” for one

to be able to obtain a strict bound of the form

‖F‖2

‖B‖2

≥
(

θ

1 + ‖W‖2

) ‖R22‖2

‖B‖2

(5.2.11)

(say, for θ = 2). For practical use, what is really required is a rigorous bound of the form

(5.2.11), with θ a small constant, valid for all F . Such a bound would combine the best

features of (5.2.9) and (5.2.10), but is, we suspect, impossible to achieve.

The results of our numerical testing in the next section do, however, enable us to

draw some important conclusions from Theorem 5.2 about the practical effectiveness of

the QR decomposition with column pivoting.

5.3 The LU Decomposition

Another interesting application of our perturbation theory is to the LU decomposition of

a rank-r m × n matrix A (m ≥ n), by Gaussian elimination with complete pivoting:

PAQ =




r

r L11

m − r L21




( r n − r

r U11 U12

)
, lii ≡ 1.

Redefining A := PAQ, the relevant Schur complement is S(A) = A22−A21A
−1
11 A12, which

is zero when A has rank r. A direct analogue of Lemma 2.1 shows that Sr(A+E) contains

a term A21A
−1
11 E11A

−1
11 A12. The use of complete pivoting implies that

|uii| ≥ |uij|, j ≥ i,

|lij| ≤ 1, i > j,

using which it can be shown (cf. Lemma 2.3) that

‖A−1
11 A12‖2,F ≤

√
1

3
(n − r)(4r − 1),

‖A21A
−1
11 ‖2,F ≤

√
1

3
(m − r)(4r − 1)

(with equality for the matrix A = LU where L and U have 1’s on the diagonal and −1’s

everywhere below and above the diagonal respectively). From these results it follows that
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although A + E is within distance ‖E‖2 of the rank-r matrix A, the Schur complement

after r stages of the elimination on A + E is bounded approximately by

‖Sr(A + E)‖2 ≤
‖E‖2

3
(4r − 1)

√
(n − r)(m − r) + O(‖E‖2

2).

(Note that, strictly, we should make an assumption similar to (2.4), and require ‖E‖2 to

be sufficiently small, so as to ensure that the same pivot sequence is used for A as for

A+E.) That equality is possible in this bound is shown by Example 2.1, with A = C(θ)

(for which we have P = Q = Π = I, and A = RTR = RT D−1 · DR ≡ LU where

D = diag(rii)).

It is interesting to note that by taking r = n − 1 in the above example we obtain an

n× n nonsingular matrix X (≡ C(θ) + E) for which in the LU factorisation by complete

pivoting

min
i

|uii| ≈
(

4n−1 − 1

3

)
1

‖X−1‖2

(note that min{‖E‖2 : X + E is singular} = ‖X−1‖−1
2 ). Thus the often quoted example

A =




1 −1 . . . . . . 1

1 −1 . . . 1
. . .

...
. . .

...

1




∈ R
n×n, ‖A−1‖∞ = 2n−1,

which is left unchanged by Gaussian elimination with partial or complete pivoting, so

that

min
i

|uii| =
2n−1

‖A−1‖∞
,

is by no means a worst-case example of the failure of near rank-deficiency to be revealed

by small diagonal elements of U ! This second example is perhaps “psychologically” worse

than the first, however, since the matrix X tends to be very ill-conditioned, so that, unlike

for A, mini |uii| for X always reveals some degree of ill-conditioning.

6 Numerical Experiments

We have carried out several numerical experiments in order to investigate the “typical”

size in practice of ‖W‖F when pivoting is used in the Cholesky and QR decomposi-

tions, and to assess the effectiveness of the stopping criteria (4.1), (4.2) and (4.3) for the

Cholesky decomposition.

Our first group of tests was implemented in Fortran 77 on a CDC Cyber machine,

with u = 2−48 ≈ 3.55× 10−15. We used LINPACK’s SCHDC with the complete pivoting
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option to compute Cholesky decompositions of various random positive semi-definite

matrices with pre-assigned spectra. Each matrix was constructed as A = V ΛV T , where

Λ = diag(λi) is rank-r and positive semi-definite, and where V is a random orthogonal

matrix (different for each Λ) generated using the method of Stewart (1980). We used

three distributions of the nonzero eigenvalues:

1 = λ1 = λ2 = · · · = λr−1, λr = α ≤ 1,

λ1 = 1, λ2 = λ3 = · · · = λr = α ≤ 1,

λi = βi−1, 1 ≤ i ≤ r, β ≤ 1,

α and β being used to vary κ2(A) = λ1(A)/λr(A). For each distribution we generated

100 different matrices by taking all combinations of n ∈ {10, 15, 20, 25, 50}, r ∈ {2 +

[i(n − 3)/3] : i = 0, 1, 2, 3}, and κ2(A) ∈ {1, 103, 106, 109, 1012}.
Denote a computed Cholesky decomposition from SCHDC by ΠTAΠ ≈ R̂T

k R̂k, where

R̂k is k × n. Write, for k ≥ r,

R̂k =




r n − r

r R̂11 R̂12

k − r 0 R̂22


,

so that

R̂r = ( R̂11, R̂12 )

is the computed r × n Cholesky factor obtained after r stages of the decomposition. In

all our tests k ≥ r was satisfied. For each decomposition we computed the following

quantities:

‖W‖F = ‖R̂−1
11 R̂12‖F,

ρk = ‖ΠTAΠ − R̂T
k R̂k‖F

/(
u‖A‖F

)
,

ρr = ‖ΠTAΠ − R̂T
r R̂r‖F

/(
u‖A‖F

)
,

αr = ‖Âr+1‖F

/(
u‖A‖F

)
,

βr = max
r+1≤i≤n

â
(r+1,r+1)
ii

/
(uâ

(1)
11 ).

The results were extremely consistent, showing no noticeable variations with n, r, κ2(A),

or the eigenvalue distribution. They are summarised in Table 6.1.

The statistics for ρr show that throughout these tests the Cholesky algorithm had,

after r stages, produced a remarkably stable factorisation. This stability is predicted by

the bound (3.19), since ‖W‖F < 10 throughout.

SCHDC continued for k > r stages of the Cholesky algorithm in all but 18 of the

300 cases. For example, for the matrices with n = 50 and r = 33, k varied between 35
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and 41. In a small number of cases these extra elimination stages led to instability, the

largest relative residual being ρk = 5814.

The values of αr, βr and σr, together with values of αr−1 and βr−1 not reported here,

show that for the termination criteria (4.2) (using the Frobenius norm with ǫ = 20u) and

(4.3) (with ǫ = 50u), the Cholesky algorithm would in every case have been terminated

after r stages, giving a stable decomposition.

A second group of tests was performed using various general, nonsingular matrices,

including random matrices of several types, and Hilbert and Vandermonde matrices. For

each matrix we computed the QR decomposition with column pivoting, and evaluated

‖W‖F = ‖R̂−1
11 R̂12‖F for each of the n − 2 partitionings

R̂ =




r n − r

r R̂11 R̂12

n − r 0 R̂22


, 2 ≤ r ≤ n − 1.

In this way we effectively generated, from a single QR decomposition, the values ‖W‖F

corresponding to the Cholesky or QR decompositions (with pivoting) of a family of ma-

trices, of ranks 2, . . . , n − 1. The computations were done using MATLAB on a PC-AT

compatible machine. The dimension n varied between 5 and 25. The largest value of

‖W‖F was 5.23.

Finally, we present examples of the failure of the Cholesky decomposition with com-

plete pivoting (or equivalently, in these examples, Gaussian elimination with complete

pivoting) to provide a rank-revealing decomposition. We used MATLAB to compute

Cholesky decompositions of C := C(θ)/‖C(θ)‖2, where C(θ) = cp
(
C(θ)

)
is defined in

Example 2.1. For n = 10, 20 the “worst” results we obtained are as follows. Here

u ≈ 2.22 × 10−16.

n = r = 10, θ = 0.38, |r̂nn|2 = 2.0 × 10−11, σ̂n(C) = 3.7 × 10−16,

n = r = 20, θ = 0.81, |r̂nn|2 = 1.8 × 10−9, σ̂n(C) = 9.9 × 10−18.

In both cases C is singular to working precision (since σ̂n(C) ≈ u) yet this is not revealed

by the diagonal elements of R̂. In these examples κ2(C)u ≥ 1, so strictly the theory

of section 2 is not applicable. Nevertheless, the ratio |r̂nn|2/σ̂n(C) is very close to the

approximate theoretical maximum (4n−1 − 1)/3 for n = 10, and within a factor ≈ 1000

of it for n = 20.

Several conclusions may be drawn from these numerical tests. First, it seems that

‖W‖F very rarely exceeds 10 in practice. Nevertheless, it is not difficult to generate

matrices for which ‖W‖F is large. To see this, consider the effect of modifying the R
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factors generated in the above tests by replacing rij by −|rij| for i 6= j, and also replacing

rii by |rii| in the case of the QR decomposition. This modification has no effect on the

inequalities (1.4) and so the new matrices R are still genuine triangular factors from

the QR or Cholesky decompositions with pivoting. Moreover, it is easy to see that

these sign changes do not decrease the value of ‖W‖F. In the above tests ‖W‖F for the

modified R was frequently bigger than 10, sometimes by several orders of magnitude.

One implication of these results is that the “M-matrix sign pattern” occurs very rarely

amongst the matrices R obtained in practice.

Another conclusion is that the termination criterion used in SCHDC does occasionally

lead to a residual appreciably larger than would be obtained if the Cholesky algorithm

were terminated at an earlier stage. Our test results indicate that either of the criteria

(4.2) or (4.3) is preferable from the point of view of backward stability. An added benefit

of terminating earlier is a reduction in the storage requirements for R.

Based on our numerical experience we suggest that ǫ = nu is a reasonable tolerance

for use with (4.2) or (4.3). Because the term ‖Âk‖ in (4.2) requires some non-trivial work

for its evaluation we favour (4.3).

Certainly, the choice of stopping criterion in the Cholesky decomposition is a delicate

matter, the “best” choice depending on many factors, such as the scaling of A, and

possible a priori knowledge of the rank. We would suggest that in practice it is desirable

to “prune” the k × n R̂k returned by SCHDC to a p × n R̂p with p ≤ k; this could be

done by removing each row ‘k’ of R̂k for which (4.3) is satisfied.

7 Concluding Remarks

Our error and perturbation analysis of the Cholesky decomposition of a semi-definite

matrix has revealed the key role played by the matrix W = R−1
11 R12, where R = (R11, R12)

is the Cholesky factor of A. We have shown that in exact arithmetic the residual after an

r-stage Cholesky decomposition of A can overestimate the distance of A from the rank-r

semi-definite matrices by a factor ≈ ‖W‖2
2. And we obtained a bound for the backward

error in the computed Cholesky decomposition of a semi-definite A that is proportional

to
(
‖W‖2 + 1

)2
. These results hold for any pivoting strategy and so a major objective of

a pivoting strategy should be to keep ‖W‖2 small.

Our theoretical and numerical results indicate that complete pivoting—choosing as

pivot the largest element from along the diagonal—is an excellent strategy. With com-

plete pivoting ‖W‖2 ≤
√

1
3
(n − r)(4r − 1), and it appears that in practice ‖W‖2 rarely

exceeds 10. Thus our overall conclusion is that for semi-definite matrices the Cholesky
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algorithm with complete pivoting must be regarded as a stable algorithm.

A side product of a our analysis is further evidence for the reliability in practice of

the QR decomposition with column pivoting as a means for computing a rank-revealing

decomposition. Theorem 5.2, combined with the empirical observation that ‖W‖2 is

usually small, leads to the conclusion that if BΠ = QR and B is close to a rank r matrix,

then “nearly always” R22 ∈ R
n−r×n−r will be appropriately small.
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Table 6.1 Results for 300 test matrices.

Condition Number of Cases

1 ≤ ‖W‖F < 9.7 throughout

1 ≤ ρk < 10 192

10 ≤ ρk < 100 99

100 ≤ ρk < 1000 5

1000 ≤ ρk < 10, 000 4

1 ≤ ρr < 10 275

10 ≤ ρr < 20 25

max αr = 16.7

βr < 10 265

10 ≤ βr < 50 35
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