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Abstract

We give a complete characterization of Priest’s Finite Inconsistent Arith-
metics observing that his original putative characterization included arith-
metics which cannot in fact be realized.

Introduction

In [2] Priest investigates finite models of true arithmetic based, not on classical
logic, where of course there can be no finite models, but on the paraconsistent
logic LP standing for ‘logic of paradox’ (see [3], [4]). In this paper he aims to
give a complete characterization of all such models. However he includes there
some models (the ‘clique models’ on pages 232-233 of [2]) which cannot in fact
be realized. Our purpose in this note is to tidy up the characterization and make
some few comments and evident generalizations.

We shall borrow heavily from [2] and Priest’s earlier papers. An LP interpre-
tation (or structure) for a language L is a pair 〈D, I〉, where D is a non empty
set and I assigns denotations to the non-logical symbols of the language in the
following way.

• For any constant symbol c, I(c) is a member of D

• For every n-ary function symbol f , I(f) is an n-ary function on D.

• For every n-ary predicate symbol P , I(P ) is the pair 〈I+(P ), I−(P )〉 where
I+(P ) and I−(P ) are respectively the extension and anti-extension of P .
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We furthermore require that equality really is equality, or more formally,

I+(=) = { 〈x, x〉 | x ∈ D},

and that for every n-ary predicate P , I+(P ) ∪ I−(P ) = Dn.

We do not however require that I+(P ) ∩ I−(P ) = ∅, if we did of course LP

structures would just be classical structures.

For a term t(~x), a formula θ(~x) of L, an LP structure A = 〈D, I〉 and an
assignment v from the free variables of the language into D we define tA,v(~x) and
A, v � θ(~x) inductively as follows:

• If t(~x) = c then tA,v(~x) = I(c), if t(~x) = x then tA,v(~x) = v(x).

• If t(~x) = f(t1(~x), . . . , tm(~x)) then tA,v(~x) = I(f)(tA,v
1 (~x), . . . , tA,v

m (~x)).

• For an n-ary predicate symbol P ,

A, v � P (t1(~x), . . . , tn(~x)) ⇐⇒ 〈tA,v
1 (~x), . . . , tA,v

n (~x)〉 ∈ I+(P ),

A, v � ¬P (t1(~x), . . . , tn(~x)) ⇐⇒ 〈tA,v
1 (~x), . . . , tA,v

n (~x)〉 ∈ I−(P ).

• For formulae θ1(~x), θ2(~x) of L,

A, v � ¬¬θ1(~x) ⇐⇒ A, v � θ1(~x),

A, v � θ1(~x) ∧ θ2(~x) ⇐⇒ A, v � θ1(~x) and A, v � θ2(~x),

A, v � ¬(θ1(~x) ∧ θ2(~x)) ⇐⇒ A, v � ¬θ1(~x) or A, v � ¬θ2(~x),

A, v � θ1(~x) ∨ θ2(~x) ⇐⇒ A, v � θ1(~x) or A, v � θ2(~x),

A, v � ¬(θ1(~x) ∨ θ2(~x)) ⇐⇒ A, v � ¬θ1(~x) and A, v � ¬θ2(~x),

A, v � θ1(~x) → θ2(~x) ⇐⇒ A, v � ¬θ1(~x) or A, v � θ2(~x),

A, v � ¬(θ1(~x) → θ2(~x)) ⇐⇒ A, v � θ1(~x) and A, v � ¬θ2(~x).

• For a formula θ(y, ~x),

A, v � ∃y θ(y, ~x) ⇐⇒ for some a ∈ D, A, v′
� θ(y, ~x),

A, v � ¬∃y θ(y, ~x) ⇐⇒ for all a ∈ D, A, v′
� ¬θ(y, ~x),

A, v � ∀y θ(y, ~x) ⇐⇒ for all a ∈ D, A, v′
� θ(y, ~x),

A, v � ¬∀y θ(y, ~x) ⇐⇒ for some a ∈ D, A, v′
� ¬θ(y, ~x),

where v′ agrees with v on all variables except possibly y when v′(y) = a.

As usual we shall occasionally write A � θ(a1, . . . , an), where a1, . . . , an ∈ D,
in place of A, v � θ(x1, . . . , xn), where v is some (equivalently any) assignment
such that v(xi) = ai for i = 1, . . . , n.
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We say that A is an LP model of a set of sentences T if for all θ ∈ T , A � θ

(as usual the choice of v does not matter here).

Henceforth we shall restrict ourselves to the language LA of arithmetic. Let
T be a complete theory (in the classical sense) in LA extending Peano’s Axioms,
PA1. In what follows we appear to need to work with a complete theory because
we do not necessarily have soundness for classical entailment. In particular Modus
Ponens is no longer sound because we can have A, v � θ and A, v � (θ → φ)
without having A, v � φ (because we also had A, v � ¬θ and it was this that
justified A, v � (θ → φ)).

In [2] Priest gives a method (which is much more general than its application
here) for constructing finite LP models of T . Namely, let M be a classical, non-
standard, model of T and ∼ a congruence relation2 on M with only finitely many
equivalence classes. Now define D∼ to be the set of equivalence classes, say [a]
is the equivalence class containing a ∈ M , and define I∼(0) = [0], I∼(′)([a]) =
[a′], I∼(+)([a], [b]) = [a + b], I∼(×)([a], [b]) = [ab] and

I+
∼ (=) = { 〈[a], [b]〉 | a ∼ b },

I−

∼ (=) = { 〈[a], [b]〉 | a 6= b }.

Then 〈D∼, I∼〉 is an LP model of T .

In particular if we take p0, p1, . . . , pm ∈ N, with p1 > 0, p0 > 0 or m = 1,3

pi|pj for i ≥ j > 0, and C1, . . . , Cm increasing proper cuts in M (so closed under
successor, addition and multiplication) with Cm = M , and define for a, b ∈ M ,

a ∼ b ⇐⇒

{

a = b < p0 or p0 ≤ a, b ∈ Ci − Ci−1

for some i (take C0 = ∅) and a = b mod pi,

then ∼ is a congruence relation and the resulting Finite Linear LP model, A∼

has universe

0, 0(1), 0(2), . . . , 0(p0−1), b1, b
(1)
1 , . . . , b

(p1−1)
1 , b2, b

(1)
2 , . . . , b

(p2−1)
2 ,

b3, b
(1)
3 , . . . , b

(p3−1)
3 , . . . , bm, b

(1)
m , . . . , b

(pm−1)
m ,

for some b1, . . . , bm where a(i) is the i-th successor of a according to I∼(′), and
successor, and (commutative) addition and multiplication are as follows.

1Priest restricts T to being the theory of true arithmetic but that will not be necessary for
our purposes.

2I.e. ∼ is an equivalence relation and satisfies that if a1 ∼ a2, b1 ∼ b2 then a′

1 ∼ a′

2,
a1 + b1 ∼ a2 + b2 and a1b1 ∼ a2b2.

3Unfortunately this condition was omitted from the original published version of this paper.
The necessity of this follows because if p0 = 0 and m > 0 then, in the notation of that paper,
b1 = 0 so

b1 = 0 = b2b1 = b2b
(p1)
1 = b2b1 + p1b2 = p1b2 = b2,

contradicting the non-equivalence of b1, b2.
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• Successor is the next term in the above sequence except that I∼(′)(b
(p1−1)
1 ) =

b1, I∼(′)(b
(p2−1)
2 ) = b2, I∼(′)(b

(p3−1)
3 ) = b3, . . . , I∼(′)(b

(pm−1)
m ) = bm.

• 0(i) + 0(j) = 0(i+j) if i + j < p0, otherwise 0(i) + 0(j) = b
(i+j−p0)
1 .

• 0(i) + b
(j)
k = b

(i)
h + b

(j)
k = b

(i+j)
k for h ≤ k.

• 0(i) × b
(j)
k = b

(i)
h × b

(j)
k = b

(ij)
k for h ≤ k.

Finally I+
∼ (=) is just equality whilst

I−

∼ (=) = D∼ × D∼ − { 〈0(i), 0(i)〉 | i = 0, 1, . . . , p0 − 1 }.

By Priest’s Extension Lemma (see [2]) we also obtain an LP model of T if we
enlarge this I−

∼(=) to any superset of D∼×D∼−{ 〈0(i), 0(i)〉 | i = 0, 1, . . . , p0−1 }
whilst keeping everything else the same. In the next section we shall show that
these Linear Plus (as we shall call them) LP models are the only finite LP models
of T .

This corrects an error in [2] where, on pages 232-233, Priest claims the exis-
tence of a further family of finite LP models of arithmetic, the ‘clique models’,
which again are to be formed by collapsing according to a congruence relation,
≈. Unfortunately the proof of the theorem on page 232 stating that this relation
≈ is a congruence relation is incorrect4 and as our forthcoming analysis will show
there are in fact no such finite LP models beyond the linear plus models.

The Structure of Finite LP Models of T

Let A = 〈D, I〉 be a finite LP model of T . Since PA ⊆ T all the consequences
of PA hold in A, in particular addition and multiplication are commutative,
associative, 0 is an additive identity, a = a and either a = b or ¬(a = b) for
all a, b ∈ D etc. In what follows we shall largely assume these without further
mention.

Following Priest consider the elements 0, 0(1), 0(2), . . .. Since D is finite, for
some least p0 0(p0) must appear again in this list, say it appears for the second
time as 0(p0+p1), p1 > 0. Then because I(′) is a function, 0(p0+i) = 0(p0+j) whenever
i = j mod p1. Indeed this goes both ways since suppose that 0(p0+i) = 0(p0+j) and
0 < i < j < p1 (clearly the case i = 0 is impossible by choice of p1). Then
0(p0+i+p1−j) = 0(p0+j+p1−j) = 0(p0), contradicting the choice of p1.

4In the notation of that proof take C1 < C2 < C3 and a ∈ C1, b ∈ C2, c ∈ C3 with a ≈ c.
Then a + b ∈ C2 and c + b ∈ C3 so a + b ≈/ c + b and ≈ cannot be a congruence relation. For
additional background to this and the results in this present paper see [1].
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Since for n, m ∈ N the following are in T , they are true in A,

x(n) = x + 0(n),

x + 0 = x,

x(n) + y(m) = (x + y)(n+m),

x0 = 0,

x(n)y(m) = x(n)y + x0(m). (1)

It is now straightforward to show that as far as successor, addition and multipli-
cation on

{ 0, 0(1), 0(2), . . . 0(p0−1), 0(p0), . . . , 0(p1+p0−1) }

are concerned the picture is as in the linear LP model of the last section. Also if
r ≥ p0 then A � 0(r) 6= 0(r) since

T � ∀xx(p1) 6= x (2)

so
A � 0(r) 6= 0(r+p1)

whilst in fact 0(r+p1) = 0(r−p0+p0+p1) = 0(r−p0+p0) = 0(r). Thus on these elements
at least I+(=) and I−(=) have the required form for a Linear Plus LP model.

For a, b ∈ D set a ≤ b if

A � ∃y a + y = b.

This ordering is reflexive and transitive, since if A � a + e = b and A � b + f = c

then a + e = b, i.e. a + e and b really are the same thing, etc. so a + (e + f) =
(a + e) + f = c, giving a ≤ c. Let ≡ be the equivalence relation on D defined by

a ≡ b ⇐⇒ a ≤ b and b ≤ a.

Since for a ∈ D, a+0′ = a′, a ≤ a′ and hence a ≤ a(n) for all n ∈ N. Furthermore
if a ≤ b, say a + c = b then a′ + c = b′ so a(n) ≤ b(n) for n ∈ N. From these
observations it follows that the 0(p0), . . . , 0(p1+p0−1) are all equivalent.

We now investigate further the equivalence classes of these initial elements.
Suppose p0 > 0 and c 6= 0, c ≤ 0, so c ≡ 0 since certainly 0 ≤ c. Say b + c = 0.
Since

A � ∀x (x = 0 ∨ ∃y y′ = x) (3)

we must have c = d(1) for some d ∈ D, so

b + d + 0(1) = b + d(1) = b + c = 0.

Thus
0(p0−1) = b + d + 0(p0) = b + d + 0(p1) = 0(p1−1)
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contradicting the choice of p0. We conclude that if p0 > 0 then no such c can
exist and [0] = {0}. Exactly similarly if p0 > j there can be no c ≤ 0(j) different
from each of that 0, 0(1), . . . , 0(j), otherwise there would exist an a such that
0(j) = a(j+1) = a + 0(j+1) so p0 − 1 ≥ j and

0(p0−1) = a + 0(p0) = a + 0(p1) = 0(p1−1),

again contradicting the choice of p0.
We conclude that [0(j)] = {0(j)} for j < p0.

Having sorted out the initial part of A let the equivalence classes with respect
to ≡ be

{0}, {0(1)}, {0(2)}, . . . , {0(p0−1)}, [b1], [b2], . . . , [bm]

where b1 ≤ b2 ≤ b3 ≤ . . . ≤ bm. Notice that since these are distinct equivalence
classes bi � bj for j < i ≤ m.

We now show by induction on j that these [bj ] are closed under successor and
addition and multiplication. Starting with successor, since bj 6= 0, bj = c′ for
some c, which we may assume is not 0(p0−1), otherwise replace c by 0(p0+p1−1).
Since c ≤ bj and the union of the earlier equivalence classes [b1], [b2], . . . , [bj−1] is
closed under successor it must be that c ≡ bj . Hence bj = c′ ≡ b′j , as required.

To show that [bj ] is closed under addition let b be such that b + b = bj or
b + b + 1 = bj , we know that some such b must exist since

A � ∀x∃y (y + y = x ∨ y + y + 1 = x).

If b ∈ { 0, 0(1). . . . , 0(p0−1) } we can replace it by b(p1(p0+1)) and other b cannot be
in an earlier equivalence class [bi] since their union is closed under addition and
successor. Also b cannot be in a higher equivalence class since b ≤ bj . So we may
assume that b ∈ [bj ]. But then bj ≤ b so bj + c = b for some c and

bj ≤ bj + bj ≤ bj + bj + c + c = b + b ≤ bj ,

as required. Notice of course that [bj ] is also closed under addition with an
element of an earlier equivalence class.

To show that [bj ] is also closed under multiplication let b be such that, with
the obvious shorthand k for 0(k),

b2 ≤ bj ≤ (b + 1)2 = b2 + 2b + 1,

again we know that such a b must exist since

A � ∀x∃y, w, v (y2 + u = x ∧ x + w = (y + 1)2). (4)
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Since b ≤ b2 and we can, as above, assume that b is not in any the earlier
equivalence classes this again leads to b ∈ [bj ]. Therefore bj + c = b for some c

and
bj ≤ b2

j ≤ (bj + c)2 = b2 ≤ bj .

This shows that [bj ] is closed under multiplication (and also with non-zero ele-
ments of earlier equivalence classes).

We now turn to investigating these classes [bj ] more fully. Let 1 ≤ j ≤ m and
c, d ∈ [bj ]. Then since D is finite c, c(1), c(2), . . . cannot be all different, say k is
least such that for some s > k, c(k) = c(s). Then because c(k) ≡ d, for some a,
d = a + c(k). Hence

d(s−k) = (a + c(k))(s−k) = a + c(s) = a + c(k) = d.

Since d ∈ [bj ] was arbitrary it follows that for some pj ≤ s − k, and all d ∈ [bj ],
d(pj) = d and

d, d(1), d(2), . . . , d(pj−1)

are all distinct. [Notice this agrees with the notation p1 already introduced.]

Again for any c, d ∈ [bj ], cd = cd(pj) = cd + pjc. Since d ≡ cd there is some a

such that a + cd = d, hence

d = a + cd = a + cd + pjc = d + pjc.

It follows that pjc is an element x of [bj ] such that d + x = d for all d ∈ [bj ].
Indeed such an element must be unique since if we had two such, say x1, x2, then
x1 = x1 +x2 = x2 +x1 = x2. We may assume that bj is chosen to be this element.
Then since

A � ∀x∃y (x = pjy ∨ x = pjy
(1) ∨ x = pjy

(2) ∨ . . . ∨ x = pjy
(pj−1)) (5)

every d ∈ [bj ] must be of the form pjc
(s) for some c and 0 ≤ s < pj. Since this c

must be in [bj ] (because these classes are closed under addition) this gives that

d = b
(s)
j . In other words

[bj ] = { bj, b
(1)
j , b

(2)
j , . . . , b

(pj−1)
j }. (6)

In particular some [bj ] must equal { 0(p0), 0(p0+1), 0(p0+2), . . . , 0(p0+p1−1) }, indeed

this must be [b1] since 0 ≤ bj so 0(p0) ≤ b
(p0)
j ≡ bj . Furthermore, as remarked by

Priest in [2], if 1 ≤ i ≤ j ≤ m then bj + bi ∈ [bj ] and

bj + bi = (bj + bi)
(pi) = bj + b

(pi)
i = bj + bi

so pj|pi.

Finally, to show that this LP model is Linear Plus it only remains to check
the successor, addition and multiplication are of the required form. But using
(1) that is now clear from the representation of the [bj ] in (6) and the fact that,
by our choice, bj + bj = bj for j = 1, 2, . . . , m.
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Concluding Remarks

One hope in investigating finite LP models of arithmetic is that it might somehow
lead to independence results for Peano’s Axioms. The above conclusions however
appear to dash any such hopes. The resulting finite LP models would have been
the same even if we had started with any theory containing the schemata (1), (2),
(3), (4) (5), and the commutativity, associativity and distributivity of addition
and multiplication. In particular since any sentence which is consistent with these
schemata will hold in all these LP models, they really tell us nothing about the
key axiom schema of induction.

In this paper we have concentrated on finite LP models and used the finiteness
in an apparently non-trivial way to show the existence of p0, p1. In [5] Priest
considers also infinite models and it is not clear to what extent they are now
also restricted by our results. Indeed it remains an open question whether every
countable (say) LP model of a complete extension T of PA arises by taking
equivalence classes of a classical model of T with respect to some congruence
relation.
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