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Abstract

We investigate uncertain reasoning with quantified sentences of the
predicate calculus treated as the limiting case of maximum entropy infer-
ence applied to finite domains.

Motivation and notation

In this modest note we consider one possible approach to the following problem
P:

Suppose that my subjective beliefs in some sentences θ1, θ2, . . . , θm of
a predicate language are constrained to satisfy a certain set K, say,
of linear constraints. In that case what belief should I assign to some
other sentence φ ?

Following Johnson [14] and Carnap et al [4], [5] we shall limit ourselves to the
well studied case where the overlying predicate language L contains just finitely
many unary predicate symbols, P1, P2, . . . , Pt and denumerably many constant
symbols a1, a2, a3, . . . , the intention here being that these constants are distinct
and exhaust the universe. In particular the language does not have equality nor
any functions symbols. Then according to ideas of de Finetti [6], Gaifman [10],
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Scott & Krauss [25], Williamson [27] (amongst others) it can be argued that
subjective beliefs such as we have here should satisfy being the values assigned
by some probability function on L, that is a function Bel from the set SL of
sentences of the language L into [0, 1] satisfying:

For all θ, φ, ∃ψ(x) ∈ SL

(P1) If � θ then Bel(θ) = 1,

(P2) If � ¬(θ ∧ φ) then Bel(θ ∨ φ) = Bel(θ) +Bel(φ),

(P3) Bel(∃xψ(x)) = limr→∞
Bel(

∨r

j=1 ψ(aj)).

This last condition, commonly known as Gaifman’s condition, may seem a
little strange from the point of view of mathematical logic, where one normally
does not impose any requirement that every element of the universe has a name.
In the philosophical context of induction, where we are thinking of the ai as
observable instances (for example runs of an experiment) however, it would on the
contrary seem unnatural to allow the possible existence of ‘observable instances’
which could not be specifically referred to by name. In consequence, much of
the work in this area, which harks back to Carnap’s Inductive Logic programme,
traditionally assumes this condition.1

Within our assumed context then the problem P of assigning beliefs can be
refined to:

Given that the subjective probabilities Bel(θ1), Bel(θ2), . . . , Bel(θm)
I assign to θ1, θ2, . . . , θm ∈ SL must satisfy some set K of linear
constraints what subjective probability Bel(θ) is it rational for me to
assign to θ ∈ SL ?

Whilst it may be far from crystal clear what we might mean here by ‘rational’
we can at least make an attempt on this problem by formulating ‘rationality’,
or common sense, conditions that one’s subjective beliefs should satisfy and see
to what extent they limit the choices for Bel(θ). One such requirement surely
is that the values given to the θ as θ ranges over SL should be consistent with
each other, and the constraints K, and the fact that Bel is to satisfy (P1-3). If
we accept this, as we will, then the above problem amounts to asking what is the
rational choice of a probability function constrained to satisfy K?

In the analogous case of a finite propositional language this problem was ex-
tensively studied in [20] and [22] and led to the recommendation that the only
common sense choice is the Maximum Entropy solution, ME(K), of the set K

1Apart from this consideration it also has the simplifying consequence that any function Bel

from the quantifier-free sentences of L to [0, 1] satisfying (P1-2) extends uniquely to domain
SL so as to satisfy (P1-3).
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of linear constraints.2 That is, if the finite propositional language has propo-
sitional variables p1, p2, . . . , pn then a probability function (i.e. in the proposi-
tional case satisfying just (P1-2)) Bel is determined by its values on the 2n atoms
α1, α2, . . . , α2n , i.e. sentences of the form

±p1 ∧±p2 ∧ . . . ∧ ±pn,

and ME(K) is defined to be that (unique) probability function Bel satisfying K
for which the entropy

−
2n
∑

i=1

Bel(αi) logBel(αi)

is maximal. [For a fuller account of ME and other inference processes see [16].]

Unfortunately this approach cannot immediately be applied to our predicate
language L, not least because it is infinite. However, in the subjective spirit
of what we are trying to capture here we might argue that the infinity of a
universe with individuals a1, a2, a3, . . . is really just a potential infinity of finite
structures with individuals a1, a2, a3, . . . , an and that the rational choice for the
infinite universe should be the limit of the rational choices for the finite universes,
assuming of course such a unique limit exists.

This idea of modeling the universe by a finite, albeit very large, structure is a
very attractive one, firstly because it strikes a cord with the way we often seem to
reason in practice, by weighing up a finite number of essentially finite possibilities,
and secondly because it allows one to use well understood and transparent finite
combinatorial arguments.

Not surprisingly then here have been a number papers which have investigated
this general approach both without and within the context of assigning beliefs
such as we are considering here. In particular, Kemeny’s early contribution [15],
the paper of Fagin [9] and the study of Zero-One Laws that it helped initiate (for
a recent introduction see [7]), the work of Paris and Vencovská [19], [21], [18],
of Shastri [26] and in particular the ambitious and wide-ranging development of
Grove et al. in [1], [2], [11], [12], [13].

Roughly the idea in these last papers, what Grove et al call the random-worlds
method, is to initially identify an agent’s objective knowledge of statistical data
K with the set of structures (i.e. possible worlds) of some large finite cardinality
r in which this knowledge is true and identify the belief the agent (should) give
to an assertion θ on the basis of K as the proportion of structures in this set in
which θ is true. Finally to remove the dependence on r the actual assigned belief
is taken as the limit of these belief values as r tends to infinity, reflecting the idea
that r is to be taken ‘very large’. Whilst there can, of course, be problems here

2And even beyond the linear case see [23].
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in demonstrating the existence of this limit Grove et al. show (see in particular
[2]) that the method works well and gives acceptable answers and insight in both
direct inference and default reasoning for a wide range of contexts and forms of
knowledge. Furthermore, the method can be extended, see in particular [1], to
incorporate also prior beliefs in K.

Unlike their method, in this paper the identification of ‘infinite’ with ‘finite
but very large’ is carried out at the level of the (subjective) knowledge base rather
than at the level of the raw data/statistics. It is the knowledge base that ulti-
mately tends to infinity rather than the size of the random worlds. Furthermore,
as already indicated, the approach taken in this paper (see also [3]) to problem P
(where there is no objective knowledge, just finitely many linear constraints on
beliefs) derives from a somewhat different perspective. We have seen that solving
P amounts to picking a probability function to satisfy K. We are interested in
solving this problem, how to make this choice, by directly imposing ‘common
sense’ principles on the choice process itself. In the case of propositional knowl-
edge bases such a set of principles was formulated in [20] (see also [17] for a less
technical account), and it was shown that picking the maximum entropy solution
was the unique such choice process or, as we call it, inference process, satisfy-
ing these principles. From this point of view then, taking Bel(θ) = ME(K)(θ),
where ME(K) is the maximum entropy solution of K, can be argued to be the
‘common sense’, or rational, belief to assign to θ.

What we show in this short paper is that this methodology can be extended
also to (finite, linear) predicate knowledge bases within this restricted language
L by treating them as the limiting case of propositional knowledge bases and
applying ‘common sense’, i.e. maximum entropy, to these. Interestingly, the
recommendation to maximize entropy (and minimize cross-entropy) also arise
naturally in the context in the random-worlds approach; see section 6 of [2]
for an extended discussion of the close relationship between the random-worlds
method and maximum entropy (also early results in [19], where belief constraints
are treated as if they arose from a large population of random worlds, and a
criticism of this assumption in section 4 of [18]). In consequence, the random-
worlds method can be applied to give the same solutions as we are prescribing.
However the significance of this paper rests on what it implies for common sense
when reasoning with first-order beliefs rather than providing an algorithm. In
short, the interest is as much in the justification for the answers as in the answers
themselves.

To give a particular example of what we have in mind here for addressing
problem P suppose that

K0 =

{

Bel(∃xP (x)) =
1

2

}

.
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Then according to (P3),

Bel(∃xP (x)) = lim
r→∞

Bel

(

r
∨

i=1

P (ai)

)

.

Based on this axiom, the idea behind our approach is to iteratively replace sen-
tences ∃x θ(x) in our knowledge base K by

∨r

i=1 θ(ai) for some large r, to produce
a knowledge base K(r). So for example the knowledge base K0 above becomes

K
(r)
0 =

{

Bel

(

r
∨

i=1

P (ai)

)

=
1

2

}

.

In this way our knowledge base over a (unary) predicate language is transformed
into a knowledge base over a propositional language with propositional variables
Pj(ai), for i = 1, 2, . . . , r, j = 1, 2, . . . , t and we can now apply an inference
process such as ME. If we let r tend to infinity we would hope to attain a well
defined limit value so that we could set

Bel(θ) = lim
r→∞

ME(K(r))(θ(r))

where θ(r) etc. is the result of iteratively replacing existential quantifiers by
disjunctions of a1, a2, . . . , ar as described above.

We will now set up a formal framework and show that this approach does
always yield a probability function Bel on L satisfying K.

The Existence of the Limit

Let Lk be the language L as above but with only constant symbols a1, . . . , ak.
Let Q1, . . . , QJ , where J = 2t, be an enumeration in some fixed order of the
formulae of the form ±P1 ∧ . . . ∧ ±Pt. Let Lr be the propositional language
with propositional variables Pj(ai), i = 1, . . . , r, j = 1, . . . , t. For r > k, define
()(r) : SLk → SLr inductively as follows. For φ, ψ, ∃xψ(x) sentences of Lk,

Pj(ai)
(r) = Pj(ai)

(¬φ)(r) = ¬φ(r)

(φ ∨ ψ)(r) = φ(r) ∨ ψ(r)

(φ ∧ ψ)(r) = φ(r) ∧ ψ(r)

(∃xψ(x))(r) =

r
∨

i=1

ψ(ai)
(r).

At this point it will be useful to explicitly note the following consequence of
this construction.
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Lemma 1 If θ, φ ∈ SLk, k ≤ r and θ ≡ φ (in the predicate calculus) then
θ(r) ≡ φ(r) (in the propositional calculus).

Proof. If θ ≡ φ then θ and φ have the same models so in particular they have the
same models with universe { a1, a2, . . . , ar } over the predicate language Lr with
each ai, i = 1, 2, . . . , r, interpreted as itself. Clearly in these structures θ ↔ θ(r)

and φ ↔ φ(r) must hold. Hence θ(r) ↔ φ(r) holds in all such structures so there
cannot be a valuation on SLr that gives them different truth values, otherwise
we could simply use that as for the basis for such a structure for Lr giving them
again these different values. Hence θ(r) ≡ φ(r) now in the propositional calculus.

�

Continuing again now with our main theme, let K be a finite satisfiable set of
linear constraints on a probability function Bel on L, say K is

n
∑

j=1

aijBel(θj) = bi, i = 1, 2, . . . , m

for some sentences θ1, θ2, . . . , θs of L, aij , bi ∈ R, and set K(r) to be the knowledge
base obtained by replacing every sentence θ in K by θ(r). Note that since K is
finite there is a bound k on the j such that aj appears in K so K(r) is well defined,

in the sense that the θ
(r)
j ∈ SLr, for large r.

We now state a result that shows the significant advantage of working with a
language like Lk with only unary predicates and constants. In this lemma, and
thereafter, ψǫ, for ǫ = 0, 1, is taken to be ψ if ǫ = 1 and ¬ψ if ǫ = 0, whilst the
αi for i = 1, 2, . . . , Jk enumerate the exhaustive and exclusive set of sentences of
the form

k
∧

i=1

Qmi
(ai).

Lemma 2 Any sentence θ of Lk is equivalent to a disjunction of sentences φi~ǫ

of the form

αi ∧
J
∧

j=1

(∃xQj(x))
ǫj ,

where ~ǫ = 〈ǫ1, . . . , ǫJ〉 is a sequence of 0’s and 1’s, and |= ¬(φi~ǫ ∧φj~δ
) for 〈i,~ǫ〉 6=

〈j, ~δ〉.

The proof of this lemma is a straightforward adaptation of the proof of a
similar theorem given in [11].

Before we can show that our limit does indeed exist we first need to check
that the K(r) as defined above are actually satisfiable for large r.
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Theorem 3 If K is a finite, satisfiable, set of linear constraints over L then
K(r) is also satisfiable as a set of constraints over Lr for large r.

Proof. Suppose Bel : SL → [0, 1] is a probability function satisfying K and let
k be an upper bound on the j such that aj appears in K. It will suffice to show
that for each large r there exists a probability function Bel(r) : SLr → [0, 1] such
that, for all sentences θ of Lk,

Bel(θ) = Bel(r)(θ(r)).

To see the idea behind the proof, suppose first of all that we were in the very
simple situation in which Bel(φi~ǫ) = 1 for

φi~ǫ = αi ∧
J
∧

j=1

(∃xQj(x))
ǫj

as in Lemma 2, so in particular φi~ǫ must be consistent. Now pick an atom,

Φi~ǫ =
r
∧

i=1

Qmi
(ai)

of Lr which extends αi and has the property that for j = 1, 2, . . . , t j is rep-
resented amongst the m1, m2, . . . , mr if and only if ∃xQj(x) appears positively
as a conjunct in φi~ǫ (i.e. ǫj = 1). Provided r is large enough, it is possible to
construct such an atom, as we shall shortly demonstrate. It now turns out that
the translation ()(r) : SLk → SLr is such that if we define Beli~ǫ on SLr to give
this atom Φi~ǫ probability 1 then

Bel(φ
j~δ

) = Beli~ǫ(φ
(r)

j~δ
) =

{

1 if 〈j, ~δ〉 = 〈i,~ǫ〉,
0 otherwise,

and hence by Lemma 2 Bel(θ) = Beli~ǫ(θ
(r)), as required for all θ ∈ SLk.

Of course we cannot expect in general that Bel will give all the probability to
just one φi~ǫ. However we can easily get round this by (effectively) conditioning
on φi~ǫ (when Bel(φi~ǫ) > 0) and then subsequently recombining the Beli~ǫ in the
obvious way at the end.

In detail, for ~ǫ = ǫ1, ǫ2, . . . , ǫJ ∈ {0, 1} not all zero let

Φi~ǫ = αi ∧
r−k
∧

i=1

Qmk+i
(ak+i)

where for 1 ≤ i ≤ r − k
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• mk+i = i if i ≤ J and ǫi = 1,

• mk+i = min{j | ǫj = 1} otherwise.

Notice that these Φi~ǫ are disjoint for distinct 〈i,~ǫ〉. If i,~ǫ are such that Bel(φi~ǫ) >
0 then define Beli~ǫ : SLr → [0, 1] by

Beli~ǫ(Φi~ǫ) = 1

and

Beli~ǫ

(

r
∧

i=1

Qhi
(ai)

)

= 0

if
r
∧

i=1

Qhi
(ai) 6= Φi~ǫ.

If Bel(φi~ǫ) = 0 just choose Beli~ǫ to be any probability function on SLr (this also
covers the case when all the ǫj are zero).

Then

αi ∧
J
∧

j=1

(

r
∨

i=1

Qj(ai)

)ǫj

is equivalent to a disjunction of sentences of the form

αi ∧
r
∧

i=k+1

Qhk+i
(ak+i),

of which only Φi~ǫ has non-zero probability with respect to Beli~ǫ, so we have

Beli~ǫ

(

αi ∧
J
∧

j=1

(

r
∨

i=1

Qj(ai)

)ǫj
)

= Beli~ǫ (Φi~ǫ) = 1. (1)

Now we will show that

Beli~ǫ



αj ∧
J
∧

j=1

(

r
∨

i=1

Qj(ai)

)δj



 = 0 if 〈j, ~δ〉 6= 〈i,~ǫ〉. (2)

This is clear if i 6= j so assume i = j. Then for this sentence to have non-zero
belief then we must have

Φi~ǫ |= αi ∧
J
∧

j=1

(

r
∨

i=1

Qj(ai)

)δj

. (3)
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However, if ~δ 6= ~ǫ then either (δj = 0 and ǫj = 1) or (δj = 1 and ǫj = 0) for some
1 ≤ j ≤ J . If δj = 0 then

αi ∧
J
∧

j=1

(

r
∨

i=1

Qj(ai)

)δj

|=
r
∧

i=1

¬Qj(ai).

But if ǫj = 1 then
Φi~ǫ |= Qj(ak+j).

Hence (3) cannot hold. A similar argument shows that (3) cannot hold when
δj = 1 and ǫj = 0 so it must be the case that (2) is true.

Now define Bel(r) : SLr → [0, 1] by

Bel(r)(θ) =
∑

i,~ǫ

Bel(φi~ǫ)Beli~ǫ(θ)

By Lemmas 1 and 2 it will suffice to show that

Bel(r)



αj ∧
J
∧

j=1

(

r
∨

i=1

Qj(ai)

)δj



 = Bel

(

αj ∧
J
∧

j=1

(∃xQj(x))
δj

)

.

We can now complete the proof as follows.

Bel(r)



αj ∧
J
∧

j=1

(

r
∨

i=1

Qj(ai)

)δj



 =

=
∑

i,~ǫ

Bel(φi~ǫ)Beli~ǫ



αj ∧
J
∧

j=1

(

r
∨

i=1

Qj(ai)

)δj





= Bel(φ
j~δ

)Beljδ



αj ∧
J
∧

j=1

(

r
∨

i=1

Qj(ai)

)δj



 by (2)

= Bel(φj~δ) by (1)

as required. �

We are now ready to prove the main result of this paper.

Theorem 4 For θ ∈ SL,

Bel(θ) = lim
r→∞

ME(K(r))(θ(r))

exists and is a probability function on L.
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Proof. By Lemma 2 every sentence θ(a1, . . . , ak) ∈ SL is equivalent to a dis-
junction of (consistent) sentences of the form

φi~ǫ = αi ∧
J
∧

j=1

(∃xQj(x))
ǫj .

If αi =
∧k

j=1Qmj
(aj) then let

Ai = {mj | j = 1, . . . , k}, P~ǫ = {j | ǫj = 1}, Pi~ǫ = {j | j ∈ P~ǫ and j /∈ Ai}

so

φ
(r)
i~ǫ = αi ∧

J
∧

j=1

(

r
∨

i=1

Qj(ai)

)ǫj

is equivalent to
∨

mj∈P~ǫ for j=k+1,...,r

Pi~ǫ⊆{mj | k+1≤j≤r}

(

αi ∧
r
∧

j=k+1

Qmj
(aj)

)

(4)

i.e. the disjunction of all the atoms of L(r) which logically imply φ
(r)
i~ǫ . Note that

each atom logically implies precisely one sentence φ
(r)
i~ǫ . If we let

p~ǫ = |P~ǫ|, pi~ǫ = |Pi~ǫ|

then the number of disjuncts in (4) is

pi~ǫ
∑

j=0

(−1)j

(

pi~ǫ

j

)

(p~ǫ − j)r−k,

(see, for example, exercise 4 page 182 of [8]).
Thus if

xi~ǫ = Bel(φ
(r)
i~ǫ ),

where Bel is a belief function satisfying the Renaming Principle (such as applying
the inference process ME would give, see for example [20] or [16]), then the
entropy is

E(~x) = −
∑

i,~ǫ

xi~ǫ log

(

xi~ǫ
∑pi~ǫ

j=0(−1)j
(

pi~ǫ

j

)

(p~ǫ − j)r−k

)

= −
∑

i,~ǫ

xi~ǫ log xi~ǫ +
∑

i,~ǫ

xi~ǫ log

(

pr−k
~ǫ

pi~ǫ
∑

j=0

(−1)j

(

pi~ǫ

j

)(

1 −
j

p~ǫ

)r−k
)

= −
∑

i,~ǫ

xi~ǫ log xi~ǫ + (r − k)
∑

i,~ǫ

xi~ǫ log p~ǫ

+
∑

i,~ǫ

xi~ǫ log

(

pi~ǫ
∑

j=0

(−1)j

(

pi~ǫ

j

)(

1 −
j

p~ǫ

)r−k
)

.
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Let

δ(~x, r) =
∑

i,~ǫ

xi~ǫ log

(

pi~ǫ
∑

j=0

(−1)j

(

pi~ǫ

j

)(

1 −
j

p~ǫ

)r−k
)

so that
E(~x) = −

∑

i,~ǫ

xi~ǫ log xi~ǫ + (r − k)
∑

i,~ǫ

xi~ǫ log p~ǫ + δ(~x, r). (5)

Note that δ(~x, r) → 0 as r → ∞ since we are summing a finite number of terms
and

(

1 −
j

p~ǫ

)r−k

→ 0 as r → ∞

for 0 < j < p~ǫ, so

pi~ǫ
∑

j=0

(−1)j

(

pi~ǫ

j

)(

1 −
j

p~ǫ

)r−k

→ 1 for all i,~ǫ with xi,~ǫ > 0.

By Lemma 2 each sentence θ in the knowledge base K is logically equivalent
to a disjunction of sentences φi~ǫ so, by Lemma 1, each θ(r) in the knowledge
base K(r) is similarly equivalent to the corresponding disjunction of sentences
φ

(r)
i~ǫ . Thus, if ~x is the vector formed by listing the xi~ǫ in some fixed order, then

K(r) is equivalent to a system of linear equations ~xA = ~b where the matrix A is
independent of r. Let

S = {~x | ~xA = ~b}, T = {~x ∈ S |
∑

i,~ǫ

xi~ǫ log p~ǫ is maximal}.

It can easily be shown that S and T are convex. Let ~X be that point in T for
which

F (~x) = −
∑

i,~ǫ

xi~ǫ log xi~ǫ

is maximal (unique by the convexity of the set T and function F .) Let

x
(r)
i~ǫ = ME(K(r))(φ

(r)
i~ǫ )

so that ~x(r) is the point in S for which E(~x) is maximal. In particular then,

E(~x(r)) ≥ E( ~X) so, by (5)

F (~x(r)) − F ( ~X) + δ(~x(r), r) − δ( ~X, r)

r − k
≥
∑

i,~ǫ

Xi~ǫ log p~ǫ −
∑

i,~ǫ

x
(r)
i~ǫ log p~ǫ. (6)

But ~X ∈ T so by definition
∑

i,~ǫ

Xi~ǫ log p~ǫ −
∑

i,~ǫ

x
(r)
i~ǫ log p~ǫ ≥ 0. (7)
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Since the LHS of (6) tends to 0 as r → ∞ we have

∑

i,~ǫ

x
(r)
i~ǫ log p~ǫ →

∑

i,~ǫ

Xi~ǫ log p~ǫ as r → ∞. (8)

Now ~x(r) is a bounded sequence so it must have a convergent subsequence. Fur-
thermore, the limit of any convergent subsequence must be in T by (8). But by
(6) and (7) we have

F (~x(r)) ≥ F ( ~X) − δ(~x(r), r) + δ( ~X, r).

Therefore, if ~l is the limit of some convergent subsequence of ~x(r) then ~l ∈ T and
F (~l) ≥ F ( ~X). But ~X is the unique point in T which maximizes F so ~l = ~X.
Since this is true for any convergent subsequence of ~x(r) we must have

lim
r→∞

~x(r) = ~X.

This shows that the limit stated in the Theorem does exist and, since we could
chose k arbitrarily large to start with, that Bel satisfies (P1-2) (since ME(K(r))
does and by Lemma 1 |= θ implies |= θ(r)).

To show (P3) suppose that ∃xψ(x, a1, a2, . . . , ak) ∈ SL, so this sentence is
equivalent to a disjunction of some φi~ǫ and

Bel(∃xψ(x, a1, a2, . . . , ak)) = lim
r→∞

∑

i~ǫ

ME(K(r))(φ
(r)
i~ǫ ).

Let s ≥ k. Then
∨s

j=1 ψ(aj , a1, a2, . . . , ak) is equivalent to a disjunction of some
φij~ǫ where either the initial existentially quantifier ∃x in ∃xψ(x, a1, a2, . . . , ak)
does not appear in φi~ǫ, and j = 1 and φij~ǫ = φi~ǫ, or this existential quantifier
does so appear, as part of the conjunct ∃xQh(x) say, (so ǫh = 1), and 1 ≤ j ≤ s
and φij~ǫ is the result of replacing this conjunct in φi~ǫ by Qh(aj). With this
notation then

Bel(
s
∨

j=1

ψ(aj, a1, a2, . . . , ak)) = lim
r→∞

∑

ij~ǫ

ME(K(r))(φ
(r)
ij~ǫ).

But in this expression for a fixed i~ǫ the sum

∑

j

ME(K(r))(φ
(r)
ij~ǫ)

is either ME(K(r))(φ
(r)
i~ǫ ) or, by Renaming,

Csr ×ME(K(r))(φ
(r)
i~ǫ )
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where Csr is the proportion of 〈mk+1, mk+2, . . . , mr〉 in the summation at (4) for
which mj = h for some 1 ≤ j ≤ s. Clearly by choosing s large enough we can
make this Csr as close as we want to 1, independently of r. It follows then that

Bel(∃xψ(x, a1, a2, . . . , ak)) = lim
s→∞

Bel(
s
∨

j=1

ψ(aj , a1, a2, . . . , ak)),

as required. �

An Example

Suppose
K = {Bel(∀xP (x)) = b}

for some 0 < b < 1. Using the above notation then

K(r) =

{

Bel(

r
∧

i=1

P (ai)) = b

}

.

Since ME satisfies Renaming,

ME(K(r))

(

r
∧

i=1

P (ai)
ǫi

)

=
1 − b

2r − 1

when
∑r

i=1 ǫi < r. For
∑m

i=1 ǫi < m < r,

ME(K(r))

(

m
∧

i=1

P (ai)
ǫi

)

=
∑

~τ

ME(K(r))

(

m
∧

i=1

P (ai)
ǫi ∧

r
∧

i=m+1

P (ai)
τi

)

= 2r−m

(

1 − b

2r − 1

)

=
1 − b

2m − 2m−r

→
1 − b

2m
as r → ∞.

Similarly

ME(K(r))

(

m
∧

i=1

P (ai)

)

=
∑

~τ

ME(K(r)

(

m
∧

i=1

P (ai) ∧
r
∧

i=m+1

P (ai)
τi

)

= b+ (2r−m − 1)

(

1 − b

2r − 1

)

→ b+
1 − b

2m
as r → ∞.

13



Hence

lim
r→∞

ME(K(r))

(

m
∧

i=1

P (ai)
ǫi

)

= b · 0m−

P

ǫi + (1 − b)
1

2m
.

This solution can be thought of as saying that there are two possible ‘sit-
uations’ or knowledge bases, K1, K2. In the first of these (which occurs with
probability b) the P (ai) are all certain to hold, in other words

K1 = {Bel(∀xP (x)) = 1} .

In the second (which occurs with probability 1 − b) the P (ai) and ¬P (ai) are
equally likely to hold (and the P (ai), P (aj) stochastically independent) which
amounts to taking K2 = ∅.

In a way this strict dichotomy is not what one might have originally expected,
namely that this strong possibility that P (ai) holds for all i (assuming b is rea-
sonable far from zero) would have made P (ai) more probable even when it was
known that, say, P (a1) failed. But this is not the case. Conditioning on ¬P (a1)
immediately puts one into the second situation where the remaining P (ai) are
stochastically independent with probability 1/2.

Indeed (as is already well known) if we take K = ∅ i.e., total absence of
any prior knowledge at all, then our prescribed method (and that of [2] to give
but one other example) will again lead to treating the P (ai) in this way. In
consequence this probability function will give, for example, the same probability
1/2 to P (a10), say, conditioned on P (ai) for i = 1, 2, . . . , 9 all holding as it would
with no such evidence.3 Is this the parting of the ways then as far as common
sense is concerned?

Arguably not, at least within the context as given. The underlying problem
here seems to us to be that we bring prejudices to this solution which we have not
incorporated into the original knowledge base. Namely, that predicates such as
P (x) are not just random, but have some structure that marks out those objects
that satisfy them as somehow similar, in short, that they are ‘projectible’ [24].
Philosophers have long struggled with the problem of satisfactorily capturing this
notion, so perhaps we can forgive maximum entropy its failure to conjure it up
from the empty knowledge set alone.

Conclusion

In this note we have suggested a technique for transforming a knowledge base
K (possibly featuring quantified sentences) over a predicate language with unary

3This probability function was called c∗ by Carnap [4], and fell out of his favor because of
this immunity to induction.
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predicates P1, . . . , Pt, to a knowledge baseK(r) over a propositional language with
variables Pj(ai), i = 1, . . . , r, j = 1, . . . t. We have shown that, for r sufficiently
large, if K is satisfiable then so is K(r) and that

lim
r→∞

ME(K(r))

exists and determines a probability function on the predicate language satisfying
K.

This ‘technique’ was motivated by the idea that a countably infinite universe
might be an idealization from a finite, but inestimably large, universe and that
the rational beliefs assigned to the infinite universe should therefore be the limits
of their finite counterparts. Our main result shows that this idea can be sensibly
realized and that the answers so obtained are relatively easy to calculate and
explain.

The modest results of this paper suggest a number of possibly more substan-
tial problems, most particularly trying to extend these results, or at least the
methodology behind these results, to languages with predicates of higher arity
rather than limiting to just unary. To what extent this is possible seems highly
problematic. Certainly Theorem 3 fails if we allow in even just binary predicates
(since then we can essentially define an unbounded linear ordering), whilst Grove
et al in [2], [11] are led to conjecture that within their approach maximum en-
tropy is ‘inherently inapplicable once we move beyond unary predicates’. On the
other hand, if maximum entropy can no longer be identified with ‘common sense’
beyond the unary then what, if anything, is it to be replaced by?
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