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Abstract

In this paper we treat the problem of updating the QR factorization,

with applications to the least squares problem. Algorithms are presented

that compute the factorization Ã = Q̃R̃ where Ã is the matrix A = QR

after it has had a number of rows or columns added or deleted. This is

achieved by updating the factors Q and R, and we show this can be much

faster than computing the factorization of Ã from scratch. We consider al-

gorithms that exploit the Level 3 BLAS where possible and place no restric-

tion on the dimensions of A or the number of rows and columns added or

deleted. For some of our algorithms we present Fortran 77 LAPACK-style

code and show the backward error of our updated factors is comparable to

the error bounds of the QR factorization of Ã.

1 Introduction

1.1 The QR Factorization

For A ∈ R
m×n the QR factorization is given by

A = QR, (1.1)

where Q ∈ R
m×m is orthogonal and R ∈ R

m×n is upper trapezoidal.
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1.1.1 Computing the QR Factorization

We compute the QR factorization of A ∈ R
m×n, m ≥ n and of full rank, by

applying an orthogonal transformation matrix QT so that

QT A = R,

and Q is the product of orthogonal matrices chosen to transform A to be the

upper triangular matrix R.

One method uses Givens matrices to introduce zeros below the diagonal one

element at a time. A Givens matrix, G(i, j) ∈ R
m×m, is of the form

i j

G(i, j) =




I

c s

I

−s c

I




i

j

where c = cos(θ) and s = sin(θ) for some θ, and is therefore orthogonal.

For x ∈ R
n, if we set

c =
xi√

x2
i + x2

j

, s =
−xj√
x2

i + x2
j

,

then for G(i, j)T x = y,

yk =





cxi − sxj k = i,

0 k = j,

xk k 6= i, j,

so only the ith and jth elements are affected. We can compute c and s by the

following algorithm.

Algorithm 1.1 This function returns scalars c and s such that[
c s

−s c

]T [
a

b

]
=

[
d

0

]
, where a, b, and d are scalars, and s2 + c2 = 1.

function [c, s] = givens(a, b)

if b = 0

c = 1

s = 0

else

2



if abs(b) ≥ abs(a)

t = −a/b

s = 1/
√

1 + t2

c = st

else

t = −b/a

c = 1/
√

1 + t2

s = ct

end

end

Here the computation of c and s has been rearranged to avoid possible overflow.

Now to transform A to an upper trapezoidal matrix we require a Givens

matrix for each subdiagonal element of A, and apply each one in a suitable order

such as

G(n, n + 1)T . . . G(m − 1, m)TG(1, 2)T . . . G(m − 1, m)T A = QT A = R,

which is a QR factorization.

The matrix Q need not be formed explicitly. It is possible to encode c and s

in a single scalar (see [9, Sec. 5.1.11]), which can then be stored in the eliminated

aij .

The primary use of Givens matrices is to eliminate particular elements in a

matrix. A more efficient approach for a QR factorization is to use Householder

matrices which introduce zeros in all the subdiagonal elements of a column si-

multaneously.

Householder matrices, H ∈ R
n×n, are of the form

H = I − τvvT , τ =
2

vT v
,

where the Householder vector, v ∈ R
n, is nonzero. It is easy to see that H is

symmetric and orthogonal. If y and z are distinct vectors such that ‖y‖2 = ‖z‖2

then there exists an H such that

Hy = z.

We can determine a Householder vector such that

H

[
α

x

]
=

[
β

0

]
,
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where x ∈ R
n−1, and α and β are scalars. By setting

v =

[
α

x

]
±

∥∥∥∥
[

α

x

]∥∥∥∥
2

e1. (1.2)

We then have

H

[
α

x

]
= ∓

∥∥∥∥
[

α

x

]∥∥∥∥
2

e1.

In we choose the sign in (1.2) to be negative then β is positive. However, if

[ α xT ] is close to a positive multiple of e1, then this can give large cancellation

error. So we use the formula [14]

v1 = α − ‖ [α xT ] ‖2 =
α2 − ‖ [α xT ] ‖2

2

α + ‖ [α xT ] ‖2

=
−‖x‖2

2

α + ‖ [α xT ] ‖2

to avoid this in the case when α > 0. This is adopted in the following algorithm.

Algorithm 1.2 For α ∈ R and x ∈ R
n−1 this function returns a vector v ∈ R

n−1

and a scalar τ such that ṽ =

[
1

v

]
is a Householder vector, scaled so ṽ(1) = 1

and H =

[
I − τ

[
1

v

]
[ 1 vT ]

]
is orthogonal, with H

[
α

x

]
=

[
β

0

]
, where β ∈ R.

function [v, τ ] = householder(α, x)

s = ‖x‖2
2

v = x

if s = 0

τ = 0

else

t =
√

α2 + s

% choose sign of v

if α ≤ 0

v one = α − t

else

v one = −s/(α + t)

end

τ = 2v one2/(s + v one2)

v = v/v one

end

Here we have normalized v so v1 = 1 and the essential part of the Householder

vector, v(2: n), can be stored in x.
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Thus if we apply n Householder matrices, Hj, to introduce zeros in the sub-

diagonal columns one by one, we have the QR factorization

Hn . . .H1A = QT A = R,

and the Hj are such that their vectors vj are of the form

vj(1: j − 1) = 0,

vj(j) = 1,

vj(j + 1: m) : as v in Algorithm 1.2.

The algorithm requires 2n2(m − n/3) flops. The essential part of the House-

holder vectors can be stored in the subdiagonal, and we refer to Q being in

factored form.

If Q is to be formed explicitly we can do so with the backward accumulation

method by computing

(H1 . . . (Hn−2(Hn−1Hn))).

This exploits the fact that the leading (j−1)-by-(j−1) part of Hj is the identity.

1.1.2 The Blocked QR Factorization

We can derive a blocked Householder QR factorization by using the following

relationship [18]. We can write the product of p Householder matrices, Hi =

I − τiviv
T
i , as

H1H2 . . .Hp = I − V TV T ,

where

V = [ v1 v2 . . . vp ] =

[
V1

V2

]
,

and V1 ∈ R
p×p is lower triangular with T = Tp upper triangular and defined

recursively as

T1 = τ1, Ti =

[
Ti−1 −τiTi−1V (: , 1: i− 1)Tvi

0 τi

]
, i = 2: p.

With this representation of the Householder vectors we can derive a blocked

algorithm. At each step we factor p columns of A, for some block size p. We can

then apply I − V T TV T to update the trailing matrix.
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1.2 The Least Squares Problem

The linear system,

Ax = b,

where A ∈ R
m×n, x ∈ R

n and b ∈ R
n is overdetermined if m ≥ n. We can solve

the least squares problem

min
x

‖Ax − b‖2,

with A having full rank. We then have with the QR factorization A = QR and

with d = QT b,

‖Ax − b‖2
2 = ‖QT A − QT b‖2

2

= ‖Rx − d‖2
2

=

∥∥∥∥
[

R1

0

]
x −

[
f

g

]∥∥∥∥
2

2

= ‖R1x − f‖2
2 + ‖g‖2

2, .

where R1 ∈ R
n×n is upper triangular and f ∈ R

n. The minimum 2-norm solution

is then found by solving R1x = f . The quantity ‖g‖2 is the residual and is zero

in the case m = n.

Each row of the matrix A can be said to hold observations of the variables xi,

i = 1: n. An example of this is the data fitting problem. Consider the function

g(ti) ≈ bi, i = 1: m.

The value bi has been observed at time ti. We wish to find the function g that ap-

proximates the value bi. In least squares fitting we restrict ourselves to functions

of the form

g(t) = x1g1(t) + x2g2(t) + · · · + xngn(t),

where the functions gi(t) we call basis functions, and the coefficients xi are to be

determined. We find the coefficients by solving the least squares problem with

A =




g1(t1) g2(t1) · · · gn(t1)

g1(t2) g2(t2) · · · gn(t2)
...

...
...

g1(tm) g2(tm) · · · gn(tm)


 , b =




b1

b2
...

bm


 .

Now, it may be required to update the least squares solution in the case where

one or more observations (rows of A) are added or deleted. For instance we could

have a sliding window where for each new observation recorded the oldest one is

deleted. The observations for a particular time period may be found to be faulty,
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thus a block of rows of A would need to be deleted. Also, variables (columns of

A) may be added or omitted to compare the different solutions. Updating after

rows and columns have been deleted is also known as downdating.

To solve these updated least squares problems efficiently we have the problem

of updating the QR factorization efficiently, that is we wish to find Ã = Q̃R̃,

where Ã is the updated A, without recomputing the factorization from scratch.

We assume that Ã has full rank. We also need to compute d̃ such that

‖Ãx − b̃‖ = ‖R̃x − d̃‖,

where b̃ is the updated b corresponding to Ã and d̃ = Q̃T b̃.

2 Updating Algorithms

In this section we will examine all the cases where observations and variables are

added to or deleted from the least squares problem. We derive algorithms for

updating the solution of the least squares problem by updating the QR factoriza-

tion of Ã, in the case m ≥ n. For completeness we have also included discussion

and algorithms for updating the QR factorization only when m < n. In all cases

we give algorithms for computing Q̃ should it be required. We will assume that

A and Ã have full rank.

Where possible we derive blocked algorithms to exploit the Level 3 BLAS and

existing Level 3 LAPACK routines. We include LAPACK style Fortran 77 code

for updating the QR factorization in the cases of adding and deleting blocks of

columns.

For clarity the sines and cosines for Givens matrices and the Householder

vectors are stored in separate vectors and matrices, but could be stored in the

elements they eliminate. Wherever possible new data overwrites original data.

All unnecessary computations have been avoided, unless otherwise stated.

We give floating point operation counts for our algorithms and compare them

to the counts for the Householder QR factorization of Ã.

Some of the material is based on material in [1] and [9].

2.1 Deleting Rows

2.1.1 Deleting One Row

If we wish to update the least squares problem in the case of deleting an observa-

tion we have the problem of updating the QR factorization of A having deleted
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the kth row, aT
k . We can write

Ã =

[
A(1: k − 1, 1: n)

A(k + 1: m, 1: n)

]

and we interpret A(1: 0, 1: n) and A(m + 1: m, 1: n) as empty rows. We define a

permutation matrix P such that

PA =




aT
k

A(1: k − 1, 1: n)

A(k + 1: m, 1: n)


 =

[
aT

k

Ã

]
= PQR,

and if qT is the first row of PQ then we can zero q(2: m) with m − 1 Givens

matrices, G(i, j) ∈ R
m×m, so that

G(1, 2)T . . . G(m − 1, m)T q = αe1, |α| = 1, (2.1)

since the Givens matrices are orthogonal. And we also have

G(1, 2)T . . . G(m − 1, m)T R =

[
vT

R̃

]
,

which is upper Hessenberg, so R̃ is upper trapezoidal.

So we have finally

PA =

[
aT

Ã

]
= (PQG(m − 1, m) . . . G(1, 2))(G(1, 2)T . . . G(m − 1, m)TR)

=

[
α 0

0 Q̃

] [
vT

R̃

]
,

and

Ã = Q̃R̃.

Note that the zero column below α is forced by orthogonality. Also note the

choice of a sequence of Givens matrices over one Householder matrix. If we were

to use a Householder matrix then the transformed R would be full, as H is full,

and not upper Hessenberg. We update b by computing

G(1, 2)T . . . G(m − 1, m)T QT Pb =

[
ν

d̃

]
.

This gives the following algorithm.

Algorithm 2.1 Given A = QR ∈ R
m×n, with m ≥ n, this algorithm computes

Q̃T Ã = R̃ ∈ R
(m−1)×n where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A

with the kth row deleted, 1 ≤ k ≤ m, and d̃ such that ‖Ãx − b̃‖2 = ‖R̃x − d̃‖2,

where b̃ is b with the kth element deleted. The residual, ‖d̃(n + 1: m − 1)‖2, is

also computed.
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qT = Q(k, 1: m)

if k 6= 1

% Permute b

b(2: k) = b(1: k − 1)

end

d = QT b

for j = m − 1:−1: 1

[c(j), s(j)] = givens(q(j), q(j + 1))

% Update q

q(j) = c(j)q(j) − s(j)q(j + 1)

% Update R if there is a nonzero row

if j ≤ n

R(j: j + 1, j: n) =

[
c(j) s(j)

−s(j) c(j)

]T

R(j: j + 1, j: n)

end

% Update d

d(j: j + 1) =

[
c(j) s(j)

−s(j) c(j)

]T

d(j: j + 1)

end

R̃ = R(2: m, 1: n)

d̃ = d(2: m)

% Compute the residual

resid = ‖d̃(n + 1: m − 1)‖2

Computing R̃ requires 3n2 flops, versus 2n2(m − n/3) for the Householder

QR factorization of Ã. If Q̃ is required, it can be computed with the following

algorithm.

Algorithm 2.2 Given vectors c and s from Algorithm 2.1 this algorithm forms

an orthogonal matrix Q̃ ∈ R
(m−1)×(m−1) such that Ã = Q̃R̃, where Ã is the matrix

A = QR with the kth row deleted.

if k 6= 1

% Permute Q

Q(2: k, 1: m) = Q(1: k − 1, 1: m)

end

for j = m − 1:−1: 2

Q(2: m, j: j + 1) = Q(2: m, j: j + 1)

[
c(j) s(j)

−s(j) c(j)

]

end
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% Do not need to update 1st column of Q

Q(2: m, 2) = s(1)Q(2: m, 1) + c(1)Q(2: m, 2)

Q̃ = Q(2: m, 2: m)

2.1.2 Deleting a Block of Rows

If a block of p observations is to be deleted from our least squares problem,

equivalent to deleting the p rows A(k: k + p − 1, 1: n) from A, we would like to

find an analogous method to Algorithm 2.1 that uses Householder matrices, such

that if H is a product of p Householder matrices then

PA =

[
A(k: k + p − 1, 1: n)

Ã

]
= (PQH)(HR) =

[
I 0

0 Q̃

] [
V

R̃

]
.

However as noted in the single row case, HR is full and H is chosen to introduce

zeros in Q not R. Thus in order to compute Ã = Q̃R̃ and d̃, we need the

equivalent of p steps of Algorithm 2.1 and Algorithm 2.2, since Givens matrices

only affect two rows of the matrix they are multiplying, and so we have the

following algorithm.

Algorithm 2.3 Given A = QR ∈ R
m×n, with m ≥ n, this algorithm computes

Q̃T Ã = R̃ ∈ R
(m−p)×n where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A

with the kth to (k + p − 1)st rows deleted, 1 ≤ k ≤ m − p + 1, 1 ≤ p < m, and

d̃ such that ‖Ãx − b̃‖2 = ‖R̃x − d̃‖2, where b̃ is b with the kth to (k + p − 1)st

elements deleted. The residual, ‖d̃(n + 1: m− p)‖2, is also computed.

W = Q(k: k + p − 1, 1: m)

if k 6= 1

% Permute b

b(p + 1: k + p − 1) = b(1: k − 1)

end

d = QT b

for i = 1: p

for j = m − 1:−1: i

[C(i, j), S(i, j)] = givens(W (i, j), W (i, j + 1))

% Update W

W (i, j) = W (i, j)C(i, j) − W (i, j + 1)S(i, j)

W (i + 1: p, j: j + 1) = W (i + 1: p, j: j + 1)

[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]

% Update R if there is a nonzero row

if j ≤ n + i − 1
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R(j: j + 1, j − i + 1: n) =[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]T

R(j: j + 1, j − i + 1: n)

end

% Update d

d(j: j + 1) =

[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]T

d(j: j + 1)

end

end

R̃ = R(p + 1: m, 1: n)

d̃ = d(p + 1: m)

% Compute the residual

resid = ‖d̃(n + 1: m − p)‖2

Computing R̃ requires 3n2p + p2(m/3− p) flops, versus 2n2(m− p− n/3) for

the Householder QR factorization of Ã. Note the following algorithm to compute

Q̃ is more economical than calling Algorithm 2.2 p times, saving 3mp2 flops by

not updating the first p rows of Q̃.

Algorithm 2.4 Given matrices C and S from Algorithm 2.3 this algorithm

forms an orthogonal matrix Q̃ ∈ R
(m−p)×(m−p) such that Ã = Q̃R̃, where Ã is

the matrix A = QR with the kth to (k + p − 1)st rows deleted.

if k 6= 1

% Permute Q

Q(p + 1: k + p − 1, 1: m) = Q(1: k − 1, 1: m)

end

for i = 1: p

for j = m − 1:−1: i + 1

Q(p + 1: m, j: j + 1) = Q(p + 1: m, j: j + 1)

[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]

end

end

% Do not need to update columns 1: p of Q

Q(p + 1: m, i + 1) = S(i, i)Q(p + 1: m, i) + C(i, i)Q(p + 1: m, i + 1)

Q̃ = Q(p + 1: m, p + 1: m)

2.1.3 Updating the QR Factorization for any m and n

The relevant parts of Algorithm 2.3 and Algorithm 2.4 could be used to update

the QR factorization of Ã in the case when m < n without any alteration.
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2.2 Alternative Methods for Deleting Rows

2.2.1 Hyperbolic Transformations

If we have the QR factorization A = QR ∈ R
m×n, then

AT A = RT QT QR = RT R,

which is a Cholesky factorization of AT A. And if we define a permutation matrix

P such that

PA =




aT

k

A(1: k − 1, 1: n)

A(k + 1: m, 1: n)



 =

[
aT

Ã

]
= PQR,

where aT
k is the kth row of A, then we have

RT QT P TPQR = RT R = AT A =

[
aT

k

Ã

]T [
aT

k

Ã

]
. (2.2)

Thus if we find R̃, such that R̃T R̃ = ÃT Ã, then we have computed R̃ for Ã being A

with the kth row deleted. This can be achieved with hyperbolic transformations.

We define W ∈ R
m×m as pseudo-orthogonal with respect to the signature

matrix

J = diag(±1) ∈ R
m×m

if

W T JW = J.

If we transform a matrix with W we say that this is a hyperbolic transformation.

Now from (2.2) we have

ÃT Ã = AT A − aka
T
k

= RT R − aka
T
k

= [ RT ak ]

[
In 0

0 −1

] [
R

aT
k

]
,

with the signature matrix

J =

[
In 0

0 −1

]
. (2.3)

And suppose there is a W ∈ R
(n+1)×(n+1) such that W T JW = J with the property

W

[
R

aT
k

]
=

[
R̃

0

]

12



is upper trapezoidal. It follows that

ÃT Ã = [ RT ak ] W TJW

[
R

aT
k

]

= [ R̃T 0 ] J

[
R̃

0

]

= R̃T R̃,

which is the Cholesky factorization we seek.

We construct the hyperbolic transformation matrix, W , by a product of hy-

perbolic rotations, W (i, n + 1) ∈ R
(n+1)×(n+1), which are of the form

i n + 1

W (i, n + 1) =




I

c −s

I

−s c




i

n + 1

where c = cosh(θ) and s = sinh(θ) for some θ and c2 − s2 = 1. W (i, n +

1)T JW (i, n + 1) = J , where J is given in (2.3).

W (i, n + 1)x only transforms the ith and (n + 1)st elements. To solve the

2 × 2 problem [
c −s

−s c

] [
xi

xn+1

]
=

[
y

0

]
,

we note that cxn+1 = sxi and there is no solution for xi = xn+1 6= 0. If xi 6= xn+1

then we can compute c and s with the following algorithm.

Algorithm 2.5 This algorithm generates scalars c and s such that[
c −s

−s c

] [
x1

x2

]
=

[
y

0

]
where x1, x2 and y are scalars and c2 − s2 = 1,

if a solution exists.

if x2 = 0

s = 0

c = 1

else

if |x2| < |x1|
t = x2/x1

c = 1/
√

1 − t2

s = ct

else

13



no solution exists

end

end

Note the norm of the rotation gets large as x1 gets close to x2.

We thus generate n hyperbolic transformations such that

W (n, n + 1) . . .W (2, n + 1)W (1, n + 1)

[
R

aT
k

]
=

[
R̃

0

]
.

It turns out that all the W (i, n + 1) can be found if A has full rank [1].

2.2.2 Chamber’s Algorithm

A method due to Chambers [5] mixes a hyperbolic and Givens rotation. If we

have our usual Givens transformation on the vector x
[

c s

−s c

]T [
x1

x2

]
,

then the transformed xi, x̃i, are

x̃1 = cx1 − sx2, (2.4)

x̃2 = sx1 + cx2,

with

c =
x1√

x2
1 + x2

2

, s =
−x2√
x2

1 + x2
2

.

Now suppose we know x̃1 and want to recreate the vector x, then rearrang-

ing (2.4) we have

x1 = (sx2 + x̃1)/c,

x̃2 = sx1 + cx2,

with

c =

√
x̃2

1 − x2
2

x̃1
, s =

−x2

x̃1
.

Thus we can recreate the steps that would have updated R̃ had we added aT
k

to Ã, instead of deleting it from A. At the ith step, for i = 1: n + 1, with

x1 = R(i, i),

x̃1 = R̃(i, i),

x2 = a
(i−1)
k (i),

14



we compute, for j = i: n + 1:

R̃(i, j) = (R(i, i) + sak(j))/c,

a
(i)
k (j) = sR(i, j) + ca

(i−1)
k (j).

2.2.3 Saunders’ Algorithm

If Q is not available then Saunders’ algorithm [17] offers an alternative to Algo-

rithm 2.1. The first row of

PA =

[
aT

k

Ã

]
= PQ

[
R1

0

]
,

can be written

aT
k = qT

[
R1

0

]
= [ qT

1 qT
2 ]

[
R1

0

]
,

where q1 ∈ R
n. We compute q1 by solving

RT
1 q1 = ak,

and since ‖q‖2 = 1 we have

η = ‖q2‖2 = (1 − ‖q1‖2
2)

1/2.

Then we have, with the same Givens matrices in (2.1),

G(n + 1, n + 2)T . . . G(m − 1, m)T

[
q1

q2

]
=




q1

±η

0



 ,

which would not effect R. So we need only compute

G(1, 2)T . . . G(n, n + 1)T

[
q1

η

]
= αe1, |α| = 1,

and update R by

G(1, 2)T . . . G(n, n + 1)T R =

[
vT

R̃

]
.

This algorithm is implemented in LINPACK’s xCHDD.
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2.2.4 Stability Issues

Stewart [20] shows that hyperbolic transformations are not backward stable.

However, Chamber’s and Saunder’s algorithms are relationally stable [3], [19],

that is if W represents the product of all the transformations then

W TR =

[
vT

R̃

]
+ E,

where

‖E‖ ≤ cnu‖R‖,

and cn is a constant that depends on n.

Saunder’s algorithm can fail for certain data, see [2].

2.2.5 Block Downdating

Hyperbolic transformations have been generalized by Rader and Steinhardt as

hyperbolic Householder transformations [15].

Alternatives are discussed in Elden and Park [8], and the references contained

within, including a generalization of Saunders Algorithm. See also Bojanczyk,

Higham and Patel [4] and Olskanskyj, Lebak and Bojanczyk [13].

2.3 Adding Rows

2.3.1 Adding One Row

If we wish to add an observation to our least squares problem then we need to

add a row, uT ∈ R
n, in the kth position, k = 1: m + 1, of A = QR ∈ R

m×n,

m ≥ n. We can then write

Ã =




A(1: k − 1, 1: n)

uT

A(k: m, 1: n)




and we can define a permutation matrix, P , such that

PÃ =

[
A

uT

]
,

and then [
QT 0

0 1

]
PÃ =

[
R

uT

]
. (2.5)
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For example, with m = 8 and n = 6 the right-hand side of (2.5) looks like:




+ + + + + +

0 + + + + +

0 0 + + + +

0 0 0 + + +

0 0 0 0 + +

0 0 0 0 0 +

0 0 0 0 0 0

0 0 0 0 0 0

⊖ ⊖ ⊖ ⊖ ⊖ ⊖




,

with the nonzero elements of R represented with a + and the elements to be

eliminated are shown with a ⊖.

Thus to find Ã = Q̃R̃, we can define n Givens matrices, G(i, j) ∈ R
m+1×m+1,

to eliminate uT to give

G(n, m + 1)T . . . G(1, m + 1)T

[
R

uT

]
= R̃,

so we have

Ã =

(
P T

[
Q 0

0 1

]
G(1, m + 1) . . .G(n, m + 1)

)
R̃ = Q̃R̃.

and to update b we compute

G(n, m + 1)T . . . G(1, m + 1)T

[
QT b

µ

]
= d̃,

where µ is the element inserted into b corresponding to uT . This gives the fol-

lowing algorithm.

Algorithm 2.6 Given A = QR ∈ R
m×n, with m ≥ n, this algorithm computes

Q̃T Ã = R̃ ∈ R
(m+1)×n where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A

with a row, uT ∈ R
n, inserted in the kth position, 1 ≤ k ≤ m+1, and d̃ such that

‖Ãx− b̃‖2 = ‖R̃x− d̃‖2, where b̃ is b with a scalar µ inserted in the kth position.

The residual, ‖d̃(n + 1: m + 1)‖2, is also computed.

d = QT b

for j = 1: n

[c(j), s(j)] = givens(R(j, j), u(j))

R(j, j) = c(j)R(j, j) − s(j)u(j)

17



% Update jth row of R and u

t1 = R(j, j + 1: n)

t2 = u(j + 1: n)

R(j, j + 1: n) = c(j)t1 − s(j)t2

u(j + 1: n) = s(j)t1 + c(j)t2

% Update jth row of d and µ

t1 = d(j)

t2 = µ

d(j) = c(j)t1 − s(j)t2

µ = s(j)t1 + c(j)t2

end

R̃ =

[
R

0

]

d̃ =

[
d

µ

]

% Compute the residual

resid = ‖d̃(n + 1: m + 1)‖2

Computing R̃ requires 3n2 flops, versus 2n2(m − n/3) for the Householder

QR factorization of Ã. If Q̃ is required, it can be computed with the following

algorithm.

Algorithm 2.7 Given vectors c and s from Algorithm 2.6 this algorithm forms

an orthogonal matrix Q̃ ∈ R
(m+1)×(m+1) such that Ã = Q̃R̃, where Ã is the matrix

A = QR with a row added in the kth position.

Set Q̃ =

[
Q 0

0 1

]

if k 6= m + 1

% Permute Q

Q =




Q(1: k − 1, 1: n)

Q(m + 1, 1: n)

Q(k: m, 1: n)




end

for j = 1: n

t1 = Q̃(1: m + 1, j)

t2 = Q̃(1: m + 1, m + 1)

Q̃(1: m + 1, j) = c(j)t1 − s(j)t2

Q̃(1: m + 1, m + 1) = s(j)t1 + c(j)t2

end

18



2.3.2 Adding a Block of Rows

To add a block of p observations to our least squares problem we add a block

of p rows, U ∈ R
(p×n), in the kth to (k + p − 1)st positions, k = 1: m + 1, of

A = QR ∈ R
m×n, m ≥ n, we can then write

Ã =




A(1: k − 1, 1: n)

U

A(k: m, 1: n)




and we can define a permutation matrix, P , such that

PÃ =

[
A

U

]
,

and [
QT 0

0 Ip

]
PÃ =

[
R

U

]
. (2.6)

For example, with m = 8, n = 6 and p = 3 the right-hand side of Equation (2.6)

looks like:



+ + + + + +

0 + + + + +

0 0 + + + +

0 0 0 + + +

0 0 0 0 + +

0 0 0 0 0 +

0 0 0 0 0 0

0 0 0 0 0 0

⊖ ⊖ ⊖ ⊖ ⊖ ⊖
⊖ ⊖ ⊖ ⊖ ⊖ ⊖
⊖ ⊖ ⊖ ⊖ ⊖ ⊖




,

with the nonzero elements of R represented with a + and the elements to be

eliminated are shown with a ⊖.

Thus to find Ã = Q̃R̃, we can define n Householder matrices to eliminate U

to give

Hn . . .H1

[
R

U

]
= R̃,

so we have

Ã =

(
P T

[
Q 0

0 Ip

]
H1 . . .Hn

)
R̃ = Q̃R̃.
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The Householder matrix, Hj ∈ R
(m+p)×(m+p), will zero the jth column of U .

Its associated Householder vector, vj ∈ R
(m+p), is such that

vj(1: j − 1) = 0,

vj(j) = 1,

vj(j + 1: m) = 0,

vj(m + 1: m + p) = x/(rjj − ‖ [ rjj xT ] ‖2), where x = U(1: p, j).





(2.7)

So the Hj have the following structure

Hj =




I

hjj [ hj,m+1 . . . hj,m+p ]

I




hm+1,j
...

hm+p,j







hm+1,m+1 . . . hm+1,m+p
...

...

hm+p,m+1 . . . hm+p,m+p







.

Then to update b we compute

Hn . . .H1

[
QT b

e

]
= d̃,

where e is such that Ux = e. This gives the following algorithm.

Algorithm 2.8 Given A = QR ∈ R
m×n, with m ≥ n, this algorithm computes

Q̃T Ã = R̃ ∈ R
(m+p)×n where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A

with a block of rows, U ∈ R
p×n, inserted in the kth to (k + p − 1)st positions,

1 ≤ k ≤ m + 1, p ≥ 1, and d̃ such that ‖Ãx − b̃‖2 = ‖R̃x − d̃‖2, where b̃ is

b with the vector e inserted in the kth to (k + p − 1)st positions. The residual,

‖d̃(n + 1: m + p)‖2, is also computed.

d = QT b

for j = 1: n

[V (1: p, j), τ(j)] = householder(R(j, j), U(1: p, j))

% Remember old jth row of R

Rj = R(j, j + 1: n)

% Update jth row of R

R(j, j: n) = (1 − τ(j))R(j, j: n) − τ(j)V (1: p, j)TU(1: p, j: n)

% Update trailing part if U

if j < n
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U(1: p, j + 1: n) = U(1: p, j + 1: n) − τ(j)V (1: p, j)Rj

−τ(j)V (1: p, j)(V (1: p, j)TU(1: p, j + 1: n))

end

% Remember old jth element of d

dj = R(j)

% Update jth element of d

d(j) = (1 − τ(j))d(j) − τ(j)V (1: p, j)Te(1: p)

% Update e

e(1: p) = e(1: p) − τ(j)V (1: p, j)dj

−τ(j)V (1: p, j)(V (1: p, j)Te(1: p))

end

R̃ =

[
R

0

]

d̃ =

[
d

e

]

% Compute the residual

resid = ‖d̃(n + 1: m + p)‖2

Computing R̃ requires 2n2p flops, versus 2n2(m+p−n/3) for the Householder

QR factorization of Ã. If Q̃ is required, it can be computed with the following

algorithm.

Algorithm 2.9 Given the matrix V and vector τ from Algorithm 2.8 this algo-

rithm forms an orthogonal matrix Q̃ ∈ R
(m+p)×(m+p) such that Ã = Q̃R̃, where Ã

is the matrix A = QR with a block of rows inserted in the kth to (k + p − 1)st

positions.

Set Q̃ =

[
Q 0

0 I

]

if k 6= m + 1

% Permute Q

Q̃ =




Q̃(1: k − 1, 1: m + p)

Q̃(m + 1: m + p, 1: m + p)

Q̃(k: m, 1: m + p)




end

for j = 1: n

% Remember jth column of Q̃

Q̃k = Q̃(1: m + p, j)

% Update jth column

Q(1: m + p, j) = Q(1: m + p, j)(1 − τ(j))−
Q̃(1: m + p, m + 1: m + p)τ(j)V (1: p, j)
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% Update m + 1: p columns of Q̃

Q̃(1: m + p, m + 1: m + p) = Q̃(1: m + p, m + 1: m + p)

−τ(j)Q̃kV (1: p, j)T

−τ(j)(Q̃(1: m + p, m + 1: m + p)V (1: p, j))V (1: p, j)T

end

This algorithm could be made more economical by noting that at the jth

stage, for i > m, q̃ij = 0, and avoiding some unnecessary multiplications by zero.

Also Q̃(m + 1: m + p, 1: m) = 0 and Q̃(m + 1: m + p, m + 1: m + p) = Ip, prior to

the permutation.

Algorithm 2.8 can be improved by exploiting the Level 3 BLAS by using the

representation of the product of nb Householder matrices, Hi, as

H1H2 . . . Hnb
= I − V TV T , (2.8)

where

V = [ v1 v2 . . . vnb
] =

[
V1

V2

]
,

and V1 ∈ R
nb×nb is lower triangular and T is upper triangular. We can write

QT Ã =




R11 R12 R13

0 R22 R23

0 0 R33

0 0 0

U11 U12 U13




, (2.9)

where the Rii are upper triangular with R11 ∈ R
r×r and R22 ∈ R

nb×nb, and after

we have updated the first r columns, then the transformed right-hand side of

(2.9) looks like: 


R
(r)
11 R

(r)
12 R

(r)
13

0 R
(r)
22 R

(r)
23

0 0 R
(r)
33

0 0 0

0 U
(r)
12 U

(r)
13




.

Now we eliminate the first column of U
(r)
12 and instead of updating the trailing

parts of R and U we update only the trailing parts of U
(r)
12 and the (r + 1)st

row of R
(r)
22 , which are the only elements affected in this middle block column,

and continue in this way until U12 has been eliminated. We can then employ the

representation (2.8) to apply nb Householder matrices to update the last block

column in one go. We have, by the definition of the Householder vectors in (2.7)

V =

[
V1

V2

]
, V1 = Inb

, V2 =

[
0

V 2

]
,

22



where V 2 ∈ R
p×nb hold the essential part of the Householder vectors for the

current block column. Then

[ I − V T T V T ]T




R23

R33

0

U13


 =


Im+p−r −




Inb

0

0

V 2


T T [ Inb

0 0 V
T

2 ]







R23

R33

0

U13




=




(Inb
− T T )R23 − T T V

T

2 U13

R33

0

−V 2T
T R23 + (I − V 2T

T V
T

2 )U13


 ,

This approach leads to a blocked algorithm, where at the kth stage we fac-

torize [ RT
22 0 UT

12 ]T , where R22 ∈ R
nb×nb and U12 ∈ R

p×nb, then update

R23 ∈ R
nb×(n−knb) and UT

13 ∈ R
p×(n−knb) as above. And to update QT b = d

we compute




d(1: (k − 1)nb)

(Inb
− T T )d((k − 1)nb + 1: knb) − T T V

T

2 e

d(knb + 1: m)

−V 2T
T d((k − 1)nb + 1: knb) + (I − V 2T

T V
T

2 )e


 =

[
d

e

]
.

Algorithm 2.10 Given A = QR ∈ R
m×n, with m ≥ n, this algorithm computes

Q̃T Ã = R̃ ∈ R
(m+p)×n where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A

with a block of rows, U ∈ R
p×n, inserted in the kth to (k + p − 1)st positions,

1 ≤ k ≤ m + 1, p ≥ 1, and d̃ such that ‖Ãx − b̃‖2 = ‖R̃x − d̃‖2, where b̃ is

b with the vector e inserted in the kth to (k + p − 1)st positions. The residual,

‖d̃(n+1: m+p)‖2, is also computed. This is a Level 3 BLAS algorithm with block

size nb.

d = QT b

for k = 1: nb: n

% Check for the last column block

jb = min(nb, n − k + 1)

Factorize current block with Algorithm 2.8 where

V is V (1: p, k: k + jb − 1)

% If we are not in last block column build T

% and update trailing matrix

if k + jb ≤ n

for j = k: k + jb − 1

% Build T
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if j = k

T (1, 1) = τ(j)

else

T (1: j − k, j − k + 1) = −τ(j)T (1: j − k, 1: j − k)

∗V (1: p, k: j − 1)T V (1: p, j)

T (j − k + 1, j − k + 1) = τ(j)

end

end

% Compute products we use more than once

TV = T T V (1: p, k: k + jb − 1)T

Te = TV e

TU = TV U(1: p, , k + jb: n)

% Remember old d and e

dk = d(k: k + jb − 1)

ek = e

% Update d and e

d(k: k + jb − 1) = dk − T T dk − Te

e = −V (1: p, k: k + jb − 1)T T dk + ek

−V (1: p, k: k + jb − 1)Te

% Remember old trailing parts of R and U

Rk = R(k: k + jb − 1, k + jb: n)

Uk = U(1: p, k + jb: n)

% Update trailing parts of R and U

R(k: k + jb − 1, k + jb: n) = Rk − T TRk − TU

U(1: p, k + jb: n) = −V (1: p, k: k + jb − 1)T T Rk + Uk

−V (1: p, k: k + jb − 1)TU

end

end

R̃ =

[
R

0

]

d̃ =

[
d

e

]

% Compute the residual

resid = ‖d̃(n + 1: m + p)‖2

We could apply the same approach to improve Algorithm 2.9.
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2.3.3 Updating the QR Factorization for any m and n

In the case where m < n after m steps of Algorithm 2.8 we have

Ã = P T

[
QT 0

0 Ip

]
H1 . . .Hn

[
R11 R22

0 V

]
,

where R11 is upper triangular and V is the transformed U(1: p, m + 1: n). Thus

if we compute the QR factorization V = QV RV , we than have

Ã =

(
P T

[
QT 0

0 Ip

]
H1 . . .Hn

[
Im 0

0 QT
V

])
R̃ = Q̃R̃.

This gives us the following algorithms to update the QR factorization for any m

and n.

Algorithm 2.11 Given A = QR ∈ R
m×n this algorithm computes Q̃T Ã = R̃ ∈

R
(m+p)×n where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A with a block

of rows, U ∈ R
p×n, inserted in the kth to (k + p− 1)st positions, 1 ≤ k ≤ m + 1,

p ≥ 1.

lim = min(m, n)

for j = 1: lim

[V (1: p, j), τ(j)] = householder(R(j, j), U(1: p, j))

% Remember old jth row of R

Rk = R(j, j + 1: n)

% Update jth row of R

R(j, j: n) = (1 − τ(j))R(j, j: n) − τ(j)V (1: p, j)TU(1: p, j: n)

% Update trailing part if U

if j < n

U(1: p, j + 1: n) = U(1: p, j + 1: n) − τ(j)V (1: p, j)Rk

−τ(j)V (1: p, j)(V (1: p, j)TU(1: p, j + 1: n))

end

end

R̃ =

[
R

0

]

if m < n

Perform the QR factorization U(: , m + 1: n) = QURU

R̃(m + 1: m + p, m + 1: n) = RU

end

This algorithm could also be improved by using the representation (2.8) to

include a Level 3 BLAS part. If Q̃ is required it can be computed with the

following algorithm.
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Algorithm 2.12 Given the matrices V and QU and vector τ from Algorithm 2.11

this algorithm forms an orthogonal matrix Q̃ ∈ R
(m+p)×(m+p) such that Ã = Q̃R̃,

where Ã is the matrix A = QR with a block of rows inserted in the kth to

(k + p − 1)st positions.

Set Q̃ =

[
Q 0

0 I

]

if k 6= m + 1

% Permute Q

Q̃ =




Q̃(1: k − 1, 1: m + p)

Q̃(m + 1: m + p, 1: m + p)

Q̃(k: m, 1: m + p)




end

lim = min(m, n)

for j = 1: lim

% Remember jth column of Q̃

Q̃k = Q̃(1: m + p, j)

% Update jth column

Q(1: m + p, j) = Q(1: m + p, j)(1 − τ(j))

−Q̃(1: m + p, m + 1: m + p)τ(j)V (1: p, j)

% Update m + 1: p columns of Q̃

Q̃(1: m + p, m + 1: m + p) = Q̃(1: m + p, m + 1: m + p)

−τ(j)Q̃kV (1: p, j)T

−τ(j)(Q̃(1: m + p, m + 1: m + p)V (1: p, j))V (1: p, j)T

end

if m < n

Q(1: m + p, m + 1: m + p) = Q(1: m + p, m + 1: m + p)QU

end

2.4 Deleting Columns

2.4.1 Deleting One Column

If we wish to delete a variable from our least squares problem then we have the

problem of updating the QR factorization of A where we delete the kth column,

k 6= n, from A, we can write

Ã = [ A(1: m, 1: k − 1) A(1: m, k + 1: n) ]

then

QT Ã = [R(1: m, 1: k − 1) R(1: m, k + 1: n) ] . (2.10)
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For example, with m = 8, n = 6 and k = 3 the right-hand side of Equation (2.10)

looks like: 


+ + + + +

0 + + + +

0 0 + + +

0 0 ⊖ + +

0 0 0 ⊖ +

0 0 0 0 ⊖
0 0 0 0 0

0 0 0 0 0




,

with the nonzero elements to remain represented with a + and the elements to

be eliminated are shown with a ⊖.

Thus we can define n − k Givens matrices, G(i, j) ∈ R
m×m, to eliminate the

subdiagonal elements of QT Ã to give

(G(n, n + 1)T . . . G(k, k + 1)T QT )Ã = Q̃T Ã = R̃,

where R̃ ∈ R
m×(n−1) is upper trapezoidal and Q̃ ∈ R

m×m is orthogonal, and to

update b we compute

G(n, n + 1)T . . . G(k, k + 1)TQT b = d̃.

This gives the following algorithm.

Algorithm 2.13 Given A = QR ∈ R
m×n, with m ≥ n, this algorithm computes

Q̃T Ã = R̃ ∈ R
m×(n−1) where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A

with the kth column deleted, 1 ≤ k ≤ n−1, and d̃ such that ‖Ãx−b‖2 = ‖R̃x−d̃‖2.

The residual, ‖d̃(n + 1: m)‖2, is also computed.

d̃ = QT b

set R(1: m, k: n − 1) = R(1: m, k + 1: n)

for j = k: n − 1

[c(j), s(j)] = givens(R(j, j), R(j + 1, j))

% Update R

R(j, j) = c(j)R(j, j) − s(j)R(j + 1, j)

R(j: j + 1, j + 1: n − 1) =

[
c(j) s(j)

−s(j) c(j)

]T

R(j: j + 1, j + 1: n − 1)

% Update d̃

d̃(j: j + 1) =

[
c(j) s(j)

−s(j) c(j)

]T

d̃(j: j + 1)

end
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R̃ = upper triangular part of R(1: m, 1: n − 1)

% Compute the residual

resid = ‖d̃(n + 1: m)‖2

Computing R̃ requires n2/2 − nk + k2/2 flops, versus 2n2(m − n/3) for the

Householder QR factorization of Ã. If Q̃ is required, it can be computed with

the following algorithm.

Algorithm 2.14 Given vectors c and s from Algorithm 2.13 this algorithm forms

an orthogonal matrix Q̃ ∈ R
m×m such that Ã = Q̃R̃, where Ã is the matrix

A = QR with the kth column deleted.

for j = k: n − 1

Q(1: m, j: j + 1) = Q(1: m, j: j + 1)

[
c(j) s(j)

−s(j) c(j)

]

end

Q̃ = Q

In the case when k = n then

Ã = A(1: m, 1: k − 1), R̃ = R(1: m, 1: k − 1), Q̃ = Q, and d̃ = QT b,

and there is no computation to do.

2.4.2 Deleting a Block of Columns

To delete a block of p variables from our least squares problem we delete a block

of p columns, from the kth column onwards, from A and we can write

Ã = [ A(1: m, 1: k − 1) A(1: m, k + p: n) ]

then

QT Ã = [ R(1: m, 1: k − 1) R(1: m, k + p: n) ] . (2.11)

For example, with m = 10, n = 8, k = 3 and p = 3 the right-hand side of

Equation (2.11) looks like:
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


+ + + + +

0 + + + +

0 0 + + +

0 0 ⊖ + +

0 0 ⊖ ⊖ +

0 0 ⊖ ⊖ ⊖
0 0 0 ⊖ ⊖
0 0 0 0 ⊖
0 0 0 0 0

0 0 0 0 0




,

with the nonzero elements to remain represented with a + and the elements to

be eliminated are shown with a ⊖.

Thus we can define n − p − k + 1 Householder matrices, Hj ∈ R
m×m, with

associated Householder vectors, vj ∈ R
(p+1) such that

vj(1: j − 1) = 0,

vj(j) = 1,

vj(j + 1: j + p) = x/((Q̃T Ã)jj − ‖ [ (Q̃T Ã)jj xT ] ‖2),

where x = QT Ã(j + 1: j + p, j),

vj(j + p + 1: m) = 0.

The Hj have the following structure

Hj =




I 


hj,j . . . hj,j+p
...

...

hj+p,j . . . hj+p,j+p





I


 ,

and can be used to eliminate the subdiagonal of QT Ã to give

(Hn−p . . .HkQ
T )Ã = Q̃T Ã = R̃,

where R̃ ∈ R
m×(n−p) is upper trapezoidal and Q̃ ∈ R

m×m is orthogonal, and we

update b by computing

Hn−p . . .HkQ
T b = d̃.

This gives the following algorithm.

29



Algorithm 2.15 Given A = QR ∈ R
m×n, with m ≥ n, this algorithm computes

Q̃T Ã = R̃ ∈ R
m×(n−p) where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A

with the kth to (k + p − 1)st columns deleted, 1 ≤ k ≤ n − p, 1 ≤ p < n, and d̃

such that ‖Ãx− b‖2 = ‖R̃x− d̃‖2. The residual, ‖d̃(n+1: m)‖2, is also computed.

d̃ = QT b

set R(1: m, k: n − p) = R(1: m, k + p: n)

for j = k: n − p

[V (1: p, j), τ(j)] = householder(R(j, j), R(j + 1: j + p, j))

% Update R

R(j, j) = R(j, j) − τ(j)R(j, j) − τ(j)V (1: p, j)TR(j + 1: j + p, j)

if j < n − p

R(j: j + p, j + 1: n − p) = R(j: j + p, j + 1: n − p)

−τ(j)

[
1

V (1: p, j)

]
([ 1 V (1: p, j)T ]R(j: j + p, j + 1: n − p))

end

% Update d̃

d̃(j: j + p) = d̃(j: j + p, j + 1)

−τ(j)

[
1

V (1: p, j)

]
([ 1 V (1: p, j)T ] d̃(j: j + p))

end

R̃ = upper triangular part of R(1: m, 1: n − p)

% Compute the residual

resid = ‖d̃(n + 1: m)‖2

Computing R̃ requires 4(np(n/2 − p − k) + p2(p/2 + k) + pk2 flops, versus

2(n − p)2(m − (n − p)/3) for the Householder QR factorization of Ã. If Q̃ is

required, it can be computed with the following algorithm.

Algorithm 2.16 Given the matrix V and vector τ from Algorithm 2.15 this

algorithm forms an orthogonal matrix Q̃ ∈ R
m×m such that Ã = Q̃R̃, where Ã is

the matrix A = QR with the kth to (k + p − 1)st columns deleted.

for j = k: n − p

Q(1: m, j: j + p) = Q(1: m, j: j + p)

−τ(j)
(
Q(1: m, j: j + p)

[
1

V (1: p, j)

])
[ 1 V (1: p, j)T ]

end

Q̃ = Q
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In the case when k = n − p + 1 then

Ã = A(1: m, 1: k − 1), R̃ = R(1: m, 1: k − 1), Q̃ = Q, and d̃ = QT b,

and there is no computation to do.

2.4.3 Updating the QR Factorization for any m and n

In the case when m < n we need to:

• Increase the number of steps, we introduce lim, the last column to be

updated.

• Determine the last index of the Householder vectors, which cannot exceed

m.

This gives the following algorithms to update the QR factorization for any m and

n.

Algorithm 2.17 Given A = QR ∈ R
m×n this algorithm computes Q̃T Ã = R̃ ∈

R
m×(n−p) where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A with the kth

to (k + p − 1)st columns deleted, 1 ≤ k ≤ min(m − 1, n − p), 1 ≤ p < n.

set R(1: m, k: n − p) = R(1: m, k + p: n)

lim = min(m − 1, n − p)

for j = k: lim

last = min(j + p, m)

[V (1: last − j, j), τ(j)] = householder(R(j, j), R(j + 1: last, j))

% Update R

R(j, j) = R(j, j) − τ(j)R(j, j) − τ(j)V (1: last − j, j)T R(j + 1: last, j)

if j < n − p

R(j: last, j + 1: n − p) = R(j: last, j + 1: n − p)

−τ(j)

[
1

V (1: last − j, j)

]

∗ ([ 1 V (1: last − j, j)T ] R(j: last, j + 1: n − p))

end

end

R̃ = upper triangular part of R(1: m, 1: n − p)

If Q̃ is required, it can be computed with the following algorithm.
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Algorithm 2.18 Given the matrix V and vector τ from Algorithm 2.17 this

algorithm forms an orthogonal matrix Q̃ ∈ R
m×m such that Ã = Q̃R̃, where Ã is

the matrix A = QR with the kth to (k + p − 1)st columns deleted.

lim = min(m − 1, n − p)

for j = k: lim

last = min(j + p, m)

Q(1: m, j: last) = Q(1: m, j: last)

−τ(j)
(
Q(1: m, j: last)

[
1

V (1: last − j, j)

])
[ 1 V (1: last − j, j)T ]

end

Q̃ = Q

In the case when k > min(m − 1, n − p) then either k = n − p + 1 or m < n

and the deleted columns are in R12 where

QT Ã = [ R11 R12 ] ,

with R12 full. There is no computation to do in either case.

See Appendix 6.5 for Fortran codes delcols.f and delcolsq.f for updating

R and Q respectively.

2.5 Adding Columns

2.5.1 Adding One Column

If we wish to add a variable to our least squares problem, we have the problem

of updating A = QR after adding a column, u ∈ R
m, in the kth position, 1 ≤

k ≤ n + 1, of A = QR, we can then write

Ã = [ A(1: m, 1: k − 1) u A(1: m, k: n) ]

then

QT Ã = [ R(1: m, 1: k − 1) v R(1: m, k: n) ] , (2.12)

where v = QT u. For example, with m = 8, n = 6 and k = 4 the right-hand side

of Equation (2.12) looks like:
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


+ + + + + + +

0 + + + + + +

0 0 + + + + +

0 0 0 + + + +

0 0 0 ⊖ ⊕ + +

0 0 0 ⊖ 0 ⊕ +

0 0 0 ⊖ 0 0 ⊕
0 0 0 ⊖ 0 0 0




,

with the nonzero elements to remain represented with a +, the elements to be

eliminated are ⊖ and the zero elements that can be filled in are shown with a ⊕.

Thus we can define m − k Givens matrices, G(i, j) ∈ R
m×m, to eliminate

v(k + 1: m). We then have

(G(k, k + 1)T . . . G(m − 1, m)T QT )Ã = Q̃T Ã = R̃,

where R̃ ∈ R
m×(n+1) is upper trapezoidal and Q̃ ∈ R

m×m is orthogonal. We then

update b by computing

G(k, k + 1)T . . . G(m − 1, m)T QT b = d̃.

This gives the following algorithm.

Algorithm 2.19 Given A = QR ∈ R
m×n, with m ≥ n, this algorithm computes

Q̃T Ã = R̃ ∈ R
m×(n+1) where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A

with a, u ∈ R
n, column inserted in the kth position, 1 ≤ k ≤ n + 1, and d̃ such

that ‖Ãx − b‖2 = ‖R̃x − d̃‖2. The residual, ‖d̃(n + 1: m)‖2, is also computed.

u = QT u

d̃ = QT b

for i = m:−1: k + 1

[c(i), s(i)] = givens(u(i − 1), u(i))

u(i − 1) = c(i)u(i − 1) − s(i)R̃(i)

% Update R if there is a nonzero row

if i ≤ n + 1

R(i − 1: i, i− 1: n) =

[
c(i) s(i)

−s(i) c(i)

]T

R(i − 1: i, i − 1: n)

end

% Update R
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d̃(i − 1: i) =

[
c(i) s(i)

−s(i) c(i)

]T

d̃(i − 1: i)

end

if k = 1

R̃ = upper triangular part of [ u R ]

else if k = n + 1

R̃ = upper triangular part of [ R u ]

else

R̃ = upper triangular part of [ R(1: m, 1: k − 1) u R(1: m, k: n) ]

end

% Compute the residual

resid = ‖d̃(n + 1: m)‖2

If Q̃ is required, it can be computed with the following algorithm.

Algorithm 2.20 Given the vectors c and s from Algorithm 2.19 this algorithm

forms an orthogonal matrix Q̃ ∈ R
m×m such that Ã = Q̃R̃, where Ã is the matrix

A = QR with a column inserted in the kth position.

for i = m:−1: k + 1

Q(1: m, i − 1: i) = Q(1: m, i − 1: i)

[
c(j) s(j)

−s(j) c(j)

]

end

Q̃ = Q

2.5.2 Adding a Block of Columns

If we add p variables to our problem, that is add a block of p columns, U ∈ R
m×p,

in the kth to (k + p − 1)st positions of A we can write

Ã = [A(1: m, 1: k − 1) U A(1: m, k: n) ]

then

QT Ã = [ R(1: m, 1: k − 1) V R(1: m, k: n) ] ,
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where V = QT U . For example, with m = 12, n = 6, k = 3 and p = 3 the

right-hand side of Equation (2.12) looks like:




+ + + + + + + + +

0 + + + + + + + +

0 0 + + + + + + +

0 0 ⊖ + + ⊕ + + +

0 0 ⊖ ⊖ + ⊕ ⊕ + +

0 0 ⊖ ⊖ ⊖ ⊕ ⊕ ⊕ +

0 0 ⊖ ⊖ ⊖ 0 ⊕ ⊕ ⊕
0 0 ⊖ ⊖ ⊖ 0 0 ⊕ ⊕
0 0 ⊖ ⊖ ⊖ 0 0 0 0

0 0 ⊖ ⊖ ⊖ 0 0 0 0

0 0 ⊖ ⊖ ⊖ 0 0 0 0

0 0 ⊖ ⊖ ⊖ 0 0 0 0




,

with the nonzero elements to remain represented with a +, the elements to be

eliminated are ⊖ and the zero elements that can be filled in are shown with a ⊕.

We would like an orthogonal matrix, W , such that

[
I 0

0 W T

]
QT Ã = R̃, W ∈ R

(m−k+1)×(m−k+1).

If W were the product of Householder matrices, then R̃ would be full. Thus we

use Givens matrices and generalize Algorithm 2.19.

Algorithm 2.21 Given A = QR ∈ R
m×n, with m ≥ n, this algorithm computes

Q̃T Ã = R̃ ∈ R
m×(n+p) where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A

with a block of columns, U ∈ R
m×p, inserted in the kth to (k + p − 1)st position,

1 ≤ k ≤ n + 1, p ≥ 1, and d̃ such that ‖Ãx − b‖2 = ‖R̃x − d̃‖2. The residual,

‖d̃(n + 1: m)‖2, is also computed.

U = QT U

d̃ = QT b

for j = 1: p

for i = m:−1: k + j

[C(i, j), S(i, j)] = givens(U(i − 1, j), U(i, j))

% Update U

U(i − 1, j) = C(i, j)U(i − 1, j) − S(i, j)U(i, j)

if j < p

U(i − 1: i, j + 1: p) =
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[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]T

U(i − 1: i, j + 1: p)

end

% Update R if there is a nonzero row

if i ≤ n + j

R(i − 1: i, i − j: n) =[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]T

R(i − 1: i, i − j: n)

end

% Update d̃

d̃(i − 1: i) =

[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]T

d̃(i − 1: i)

end

end

if k = 1

R̃ = upper triangular part of [ U R ]

else if k = n + 1

R̃ = upper triangular part of [ R U ]

else

R̃ = upper triangular part of [ R(1: m, 1: k − 1) U R(1: m, k: n) ]

end

% Compute the residual

resid = ‖d̃(n + 1: m)‖2

Computing R̃ requires 6(mp(n+p−m/2)−p2(n/2−k/2−p/3)+kp(k/2−n))

flops, versus 2(n+ p)2(m− (n+ p)/3) for the Householder QR factorization of Ã.

If Q̃ is required, it can be computed with the following algorithm.

Algorithm 2.22 Given matrices C and S from Algorithm 2.21 this algorithm

forms an orthogonal matrix Q̃ ∈ R
m×m such that Ã = Q̃R̃, where Ã is the matrix

A = QR with a block of columns inserted in the kth to (k + p − 1)st positions.

for j = 1: p

for i = m:−1: k + j

Q(1: m, i − 1: i) = Q(1: m, i − 1: i)

[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]

end

end

Q̃ = Q
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We can improve on this algorithm by including a Level 3 BLAS part by using

a blocked QR factorization of part of Ã before we finish the elimination process

with Givens matrices. That is, for our example:



+ + + + + + + + +

0 + + + + + + + +

0 0 + + + + + + +

0 0 ⊖ + + ⊕ + + +

0 0 ⊖ ⊖ + ⊕ ⊕ + +

0 0 ⊖ ⊖ ⊖ ⊕ ⊕ ⊕ +

0 0 ⊖ ⊖ ⊖ 0 ⊕ ⊕ ⊕
0 0 ⊙ ⊖ ⊖ 0 0 ⊕ ⊕
0 0 ⊙ ⊙ ⊖ 0 0 0 ⊕
0 0 ⊙ ⊙ ⊙ 0 0 0 0

0 0 ⊙ ⊙ ⊙ 0 0 0 0

0 0 ⊙ ⊙ ⊙ 0 0 0 0




,

we eliminate the elements shown with a ⊙ with a QR factorization of the bottom

6 by 3 block of V and the remainder of the elements can be eliminated with

Givens matrices and are shown with a ⊖. The zero elements that can be filled

in are shown with a ⊕ and the nonzero elements to remain represented with a +

as before.

For the case of k 6= 1, n + 1 and m > n + 1, we have

QT Ã =




R11 V12 R12

0 V22 R23

0 V32 0




where R11 ∈ R
(k−1)×(k−1) and R23 ∈ R

(n−k+1)×(n−k+1) are upper triangular, then

if V32 has the QR factorization V32 = QV RV ∈ R
(m−n)×p we have

[
In 0

0 QT
V

]
QT Ã =




R11 V12 R12

0 V22 R23

0 RV 0



 .

We then eliminate the upper triangular part of RV and the lower triangular part

of V22 with Givens matrices which makes R23 full and the bottom right block

upper trapezoidal. So we have finally

G(k + 2p − 2, k + 2p − 1)T . . . G(k + p, k + p + 1)T G(k, k + 1)T

. . . G(k + p − 1, k + p)T

[
In 0

0 QT
V

]
QT Ã = R̃

This gives the following algorithm.
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Algorithm 2.23 Given A = QR ∈ R
m×n, with m ≥ n, this algorithm computes

Q̃T Ã = R̃ ∈ R
m×(n+p) where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã

is A with a block of columns, U ∈ R
m×p, inserted in the kth to (k + p − 1)st

position, 1 ≤ k ≤ n + 1, p ≥ 1, and d̃ such that ‖Ãx − b‖2 = ‖R̃x − d̃‖2. The

residual, ‖d̃(n + 1: m)‖2, is also computed. The algorithm incorporates a Level 3

QR factorization.

U = QT U

d̃ = QT b

if m > n + 1

% Factorize rows n + 1 to m of U if there are more than 1,

% with a Level 3 QR algorithm

U(n + 1: m, 1: p) = QURU

% Update d̃

d̃(n + 1: m) = QT
U d̃(n + 1: m)

end

if k ≤ n

% Zero out the rest with Givens

for j = 1: p

% First iteration updates one column

upfirst = n

for i = n + j:−1: j + 1

[C(i, j), S(i, j)] = givens(U(i − 1, j), U(i, j))

% Update U

U(i − 1, j) = C(i, j)U(i − 1, j) − S(i, j)U(i, j)

if j < p

U(i − 1: i, j + 1: p) =[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]T

U(i − 1: i, j + 1: p)

end

% Update R

R(i − 1: i, upfirst: n) =[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]T

R(i − 1: i, upfirst: n)

% Update one more column next i step

upfirst = upfirst − 1

% Update d̃

d̃(i − 1: i) =

[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]T

d̃(i − 1: i)

end
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end

end

if k = 1

R̃ = upper triangular part of [ U R ]

else if k = n + 1

R̃ = upper triangular part of [ R U ]

else

R̃ = upper triangular part of [ R(1: m, 1: k − 1) U R(1: m, k: n) ]

end

% Compute the residual

resid = ‖d̃(n + 1: m)‖2

If Q̃ is required, it can be computed with the following algorithm.

Algorithm 2.24 Given matrices QU , C and S and the vector τ from Algo-

rithm 2.23 this algorithm forms an orthogonal matrix Q̃ ∈ R
m×m such that

Ã = Q̃R̃, where Ã is the matrix A = QR with a block of columns inserted in

the kth to (k + p − 1)st positions.

if m > n + 1

Q(1: m, 1: m− n) = Q(1: m, 1: m − n)QU

end

if k ≤ n

for j = 1: p

for i = n + j:−1: j + 1

Q(1: m, i − 1: i) = Q(1: m, i − 1: i)

[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]

end

end

end

Q̃ = Q

2.5.3 Updating the QR Factorization for any m and n

In the case where m > n, to update only the QR factorization, then we need to

consider the limits of the for loops and upstart to convert Algorithm 2.23.

• We introduce jstop which is the last index in the outer for loop. There may

be a situation where there are not elements to eliminate over the full width
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of U . For example QT Ã, for m = 5, n = 6, k = 3 and p = 3, looks like:




+ + + + + + + + +

0 + + + + + + + +

0 0 + + + + + + +

0 0 ⊖ + + ⊕ + + +

0 0 ⊖ ⊖ + ⊕ ⊕ + +




,

and there are no elements to eliminate in the last column of V .

• istart is introduced as the first element in the jth column to be eliminated

cannot exceed m.

• The first column to be updated for jth step may no longer be n, so upfirst

is set accordingly.

Note if m ≤ n + 1 and k > n there is nothing to do and neither outer if block is

entered.

Algorithm 2.25 Given A = QR ∈ R
m×n, this algorithm computes Q̃T Ã = R̃ ∈

R
m×(n+p) where R̃ is upper trapezoidal, Q̃ is orthogonal and Ã is A with a block of

columns, U ∈ R
m×p, inserted in the kth to (k + p − 1)st position. The algorithm

incorporates a Level 3 QR factorization.

U = QT U

if m > n + 1

% Factorize rows n + 1 to m of U if there are more than 1,

% with a Level 3 QR algorithm

U(n + 1: m, 1: p) = QURU

end

if k ≤ n

% Zero out the rest with Givens, stop at the last column of

% U or the last row if that is reached first

jstop = min(p, m − k − 2)

for j = 1: jstop

% Start at first row to be eliminated in current column

istart = min(n + j, m)

% Index of first nonzero column in update of R

upfirst = max(istart − j − 1, 1)

for i = istart:−1: j + 1

[C(i, j), S(i, j)] = givens(U(i − 1, j), U(i, j))
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% Update U

U(i − 1, j) = C(i, j)U(i − 1, j) − S(i, j)U(i, j)

if j < p

% Update U

U(i − 1: i, j + 1: p) =[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]T

U(i − 1: i, j + 1: p)

end

% Update R

R(i − 1: i, upfirst: n) =[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]T

R(i − 1: i, upfirst: n)

% Update one more column next i step

upfirst = upfirst − 1

end

end

end

if k = 1

R̃ = upper triangular part of [ U R ]

else if k = n + 1

R̃ = upper triangular part of [ R U ]

else

R̃ = upper triangular part of [ R(1: m, 1: k − 1) U R(1: m, k: n) ]

end

If Q̃ is required, it can be computed with the following algorithm.

Algorithm 2.26 Given matrices QU , C and S and the vector τ from Algo-

rithm 2.25 this algorithm forms an orthogonal matrix Q̃ ∈ R
m×m such that

Ã = Q̃R̃, where Ã is the matrix A = QR with a block of columns inserted in

the kth to (k + p − 1)st positions.

if m > n + 1

Q(1: m, n + 1: m) = Q(1: m, n + 1: m)QU

end

if k ≤ n

jstop = min(p, m − k − 2)

for j = 1: jstop

istart = min(n + j, m)

for i = istart:−1: j + 1
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Q(1: m, i − 1: i) = Q(1: m, i − 1: i)

[
C(i, j) S(i, j)

−S(i, j) C(i, j)

]

end

end

end

Q̃ = Q

See Appendix 6.5 for Fortran codes addcols.f and addcolsq.f for updating

R and Q respectively.

3 Error Analysis

It is well known that orthogonal transformations are stable. We have the following

columnwise results [10], where

γ̃k =
cku

1 − cku
,

and u is the unit roundoff and c is a small integer constant.

Lemma 3.1 (Sequence of Givens Matrices) If

B = Gr . . . G1A = QT A ∈ R
n×n

where Gi is a Givens matrix, then the computed matrix B̂ satisfies

QT A − B̂ = ∆B, ‖∆bj‖2 ≤ γ̃r‖aj‖2, j = 1: n. (3.1)

Lemma 3.2 (Sequence of Householder Matrices) If

B = Hr . . .H1A = QT A ∈ R
n×n

where Hi is a Householder matrix, then the computed matrix B̂ satisfies

QT A − B̂ = ∆B, ‖∆bj‖2 ≤ γ̃nr‖aj‖2, j = 1: n. (3.2)

This result implies that Householder transformations are less accurate by a factor

of n, but this is not observed in practice. We then have
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Theorem 3.1 (Householder QR Factorization) If

R = QT A

where Q is a product of Householder matrices, then the computed factor R̂ satisfies

QT A − R̂ = ∆R, ‖∆rj‖2 ≤ γ̃mn‖aj‖2, j = 1: n.

We now give results for computing the factor R̃ by our algorithms.

3.1 Deleting Rows

We have from Section 2.1.2

G(1, 2)T . . . G(m − 1, m)T R̂ =

[
vT

R̃

]
,

and from (3.1) we have for the computed quantities
̂̃
R and v̂

̂̃
R = R̃ + ∆R, ‖∆rj‖2 ≤ γ̃mp

∥∥∥∥
[

vT (j)

r̂(1: n, j)

]∥∥∥∥
2

, j = 1: n.

Recall that the G(i, j) are chosen to introduce zeros in Q.

3.2 Adding Rows

We have from Section 2.3.2

Hn . . .H1

[
R̂

U

]
= R̃, U ∈ R

p×n,

and from (3.2) we have

̂̃
R = R̃ + ∆R, ‖∆rj‖2 ≤ γ̃n(p+1)

∥∥∥∥
[

r̂jj

U(: , j)

]∥∥∥∥
2

, j = 1: n.

3.3 Deleting Columns

We have from Section 2.4.2

Hn−p . . .Hk [ R̂(: , 1: k − 1) R̂(: , k + p: n) ] = R̃,
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and from (3.2) we have

̂̃
R = R̃ +

[
0

∆R

]
, ∆R ∈ R

(m−k+1)×n

‖∆rj‖2 = 0, j = 1: k − 1,

≤ γ̃(n−k−p+1)(n−k+1)‖r̂(k: n, j)‖2, j = k: n − p.

3.4 Adding Columns

We have from Section 2.5.2

G(k + 2p − 2, k + 2p − 1) . . .

G(k + p − 1, k + p)

[
I 0

0 QT
V

]
[ R̂(: , 1: k − 1) V̂ R̂(: , k: n) ] = R̃,

where V̂ = QT U ∈ R
m×p and from (3.1) and (3.2) we have

̂̃
R = R̃ +




0

0

∆H


 +




0

∆G


 , ∆H ∈ R

(m−n)×n, ∆G ∈ R
(m−k+1)×n

‖∆Hj‖2 = 0, k − 1 ≥ j ≥ k + p,

≤ γ̃(n−k)p‖V̂ (n + 1: m, j)‖2, j = k: k + p − 1,

‖∆Gj‖2 = 0, j = 1: k − 1,

≤ γ̃(n−k)n

∥∥∥∥(QT V̂ )(k: m, j) +

[
0

∆r̂j

]∥∥∥∥
2

, j = k: n + p.

Given these results we expect the normwise backward error

‖Ã − Q̃R̃‖2

‖Ã‖2

,

when Q̃ and R̃ are computed with our algorithms to be close to that with Q̃ and

R̃ computed directly from Ã. We consider some examples in the next section.

4 Numerical Experiments

4.1 Speed Tests

In this section we test the speed of our double precision Fortran 77 codes, see

Appendix 6.5, against LAPACK’s DGEQRF, a Level 3 BLAS routine for computing
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the QR factorization of a matrix. The input matrix, in this case Ã, is overwritten

with R̃, and Q̃ is returned in factored form in the same way as our codes do.

The tests were performed on a 1400MHz AMD Athlon running Red Hat Linux

version 6.2 with kernel 2.2.22. The unit roundoff u ≈ 1.1e-16.

We tested our code with

m = {1000, 2000, 3000, 4000, 5000}

and n = 0.3m, and the number of columns added or deleted was p = 100. We

generated our test matrices by populating an array with random double precision

numbers generated with the LAPACK auxiliary routine DLARAN. A = QR was

computed with DGEQRF, and Ã was formed appropriately.

We timed our codes acting on QT Ã, the starting point for computing R̃, and in

the case of adding columns we included the computation of QT U in our timings,

which we formed with the BLAS routine DGEMM. We also timed DGEQRF acting

on only the part of QT Ã that needs to be updated, the nonzero part from row

and column k onwards. Here we can construct R̃ with this computation and the

original R. Finally, we compute DGEQRF acting on Ã. We aim to show our codes

are faster than these alternatives. In all cases an average of three timings are

given.

To test our code DELCOLS we first chose k = 1, the position of the first

column deleted, where the maximum amount of work is required to update the

factorization. We have

Ã = A(1: m, p + 1: n), and QT Ã = R(1: m, p + 1: n)

and timed:

• DGEQRF on Ã.

• DGEQRF on (QT Ã)(k: n, k: n − p) which computes the nonzero entries of

R̃(k: m, p + 1: n).

• DELCOLS on QT Ã.

The results are given in Figure 1. Our code is clearly much faster than recom-

puting the factorization from scratch with DGEQRF, and for n = 5000 there is a

speedup of 20. Our code is also faster than using DGEQRF on (QT Ã)(k: n, k: n−p),

where there is a maximum speedup of over 3.

We then tested for k = n/2 where much less work is required to perform the

updating, we have

Ã = [ A(1: m, 1: k − 1) A(1: m, k + p: n) ] , and

QT Ã = [ R(1: m, 1: k − 1) R(1: m, k + p: n) ]
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Figure 1: Comparison of speed for DELCOLS with k = 1 for different m.

and timed:

• DGEQRF on (QT Ã)(k: n, k: n − p) which computes the nonzero entries of

R̃(k: m, k: n − p).

• DELCOLS on QT Ã.

The results are given in Figure 2. The timings for DGEQFR on Ã would,

of course, be the same as for k = 1, giving a maximum speedup of over 100

in this case. We achieve a speedup of approximately 3 over using DGEQRF on

(QT Ã)(k: n, k: n − p).

We then considered the effect of varying p with DELCOLS for fixed m = 3000,

n = 1000 and k = 1. As we delete more columns from A there are less columns

to update, but more work is required for each one. We chose

p = {100, 200, 300, 400, 500, 600 700, 800}

and timed:

• DGEQRF on Ã
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Figure 2: Comparison of speed for DELCOLS with k = n/2 for different m.

• DGEQRF on (QT Ã)(k: n, k: n − p) which computes the nonzero entries of

R̃(k: m, k: n − p).

• DELCOLS on QT Ã.

The results are given in Figure 3. The timings for DELCOLS are relatively level

and peak at p = 300, whereas the timings for the other codes obviously decrease

with p. The speedup of our code decreases with p, and from p = 300 there is

little difference between our code and DGEQRF on (QT Ã)(k: n, k: n − p).

To test ADDCOLS we generated random matrices A ∈ R
m×n and U ∈ R

m×p,

and again use

m = {1000, 2000, 3000, 4000, 5000}
n = 0.3m, and p = 100. We first set k = 1 where maximum updating is required.

We have

Ã = [U A ] , and QT Ã = [QT U R ]

and timed:

• DGEQRF on Ã.
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• ADDCOLS on QT Ã, including the computation of QT U with DGEMM.

The results are given in Figure 4. Here our code achieves a speedup of over 3

for m = 5000 over the complete factorization of Ã.

We then tested for k = n/2, where less work is required to do the updating.

We have

Ã = [A(1: m, 1: k − 1) U A(1: m, k: n) ] , and

QT Ã = [R(1: m, 1: k − 1) QT U R(1: m, k: n) ]

and timed:

• DGEQRF on Ã, as above.

• DGEQRF on (QT Ã)(k: m, k: n+p) which computes R̃(k: m, k: n+p), including

the computation of QT U for which we again use DGEMM.

• ADDCOLS on QT Ã, including the computation of QT U .

48



1000 2000 3000 4000 5000
0

10

20

30

40

50

60

Number of rows, m, of matrix

T
im

es
 (

se
cs

)

DGEQRF on Ã
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The results are given in Figure 5. Here we have a maximum speedup of

over 4 with our code against DGEQRF on Ã. We achieve a maximum speedup of

approximately 2 against DGEQRF on (QT Ã)(k: m, k: n + p).

We do not vary p as this increases the work for both our code and DGEQRF on

(QT Ã)(k: m, k: n + p) roughly equally.

4.2 Backward Error Tests

The tests here were performed on a 2545MHz AMD Pentium running a hybrid

version of Red Hat Linux 8 and 9 with kernel 2.4.20.

Here we test our code for updating Q and R; DELCOLS and DELCOLSQ for

deleting columns and ADDCOLS and ADDCOLSQ for adding columns. We did this in

the following way:

• We form a random matrix

A(0) = [ A1 U A2 ] , ‖A1‖F , ‖A2‖F , ‖U‖F of order 100,
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where A1 ∈ R
m×(k−1), A2 ∈ R

m×(n−k−p+1), U ∈ R
m×p.

• We then form the QR factorization

A(0) = Q(0)R(0) = Q(0) [ R1 RU R2 ] ,

where R1 ∈ R
m×(k−1), R2 ∈ R

m×(n−k−p+1), RU ∈ R
m×p, using the LAPACK

routines DGEQRF and DORGQR.

• Next, for

Ã = [ A1 A2 ] ,

we form

Q(0)T

Ã = [ R1 R2 ] ,

and call DELCOLS and DELCOLSQ to update the QR factorization of Ã, form-

ing

Ã = Q̃R̃ = [ R̃1 R̃2 ] ,

where R̃1 ∈ R
m×(k−1), R̃2 ∈ R

m×(n−k−p+1).
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• We now compute the QR factorization of A(0) by updating Q̃ and R̃. We

call ADDCOLS on

[ R̃1 Q̃T U R̃2 ]

to form R(1) and then call ADDCOLSQ to form Q(1), so we have, in exact

arithmetic

A(0) = Q(1)R(1).

We then repeat this rep times and measure the normwise backward error

‖A(0) − Q(rep)R(rep)‖2

‖A‖2

.

We use every combination of the following set of parameters:

m = 500

n = {400, 500, 600}
p = {50, 100, 150}
k = {1, 51, . . . , n − p + 1}.

We then repeated the entire process, but with

‖U‖F of order 1e+9.

The results are given in Table 1 and Table 2. The error increases with the number

of repeats which is expected. However, the value is not effected significantly by

the value of ‖U‖F .

The smallest value of the error in every case was approximately of order 10u.

The worse case was still only of order 2 ∗ rep ∗ u.

Table 1: Normwise backward error for ‖U‖F order 100.

rep 5 50 500

Smallest error over all tests 1.146e-15 1.212e-15 1.223e-15

Largest error over all tests 5.031e-15 2.399e-14 1.252e-13

51



Table 2: Normwise backward error for ‖U‖F order 1e+9.

rep 5 50 500

Smallest error over all tests 8.298e-16 9.309e-16 9.576e-16

Largest error over all tests 4.381e-15 2.055e-14 1.014e-13

5 Conclusions

The speed tests show that our updating algorithms are faster than computing

the QR factorization from scratch or using the factorization to update columns

k onward, the only columns needing updating.

Furthermore, the normwise backward error tests show that the errors are

within the bound for computing the Householder QR factorization of Ã. Thus,

within the parameters of our experiments, the increase of speed is not at the

detriment of accuracy.

We propose the double precision Fortran 77 codes delcols.f, delcolsq.f,

addcols.f and addcolsq.f, and their single precision and complex equivalents,

be included in LAPACK.

6 Software Available

Here we list some software that is available to update the QR factorization and

least squares problem. An ’x’ in a routine indicates more than one routine for

different precisions or for real or complex data.

6.1 LINPACK

LINPACK [7] has three routines that update the least squares problem and the

QR factorization.

• xCHUD updates the least squares problem when a row has been added in the

(m + 1)st position.

• xCHDD updates the least squares problem when a row has been deleted from

the mth position, an implementation of Saunder’s algorithm.
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• xCHEX update the least squares problem when the rows of A have been

permuted.

In all cases the transformation matrices are represented by a vectors of sines

and cosines, and Q̃ is not constructed.

6.2 MATLAB

MATLAB [11] supply three routines for updating the QR factorization only.

• qrdelete updates when one row or column is deleted from any position.

• qrinsert updates when one row or column is added to any position.

• qrupdate returns the factorization of A after a rank one change, that is

Ã = A + uvT , u ∈ R
m, v ∈ R

n.

In all cases both Q̃ and R̃ are returned.

6.3 The NAG Library

The Mark 20 NAG Library [12] contains routines for updating two cases.

• F06xPF performs the factorization

αuvT + R1 = QR̃1,

where

R =

[
R1

0

]
, R̃ =

[
R̃1

0

]
, R1, R̃1 ∈ R

n×n,

and

Q̃ = QQ.

Q is represented by vectors of sines and cosines.

• F06xQF performs the downdating problem

[
R1

αvT

]
= Q

[
R̃1

0

]
,

where R, R̃ and Q̃ are as above.
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6.4 Reichel and Gragg’s Algorithms

Reichel and Gragg [16] provide several Fortran 77 implementations of the algo-

rithms discussed in [6] for updating the QR factorization, returning both Q̃ and

R̃. In all cases only m ≥ n is handled. The routines use BLAS like routines for

matrix and vector operations written for optimal performance on the test ma-

chine used in [16]. No error results are given for the Fortran routines, although

some results are given for the Algol implementations in [6].

• DDELR updates after one row is deleted; this algorithm varies from ours and

uses a Gram-Schmidt re-orthogonalization process.

• DINSR updates when one row is added, and is similar to our algorithm.

• DDELC updates when one column is deleted, and is similar to our algorithm.

• DINSC updates after one column is added; this algorithm varies from ours

and again uses a Gram-Schmidt re-orthogonalization process.

• DRNK1 updates after a rank 1 modification to A.

• DRRPM updates when Ã is A with some if its columns permuted.

6.5 What’s new in our algorithms

Our contribution is:

• We deal with adding/deleting block of p row/columns, and in two of the

four cases we exploit the Level 3 BLAS. Also, the Level 2 code for deleting

a block of rows is more efficient than calling the code for deleting one row

p times.

• In the case of updating the QR factorization we place no restrictions on m

and n.

• All our codes call existing BLAS and LAPACK routines.
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In these Fortran files the dimension n refers to the number of columns in Ã,

and not A.

A delcols.f

SUBROUTINE DELCOLS( M, N, A, LDA, K, P, TAU, WORK, INFO )

*

* Craig Lucas, University of Manchester

* March, 2004

*

* .. Scalar Arguments ..

INTEGER INFO, K, LDA, M, N, P

* ..

* .. Array Arguments ..

DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )

* ..

*

* Purpose

* =======

*

* Given a real m by (n+p) matrix, B, and the QR factorization

* B = Q_B * R_B, DELCOLS computes the QR factorization

* C = Q * R where C is the matrix B with p columns deleted

* from the kth column onwards.

*

* The input to this routine is Q_B’ * C

*

* Arguments

* =========

*

* M (input) INTEGER

* The number of rows of the matrix C. M >= 0.

*

* N (input) INTEGER

* The number of columns of the matrix C. N >= 0.

*

* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the matrix Q_B’ * C. The elements in columns

* 1:K-1 are not referenced.

*

* On exit, the elements on and above the diagonal contain

* the n by n upper triangular part of the matrix R. The

* elements below the diagonal in columns k:n, together with

* TAU represent the orthogonal matrix Q as a product of
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* elementary reflectors (see Further Details).

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,M).

*

* K (input) INTEGER

* The position of the first column deleted from B.

* 0 < K <= N+P.

*

* P (input) INTEGER

* The number of columns deleted from B. P > 0.

*

* TAU (output) DOUBLE PRECISION array, dimension(N-K+1)

* The scalar factors of the elementary reflectors

* (see Further Details).

*

* WORK DOUBLE PRECISION array, dimension (P+1)

* Work space.

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -I, the I-th argument had an illegal value.

*

* Further Details

* ===============

*

* The matrix Q is represented as a product of Q_B and elementary

* reflectors

*

* Q = Q_B * H(k) * H(k+1) *...* H(last), last = min( m-1, n ).

*

* Each H(j) has the form

*

* H(j) = I - tau*v*v’

*

* where tau is a real scalar, and v is a real vector with

* v(1:j-1) = 0, v(j) = 1, v(j+1:j+lenh-1), lenh = min( p+1, m-j+1 ),

* stored on exit in A(j+1:j+lenh-1,j) and v(j+lenh:m) = 0, tau is

* stored in TAU(j).

*

* The matrix Q can be formed with DELCOLSQ

*

* =====================================================================

*

* .. Parameters ..
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DOUBLE PRECISION ONE

PARAMETER ( ONE = 1.0D+0 )

* ..

* .. Local Scalars ..

DOUBLE PRECISION AJJ

INTEGER J, LAST, LENH

* ..

* .. External Subroutines ..

EXTERNAL DLARF, DLARFG, XERBLA

* ..

* .. Intrinsic Functions ..

INTRINSIC MAX, MIN

* ..

*

* Test the input parameters.

*

INFO = 0

IF( M.LT.0 ) THEN

INFO = -1

ELSE IF( N.LT.0 ) THEN

INFO = -2

ELSE IF( LDA.LT.MAX( 1, M ) ) THEN

INFO = -4

ELSE IF( K.GT.N+P .OR. K.LE.0 ) THEN

INFO = -5

ELSE IF( P.LE.0 ) THEN

INFO = -6

END IF

IF( INFO.NE.0 ) THEN

CALL XERBLA( ’DELCOLS’, -INFO )

RETURN

END IF

*

LAST = MIN( M-1, N )

*

DO 10 J = K, LAST

*

* Generate elementary reflector H(J) to annihilate the nonzero

* entries below A(J,J)

*

LENH = MIN( P+1, M-J+1 )

CALL DLARFG( LENH, A( J, J ), A( J+1, J ), 1, TAU( J-K+1 ) )

*

IF( J.LT.N ) THEN

*
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* Apply H(J) to trailing matrix from left

*

AJJ = A( J, J )

A( J, J ) = ONE

CALL DLARF( ’L’, LENH, N-J, A( J, J ), 1, TAU( J-K+1 ),

$ A( J, J+1 ), LDA, WORK )

A( J, J ) = AJJ

*

END IF

*

10 CONTINUE

*

RETURN

*

* End of DELCOLS

*

END
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B delcolsq.f

SUBROUTINE DELCOLSQ( M, N, A, LDA, Q, LDQ, K, P, TAU, WORK, INFO )

*

* Craig Lucas, University of Manchester

* March, 2004

*

* .. Scalar Arguments ..

INTEGER INFO, K, LDA, LDQ, M, N, P

* ..

* .. Array Arguments ..

DOUBLE PRECISION A( LDA, * ), Q( LDQ, * ), TAU( * ), WORK( * )

* ..

*

* Purpose

* =======

*

* DELCOLSQ generates an m by m real matrix Q with orthogonal columns,

* which is defined as the product of Q_B and elementary reflectors

*

* Q = Q_B * H(k) * H(k+1) *...* H(last), last = min( m-1, n ) .

*

* where the H(j) are as returned by DELCOLSQ, such that C = Q * R and

* C is the matrix B = Q_B * R_B, with p columns deleted from the

* kth column onwards.

*

* Arguments

* =========

*

* M (input) INTEGER

* The number of rows of the matrix A. M >= 0.

*

* N (input) INTEGER

* The number of columns of the matrix A. N >= 0.

*

* A (input) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the elements below the diagonal in columns k:n

* must contain the vector which defines the elementary

* reflector H(J) as returned by DELCOLS.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,M).

*

* Q (input/output) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the matrix Q_B.
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* On exit, the matrix Q.

*

* LDQ (input) INTEGER

* The leading dimension of the array Q. LDQ >= M.

*

* K (input) INTEGER

* The position of the first column deleted from B.

* 0 < K <= N+P.

*

* P (input) INTEGER

* The number of columns deleted from B. P > 0.

*

* TAU (input) DOUBLE PRECISION array, dimension(N-K+1)

* TAU(J) must contain the scalar factor of the elementary

* reflector H(J), as returned by DELCOLS.

*

* WORK DOUBLE PRECISION array, dimension (P+1)

* Work space.

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -I, the I-th argument had an illegal value.

*

* =====================================================================

*

* .. Parameters ..

DOUBLE PRECISION ONE

PARAMETER ( ONE = 1.0D+0 )

* ..

* .. Local Scalars ..

DOUBLE PRECISION AJJ

INTEGER J, LAST, LENH

* ..

* .. External Subroutines ..

EXTERNAL DLARF, XERBLA

* ..

* .. Intrinsic Functions ..

INTRINSIC MAX, MIN

* ..

*

* Test the input parameters.

*

INFO = 0

IF( M.LT.0 ) THEN

INFO = -1
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ELSE IF( N.LT.0 ) THEN

INFO = -2

ELSE IF( LDA.LT.MAX( 1, M ) ) THEN

INFO = -4

ELSE IF( K.GT.N+P .OR. K.LE.0 ) THEN

INFO = -5

ELSE IF( P.LE.0 ) THEN

INFO = -6

END IF

IF( INFO.NE.0 ) THEN

CALL XERBLA( ’DELCOLSQ’, -INFO )

RETURN

END IF

*

LAST = MIN( M-1, N )

*

DO 10 J = K, LAST

*

LENH = MIN( P+1, M-J+1 )

*

* Apply H(J) from right

*

AJJ = A( J, J )

A( J, J ) = ONE

*

CALL DLARF( ’R’, M, LENH, A( J, J ), 1, TAU( J-K+1 ),

$ Q( 1, J ), LDQ, WORK )

*

A( J, J ) = AJJ

*

10 CONTINUE

*

RETURN

*

* End of DELCOLSQ

*

END
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C addcols.f

SUBROUTINE ADDCOLS( M, N, A, LDA, K, P, TAU, WORK, LWORK, INFO )

*

* Craig Lucas, University of Manchester

* March, 2004

*

* .. Scalar Arguments ..

INTEGER INFO, K, LDA, LWORK, M, N, P

* ..

* .. Array Arguments ..

DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )

* ..

*

* Purpose

* =======

*

* Given a real m by (n-p) matrix, B, and the QR factorization

* B = Q_B * R_B, ADDCOLS computes the QR factorization

* C = Q * R where C is the matrix B with p columns added

* in the kth column onwards.

*

* The input to this routine is Q_B’ * C

*

* Arguments

* =========

*

* M (input) INTEGER

* The number of rows of the matrix C. M >= 0.

*

* N (input) INTEGER

* The number of columns of the matrix C. N >= 0.

*

* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the matrix Q_B’ * C. The elements in columns

* 1:K-1 are not referenced.

*

* On exit, the elements on and above the diagonal contain

* the n by n upper triangular part of the matrix R. The

* elements below the diagonal in columns K:N, together with

* TAU represent the orthogonal matrix Q as a product of

* elementary reflectors and Givens rotations.

* (see Further Details).

*

* LDA (input) INTEGER
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* The leading dimension of the array A. LDA >= max(1,M).

*

* K (input) INTEGER

* The position of the first column added to B.

* 0 < K <= N-P+1.

*

* P (input) INTEGER

* The number of columns added to B. P > 0.

*

* TAU (output) DOUBLE PRECISION array, dimension(P)

* The scalar factors of the elementary reflectors

* (see Further Details).

*

* WORK (workspace) DOUBLE PRECISION array, dimension ( LWORK )

* Work space.

*

* LWORK (input) INTEGER

* The dimension of the array WORK. LWORK >= P.

* For optimal performance LWORK >= P*NB, where NB is the

* optimal block size.

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -I, the I-th argument had an illegal value.

*

* Further Details

* ===============

*

* The matrix Q is represented as a product of Q_B, elementary

* reflectors and Givens rotations

*

* Q = Q_B * H(k) * H(k+1) *...* H(k+p-1) * G(k+p-1,k+p) *...

* *G(k,k+1) * G(k+p,k+p+1) *...* G(k+2p-2,k+2p-1)

*

* Each H(j) has the form

*

* H(j) = I - tau*v*v’

*

* where tau is a real scalar, and v is a real vector with

* v(1:n-p-j+1) = 0, v(j) = 1, and v(j+1:m) stored on exit in

* A(j+1:m,j), tau is stored in TAU(j).

*

* Each G(i,j) has the form

*

* i-1 i
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* [ I ]

* [ c -s ] i-1

* G(i,j) = [ s c ] i

* [ I ]

*

* and zero A(i,j), where c and s are encoded in scalar and

* stored in A(i,j) and

*

* IF A(i,j) = 1, c = 0, s = 1

* ELSE IF | A(i,j) | < 1, s = A(i,j), c = sqrt(1-s**2)

* ELSE c = 1 / A(i,j), s = sqrt(1-c**2)

*

* The matrix Q can be formed with ADDCOLSQ

*

* =====================================================================

*

* .. Local Scalars ..

DOUBLE PRECISION C, S

INTEGER I, INC, ISTART, J, JSTOP, UPLEN

* ..

* .. External Subroutines ..

EXTERNAL DGEQRF, DLASR, DROT, DROTG, XERBLA

* ..

* .. Intrinsic Functions ..

INTRINSIC MAX, MIN

* ..

*

* Test the input parameters.

*

INFO = 0

IF( M.LT.0 ) THEN

INFO = -1

ELSE IF( N.LT.0 ) THEN

INFO = -2

ELSE IF( LDA.LT.MAX( 1, M ) ) THEN

INFO = -4

ELSE IF( K.GT.N-P+1 .OR. K.LE.0 ) THEN

INFO = -5

ELSE IF( P.LE.0 ) THEN

INFO = -6

END IF

IF( INFO.NE.0 ) THEN

CALL XERBLA( ’ADDCOLS’, -INFO )

RETURN

END IF
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*

* Do a QR factorization on rows below N-P, if there is more than one

*

IF( M.GT.N-P+1 ) THEN

*

* Level 3 QR factorization

*

CALL DGEQRF( M-N+P, P, A( N-P+1, K ), LDA, TAU, WORK, LWORK,

$ INFO )

*

END IF

*

* If K not equal to number of columns in B and not <= M-1 then

* there is some elimination by Givens to do

*

IF( K+P-1.NE.N .AND. K.LE.M-1) THEN

*

* Zero out the rest with Givens

* Allow for M < N

*

JSTOP = MIN( P+K-1, M-1 )

DO 20 J = K, JSTOP

*

* Allow for M < N

*

ISTART = MIN( N-P+J-K+1, M )

UPLEN = N - K - P - ISTART + J + 1

*

INC = ISTART - J

*

DO 10 I = ISTART, J + 1, -1

*

* Recall DROTG updates A( I-1, J ) and

* stores C and S encoded as scalar in A( I, J )

*

CALL DROTG( A( I-1, J ), A( I, J ), C, S )

WORK( INC ) = C

WORK( N+INC ) = S

*

* Update nonzero rows of R

* Do the next two line this way round because

* A( I-1, N-UPLEN+1 ) gets updated

*

A( I, N-UPLEN ) = -S*A( I-1, N-UPLEN )

A( I-1, N-UPLEN ) = C*A( I-1, N-UPLEN )
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*

CALL DROT( UPLEN, A( I-1, N-UPLEN+1 ), LDA,

$ A( I, N-UPLEN+1 ), LDA, C, S )

*

UPLEN = UPLEN + 1

INC = INC - 1

*

10 CONTINUE

*

* Update inserted columns in one go

* Max number of rotations is N-1, we’ve allowed N

*

IF( J.LT.P+K-1 ) THEN

*

CALL DLASR( ’L’, ’V’, ’B’, ISTART-J+1, K+P-1-J,

$ WORK( 1 ), WORK( N+1 ), A( J, J+1 ), LDA )

*

END IF

*

20 CONTINUE

*

END IF

RETURN

*

* End of ADDCOLS

*

END
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D addcolsq.f

SUBROUTINE ADDCOLSQ( M, N, A, LDA, Q, LDQ, K, P, TAU, WORK, INFO)

*

* Craig Lucas, University of Manchester

* March, 2004

*

* .. Scalar Arguments ..

INTEGER INFO, K, LDA, LDQ, M, N, P

* ..

* .. Array Arguments ..

DOUBLE PRECISION A( LDA, * ), Q( LDQ, * ), TAU( * ), WORK( * )

* ..

*

* Purpose

* =======

*

* ADDCOLSQ generates an m by m real matrix Q with orthogonal columns,

* which is defined as the product of Q_B, elementary reflectors and

* Givens rotations

*

* Q = Q_B * H(k) * H(k+1) *...* H(k+p-1) * G(k+p-1,k+p) *...

* *G(k,k+1) * G(k+p,k+p+1) *...* G(k+2p-2,k+2p-1)

*

* where the H(j) and G(i,j) are as returned by ADDCOLS, such that

* C = Q * R and C is the matrix B = Q_B * R_B, with p columns added

* from the kth column onwards.

*

* Arguments

* =========

*

* M (input) INTEGER

* The number of rows of the matrix A. M >= 0.

*

* N (input) INTEGER

* The number of columns of the matrix A. N >= 0.

*

* A (input) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the elements below the diagonal in columns

* K:K+P-1 (if M > M-P+1) must contain the vector which defines

* the elementary reflector H(J). The elements above these

* vectors and below the diagonal store the scalars such that

* the Givens rotations can be constructed, as returned by

* ADDCOLS.

*
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* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,M).

*

* Q (input/output) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the matrix Q_B.

* On exit, the matrix Q.

*

* LDQ (input) INTEGER

* The leading dimension of the array Q. LDQ >= M.

*

* K (input) INTEGER

* The postion of first column added to B.

* 0 < K <= N-P+1.

*

* P (input) INTEGER

* The number columns added. P > 0.

*

* TAU (output) DOUBLE PRECISION array, dimension(N-K+1)

* The scalar factors of the elementary reflectors.

*

* WORK (workspace) DOUBLE PRECISION array, dimension (2*N)

* Work space.

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -I, the I-th argument had an illegal value

*

* =====================================================================

*

* .. Parameters ..

DOUBLE PRECISION ONE, ZERO

PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )

* ..

* .. Local Scalars ..

DOUBLE PRECISION DTEMP

INTEGER COL, I, INC, ISTART, J, JSTOP

* ..

* .. External Subroutines ..

EXTERNAL DLARF, DLASR, XERBLA

* ..

* .. Intrinsic Functions ..

INTRINSIC ABS, MAX, MIN, SQRT

*

* Test the input parameters.

*
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INFO = 0

IF( M.LT.0 ) THEN

INFO = -1

ELSE IF( N.LT.0 ) THEN

INFO = -2

ELSE IF( LDA.LT.MAX( 1, M ) ) THEN

INFO = -4

ELSE IF( K.GT.N-P+1 .OR. K.LE.0 ) THEN

INFO = -5

ELSE IF( P.LE.0 ) THEN

INFO = -6

END IF

IF( INFO.NE.0 ) THEN

CALL XERBLA( ’ADDCLQ’, -INFO )

RETURN

END IF

*

* We did a QR factorization on rows below N-P+1

*

IF( M.GT.N-P+1 ) THEN

*

COL = N - P + 1

DO 10 J = K, K + P - 1

*

DTEMP = A( COL, J )

A( COL, J ) = ONE

*

* If N+P > M-N we have only factored the first M-N columns.

*

IF( M-COL+1.LE.0 )

$ GO TO 10

CALL DLARF( ’R’, M, M-COL+1, A( COL, J ), 1, TAU( J-K+1 ),

$ Q( 1, COL ), LDQ, WORK )

*

A( COL, J ) = DTEMP

COL = COL + 1

*

10 CONTINUE

END IF

*

* If K not equal to number of columns in B then there was

* some elimination by Givens

*

IF( K+P-1.LT.N .AND. K.LE.M-1 ) THEN

*

69



* Allow for M < N, i.e DO P wide unless hit the bottom first

*

JSTOP = MIN( P+K-1, M-1 )

DO 30 J = K, JSTOP

*

ISTART = MIN( N-P+J-K+1, M )

INC = ISTART - J

*

* Compute vectors of C and S for rotations

*

DO 20 I = ISTART, J + 1, -1

*

IF( A( I, J ).EQ.ONE ) THEN

WORK( INC ) = ZERO

WORK( N+INC ) = ONE

ELSE IF( ABS( A( I, J ) ).LT.ONE ) THEN

WORK( N+INC ) = A( I, J )

WORK( INC ) = SQRT( ( 1-A( I, J )**2 ) )

ELSE

WORK( INC ) = ONE / A( I, J )

WORK( N+INC ) = SQRT( ( 1-WORK( INC )**2 ) )

END IF

INC = INC - 1

20 CONTINUE

*

* Apply rotations to the Jth column from the right

*

CALL DLASR( ’R’, ’V’, ’b’, M, ISTART-I+1, WORK( 1 ),

$ WORK( N+1 ), Q( 1, I ), LDQ )

*

30 CONTINUE

*

END IF

RETURN

*

* End of ADDCOLS

*

END
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