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Abstract

A sufficient condition is given for a probability function in Inductive Logic
(with relations of all arities) satisfying spectrum exchangeability to addition-
ally satisfy Language Invariance. This condition is shown to also be necessary
in the case of homogeneous probability functions.
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Introduction

In common with recent developments in Inductive Logic, see for example [17] (and
[1], [2], [3] for the classical approach), we shall work within a first order predi-
cate language L with finitely many relation symbols, countably many constants
a1, a2, a3, . . . and no function symbols. The intention here is that these constants ai

exhaust the universe. Let SL,QFSL respectively denote the sentences and quanti-
fier free sentences of L.

We say that a function w : SL → [0, 1] is a probability function on L if it satisfies
that for all θ, φ, ∃xψ(x) ∈ SL :

(P1) If � θ then w(θ) = 1.

(P2) If � ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).

(P3) w(∃xψ(x)) = limm→∞ w(
∨m

i=1 ψ(ai)).

Throughout w, possibly with with various annotations, will denote a probability
function on L and, for the purposes of motivation, we shall be thinking of proba-
bilities in the sense of de Finetti as subjective degrees of belief.
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By a theorem of Gaifman (see [5], where in fact the axioms (P1-3) were first for-
mulated) any probability function defined on QFSL (i.e. satisfying (P1) and (P2)
for θ, φ ∈ QFSL) extends uniquely to a probability function on L. In this sense
then we can largely limit our considerations to probability functions defined just on
QFSL. Indeed, by the Disjunctive Normal Form Theorem it then follows that w is
determined simply by its values on the state descriptions, that is sentences of the
form

m
∧

s=1

∧

b1,b2,...,brs∈{ai1
,ai2

,...,ain}

±Ps(b1, b2, ..., brs
)

where P1, P2, . . . , Ps are the relations of L with arities r1, r2, . . . , rs respectively.

In Inductive logic we are basically interested in the choice of probability functions
w on L when these are intended to represent the beliefs, i.e subjective probabilities,
assigned by a rational or logical agent in the absence of any prior knowledge. The
key restraint here is that this assignment should be rational or logical and it is
customary to identify this with the requirement that w satisfies certain rational or
common sense principles.

A number of such principles have been suggested, see for example [1], [2], [3], [8],
[10], [13], [15], [16], [17], [19], the most basic of which asserts that w should not
treat the constants ai differently, equivalently:

The Constant Exchangeability Principle (Ex)

For θ, θ′ ∈ QFSL, if θ′ is obtained from θ by replacing, respectively, the (distinct)
constant symbols ai1 , ai2 , . . . , aim

occurring in θ by the (distinct) constant symbols
ak1

, ak2
, . . . , akm

then w(θ) = w(θ′).

We shall henceforth assume that all probability functions mentioned satisfy Ex.
Notice that in this case the value of w on the state description as above does not
depend on the choice of i1, i2. . . . , in and so we may without loss always take these
to be a1, a2, . . . , an.

There are two other such ‘common sense’ principles which we shall be concerned
with in this paper. In order to explain the first of these we first need to intro-
duce a little notation. Given a state description Θ(b1, b2, . . . , bn) where the bi are
distinct constants from L (i.e. choices of aj) we say that bi, bj are indistinguish-
able mod Θ, written bi ∼Θ bj , if for all relations P (x1, x2, . . . , xr) of L the sen-
tence P (bt1 , bt2 , . . . , btr

) appears positively as a conjunct in Θ(b1, b2, . . . , bn) if and
only if P (bs1

, bs2
, . . . , bsr

) also appears positively as a conjunct in Θ(b1, b2, . . . , bn)
where 〈bs1

, bs2
, . . . , bsr

〉 is the result of replacing any number of occurrences of bi in
〈bt1 , bt2 , . . . , btr

〉 by bj or vice-versa. Clearly ∼Θ is an equivalence relation.

Define the spectrum of Θ, denoted S(Θ), to be the multiset of sizes of the (non-
empty) equivalence classes with respect to ∼Θ.

The Spectrum Exchangeability Principle (Sx)

If Θ(b1, b2, . . . , bn),Φ(c1, c2, . . . , cn) are state description and S(Θ) = S(Φ) then
w(Θ) = w(Φ).

Clearly expressed in this form Sx implies Ex. In the early accounts of Inductive
Logic, for example [1], [2], [3], [10], the language L was taken to be purely unary,
that is the predicates of the language are just P1(x), P2(x), . . . , Ps(x) (but see [11]).
In this case state descriptions have the simple form

n
∧

i=1

αhi
(ati

)



3

where the αh(x), h = 1, 2, . . . , 2s are the atoms of L, that is formulae of the form

±P1(x) ∧ ±P2(x) ∧ . . . ∧ ±Ps(x),

and Sx reduces to Atom Exchangeability, Ax, asserting that

w

(

n
∧

i=1

αhi
(ati

)

)

depends only on the multiset of |{i |hi = j}| for j = 1, 2, . . . , 2s.

The principle Ax was apparently happily accepted by Johnson and Carnap and the
earlier investigators since it follows from Johnson’s Sufficientness Principle1 which
they advocated.

The second principle which we shall be concerned with here is that of Language
Invariance. The motivation behind this principle is that whilst we may at any one
time be interested is some particular finite language L a rational choice of beliefs
for that language should be capable of extension to a larger language. After all
there is clearly no reason to suppose that there are only finitely many relations in
existence and that L has already included all of them.

Language Invariance

The probability function w on L satisfies Language Invariance2 if there exist a
class of probability functions wL for each finite predicate language L (as usual with
constants ai and no function symbols) such that whenever L′ is a sublanguage of L
then wL ↾SL′ = wL′ and wL = w.

In this case we shall describe the wL as a language invariant family containing w.

In the next section we shall derive a sufficient condition for a probability function
satisfying Spectrum Exchangeability to also satisfy Language Invariance.

A Sufficiency Condition for Language Invariance

Before stating and proving the main result of this paper we need to introduce a
particular family of probability functions up

L.

Let

B = {〈x0, x1, x2, ....〉 |x1 ≥ x2 ≥ ... ≥ 0, x0 ≥ 0,
∞
∑

i=0

xi = 1}

and endow B with the standard weak product topology inherited from [0, 1]∞. Let

p = 〈p0, p1, p2, . . .〉 ∈ B.

For a state description Θ(ai1 , ai2 , . . . , aiq
) (from language L) and ‘colors’

~c = 〈c1, c2, . . . , cq〉 ∈ {0, 1, 2, . . .}q

(where 0 stands for the special color black) we define jp(Θ(ai1 , ai2 , . . . , aiq
),~c) in-

ductively as follows:

1See for example [19] or [20] for a formulation of this Principle in the notation of this paper.
2This differs from the earlier definition of Language Invariance given in [8] and [19] which was

restricted to purely unary languages L, L′.



4

Set jp(⊤, ∅) = 1. Suppose that at stage q we have defined the probability
jp(Θ(ai1 , ai2 , . . . , aiq

),~c). Pick color cq+1 from 0, 1, 2, . . . according to the probabil-
ities p0, p1, p2, . . . and let

~c+ = 〈c1, . . . , , cq, cq+1〉.

If cq+1 is the same as an earlier color, cj say, with cj 6= 0 extend Θ(ai1 , ai2 , . . . , aq)
to the unique state description Θ+(ai1 , ai2 , . . . , aiq

, aik+1
) for which aij

∼Θ+ aiq+1
.

On the other hand if cp+1 is 0 or a previously unchosen color then randomly
choose Θ+(ai1 , ai2 , . . . , aiq

, aiq+1
) extending Θ(ai1 , ai2 , . . . , aiq

) such that ∼Θ and
∼Θ+ agree on {ai1 , ai2 , . . . , aiq

}2. Finally let jp(Θ+,~c+) be jp(Θ,~c) times the prob-
ability as described of then going from Θ,~c to Θ+,~c+.

Having defined these jp(Θ,~c) now set

u
p
L(Θ) =

∑

~c

jp(Θ,~c).

By a straightforward generalization of the result in [17] (where just two colors were

considered) up
L satisfies Ex and Sx.

Theorem 1 Let the probability function w on L satisfy Sx. Then for w to be
language invariant it is sufficient that there is a countably additive measure µ on
the Borel subsets of B such that for θ ∈ SL,

w(θ) =

∫

B

u
p
L(θ)dµ. (1)

Furthermore in this case if L contains at least one non-unary relation then the
language invariant family containing w is unique.

We call µ as in this theorem the de Finetti prior of w.

Proof Suppose that (1) holds. Let L extend L and for φ ∈ SL set

wL(φ) =

∫

B

u
p
L(φ)dµ, (2)

in other words wL has the same de Finetti prior as w, but the language has changed.
We claim that wL ↾ SL = w. To show this it is enough to show that for a state
description Θ(~a) from language L, wL(Θ(~a)) = w(Θ(~a)), and for this it is enough
to show that

u
p
L(Θ(~a)) = u

p
L(Θ(~a)). (3)

Let Φ(~a) be a state description for L extending Θ(~a) (and with the same constants

~a = 〈a1, a2, . . . , aq〉) and consider a summand jp
L(Φ(~a),~c) which yields up

L(Θ(~a)) via

u
p
L(Φ(~a)) =

∑

~c

j
p
L(Φ(~a),~c).

This summand is formed by q choices of colors c1, c2, . . . , cq and an increasing se-
quences of choices of state descriptions

Φ1(a1),Φ2(a1, a2),Φ3(a1, a2, a3), . . . ,Φq(a1, a2, . . . , aq) = Φ(~a).

Let Θk(a1, a2, . . . , ak) be the state description of L which Φk(a1, a2, . . . , ak) extends.
Then

Θq(a1, a2, . . . , aq) = Θ(a1, a2, . . . , aq)

and for this same choice of colors ~c and Θk j
p
L(Θ(~a),~c) is a contributing summand

to u
p
L(Θ(~a)). Furthermore the only difference between these two contributions is
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that at each choice of the kth state description j
p
L(Φ(~a),~c) receives as a multi-

plicative factor one over the number of possible state descriptions in L extending
Φk−1(a1, a2, . . . , ak−1) whereas jp

L(Θ(~a),~c) receives as a multiplicative factor one
over the number of possible state descriptions in L extending Θk−1(a1, a2, . . . , ak−1).
Note that this depends on ck, genuine choice being available only when ck is either
zero or not equal to any previous cj . However, since otherwise in each case these
factors depend only on the relations in L and L and not on the particular state
descriptions Θk−1(a1, . . . , ak−1), Φk−1(a1, . . . , ak−1), overall

j
p
L(Θ(~a),~c) = Mj

p
L(Φ(~a),~c)

where M is the number of possible choices (according to ~c) of state descriptions of
~a in L extending Θ(~a). But this means that

j
p
L(Θ(~a),~c) =

∑

Ψ(~a)

j
p
L(Ψ(~a),~c)

where Ψ(~a) runs over the M many state descriptions of ~a in L admitted by ~c and
extending Θ(~a). Since

u
p
L(Θ(~a)) =

∑

Ψ(~a)

∑

~c

j
p
L(Ψ(~a),~c)

where the sum is over all extensions Ψ(~a) in L of Θ(~a), rearranging the summation
on the right hand side yields

u
p
L(Θ(~a)) = u

p
L(Θ(~a)),

as required.

Of course the required ‘full’ language invariant family for w can now be obtained
by restricting/marginalizing these wL.

To show uniqueness suppose that L has some non-unary relation symbol and that
there are two different language invariant families containing w, say w′, w′′ are
the members of these families defined on L ⊃ L and they differ on some state
description, Ψ(a1, a2, . . . , an) say.

We first define a well founded ordering on state descriptions Θ(a1, a2, . . . , an) of L
or L, for fixed n, by setting

Θ(~a) � Φ(~a) ⇐⇒ ∼Θ is a refinement of ∼Φ .

We now show
w′(Θ(~a)) = w′′(Θ(~a)) (4)

by induction on this ordering. The least point in this ordering is when the equiv-
alence classes of ∼Θ are all singletons. In this case let ΦL(a1, a2, . . . , an) be a
state description of L having this minimal spectrum. (This is where we need L to
contain a non-unary relation symbol, to ensure that such a state description ex-
ists.) Then ∼Φ(~a) must again be this minimal spectrum for any state description
Φ(a1, a2, . . . , an) of L extending ΦL(a1, a2, . . . , an) and w′ must take the same value
on these by Sx. Hence, since

w(ΦL(a1, a2, . . . , an)) = w′(ΦL(a1, a2, . . . , an)) =
∑

Φ(~a)

w′(Φ(~a)),

where the summation is over state descriptions Φ(~a) extending ΦL(~a), we see that
if M is the number of such Φ(~a) then for any one of them

w′(Φ(a1, a2, . . . , an)) = M−1w(ΦL(a1, a2, . . . , an)).
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Since this reasoning also applies to w′′ (4) holds in this base case.

Now suppose that (4) holds for all Φ(~a) � Θ(~a). Let ΘL(~a) be a state description
of L having the same spectrum as Θ(~a). Then again,

w(ΘL(~a)) =
∑

Φ(~a)

w′(Φ(~a)) (5)

where the Φ(~a) range over state descriptions in L extending ΘL(~a). Now all of
these Φ(~a) are less or equal Θ(~a) in the ordering �, and Θ(~a) does itself appear
on the right hand side of this expression a non-zero number of times. Furthermore
the identity (5) also holds with the probability function w′′ in place of w′, and by
the inductive hypothesis these terms are the same except possibly for the argument
Θ(~a). But then of course they must also be the same in this case, as required to
prove (4) and the theorem.

�

An Application

For this section assume that our default language L has at least one non-unary
relation. We first recall a classification3 of probability functions w on L satisfying
Sx.

Given a spectrum S = {s1, s2, . . . , sk} let |S| = k and
∑

S =
∑k

i=1 si. For w on L
satisfying Sx let w(S) = w(Θ) for some/any state description Θ with spectrum S.
For Θ = Θ(a1, a2, . . . , ar) and S(Θ) = S (so

∑

S = r) let NL(S, T ) be the number
of state descriptions Φ extending Θ with S(Φ) = T . By results in [16], [17], [13]
this does not depend on the particular Θ with S(Θ) = S which is chosen.

We say that w is homogeneous if for all k

lim
r→∞

∑

|S|=k,
P

S=r

w(S) = 0.

In other words the probability that all the ai will fall in some fixed finite number
of equivalence classes with respect to indistinguishability is zero.

We say that w is t-heterogeneous if

lim
r→∞

∑

|S|=t,
P

S=r

w(S) = 1.

In other words the probability that all the ai will fall in some t (non-empty) equiv-
alence classes with respect to indistinguishability is 1.

The following theorem appears in [16], [17] for the case of a purely binary language
and will appear in [13] for general not purely unary languages.

Theorem 2 Let w satisfy Sx. Then there are probability functions w[t] satisfying
Sx and constants ηt ≥ 0 for 0 ≤ t <∞ such that

w =

∞
∑

i=0

ηiw
[i],

∞
∑

i=0

ηi = 1,

w[t] is t-heterogeneous for t > 0 and w[0] is homogeneous. Furthermore the ηi are
unique and so are the w[i] when ηi 6= 0.

3Given in [16], [17] for binary languages and more generally in the forthcoming [13].
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The following result4 will appear in the forthcoming paper [14].

Theorem 3 Let w be a homogeneous probability function on L (not purely unary)
satisfying Sx. Then there is a countably additive measure µ on the Borel subsets of
B such that for θ ∈ SL,

w(θ) =

∫

B

u
p
L(θ)dµ.

Using this result we have the following corollary to Theorem 1:

Corollary 4 Let w be a homogeneous probability function on L (not purely unary)
satisfying Sx. Then w satisfies Language Invariance.

This is, to our way of thinking, a rather surprising result since it say in particular
that just knowing a homogeneous w on a sublanguage consisting of a single non-
unary relation is, provided we require Sx to be preserved, enough to determine it
on all extensions of that language.

In contrast to Corollary 4 however:

Proposition 5 Let t > 1 and let w be a t-heterogeneous probability function on L

(not purely unary) satisfying Sx. Then w does not satisfy Language Invariance.

Proof Suppose that w is a t-heterogeneous probability function on L and a member
of some language invariant family. Let w′ be a member of this family on L =
L ∪ {P1, P2, . . . , Pt+1} where the Pi are new unary predicates.

Since L contains a non-unary relation we can find a state description Θ(a1, a2, . . . , at+1)
for L whose restriction ΘL(a1, a2, . . . , at+1) to L has a spectrum of length t + 1.
Hence if w′(Θ(a1, a2, . . . , at+1)) > 0 then w(ΘL(a1, a2, . . . , at+1)) > 0, contradicting
t-heterogeneity. So it must be the case that w′(Φ(~a)) = 0 whenever the spectrum
of the state description Φ(~a) has length greater than t (since for any such spectrum
there is a state description with this spectrum which extends a state description on
t+ 1 individuals of length t+ 1).

Now let Θ(a1, a2, . . . , at) be a state description for L with spectrum of length t

whose restriction ΘL(a1, a2, . . . , at) to L has a spectrum of length 1. Then if
Φ(a1, a2, . . . , at+j) is a state description for a1, a2, . . . , at+j in L extending
Θ(a1, a2, . . . , at) and w(Φ(a1, a2, . . . , at+j)) 6= 0 it must be the case that Φ(a1, a2, . . . , at+j)
has spectrum of length t and in consequence the restriction ΦL(a1, a2, . . . , at+j) to
L must still have spectrum of length 1. Hence

∑

|S|=1,
P

S=r

w(S) =
∑

ΦL(a1,...,ar) has spectrum of length 1

w′(ΦL(~a))

=
∑

ΦL(a1,...,ar) has spectrum of length 1

w′(Φ(~a))

≥
∑

Φ(a1,...,ar) extends Θ(a1,...,at)

w′(Φ(~a))

= w′(ΘL(a1, . . . , at))

> 0,

so
lim

r→∞

∑

|S|=1,
P

S=r

w(S) ≥ w′(ΘL(a1, . . . , at)) > 0,

4A similar representation theorem can be proved for t-heterogeneous probability functions, see
[18], but that will not be needed here.
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contradicting t-heterogeneity. �

Notice however that it is certainly possible to have mixtures of t-heterogeneous
probability functions (for different t) which are language invariant. For example

if we take p = 〈p0, p1, p2, . . .〉 ∈ B with p0 = 0 and ps = 0 for s > t then u
p
L

is a convex combination of r-heterogeneous probability functions for r ≤ t and is
language invariant by Theorem 1.

Proposition 5 does not hold if t = 1, the trivial probability function on L which
gives probability 1 to all the ai being indistinguishable (i.e. 1, 2, 3, . . . all being in
the same equivalence class) provides, as L varies, the example of such a language
invariant family.

We finally observe that the requirement in Proposition 5 that L contains a non-
unary relation can be dropped if t < 2s where s is the number of unary relation
symbols in L.

Conclusion

Since both Sx and Language Invariance are (we would claim) desirable principles in
the context of assigning beliefs in the absence of any prior knowledge it is pleasing
to have a sufficiency theorem for such probability functions in terms the particularly
simple functions up

L. This furthermore opens the possibility of deriving certain other
properties of such functions by moving the onus of the task onto the much more
malleable up

L, examples of which will be given in the forthcoming [14].
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