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The dynamics of a simple thermostat model is described. In the model the control system
samples the temperature at regular but discrete time intervals rather than by continuous
monitoring. The model exhibits quasi-periodic oscillations and banding, where the response
falls into two or more bands of phase space representing either better or poorer control. A
return circle map is derived which explains the observed dynamics. Some extensions of these
results to the case where the flow is nonlinear are also given.
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1. Background

In recent years much research effort has been directed toward understanding the
dynamics of systems characterized by continuous and discrete evolution, e.g. [1–
4]. Such systems are often called hybrid dynamical systems [5] and examples of
relevance to engineering applications include models of DC/DC power converters
[6], control systems with an on/off control where the switch is assumed to occur
instantaneously [7], systems with impacts [8–11], and friction [12, 13]. It has been
shown that the interaction between the continuous and discrete dynamics often
leads to abrupt transitions [14] which are triggered by the hybrid character of the
system.

In this paper we consider a simple on/off hybrid control system with a modified,
digital, rule that determines the switching. When on/off control systems are treated
in the control literature it is usually assumed that information of the value of some
control variable, y(t) say, is available at the same time instant t [15]. Therefore
an ideal switch changes the system between an on and off state, and vice versa,
at precisely the time when some threshold value is reached. In some applications
measurement may be expensive, or is performed digitally, and then it may be
reasonable to suppose that the value of the control variable y(t) is only available
at some discrete set of sampling times. In such cases the system will not switch
between different configurations when the threshold value of the control variable
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Figure 1. Values of h of the return map (10) at times nτ for n = 1, 2, 3, . . . , 5000 with h1 = 18, h2 = 22,

r1 = 0.2,r2 = 2
√

2/100 and τ = (1 +
√

5)/10. Iterates appear to lie within a single band of allowed values.

is reached but at the first sample time at which the control variable that is greater
than the set threshold. The aim of this paper is to describe how such a modification
of the control strategy alters the system dynamics.

The paper is organized as follows. In Section 2 a simple one-dimensional on/off
model of a control system with an instantaneous switching law and continuous
time monitoring of the control variable y(t) is described and a modification to the
model which introduces discrete time sampling of the control variable is introduced.
Numerical simulations are used to show some of the effects of such a modification.
In Section 3 a return map is derived and two generic cases of maps that can be
reduced to circle maps are analyzed. In Section 4 we present a methodology that
allows for an exhaustive treatment of all the possible scenarios, although only the
more tractable cases are chosen for the analysis. The ones which are left unexplored
can be analyzed using the same principles, but the proliferation of cases makes a
complete description unwieldy. In Section 6 we present a generalization of some of
the results to the case when instead of a linear evolution a generic nonlinear function
is assumed to govern the system dynamics in between switching events. Finally, in
Section 7 we conclude the paper, and further directions of research instigated by
the presence of discrete sampling which we consider to be an important and as yet
unexplored feature of hybrid systems, are indicated.

2. The model thermostat

Simple models of thermostat control are frequently used as illustrations of hybrid
systems. The most elementary of these fixes two thresholds and turns on a heater
if the temperature falls below the lower threshold and turns off the heater if the
temperature rises above the higher threshold. The control system is described as
hybrid because it couples a continuous state variable for the temperature with a
discrete variable (on/off) for the state of the control system. The standard model
of a thermostat control has the temperature , h, varying as ḣ = −ah is off, and
ḣ = −a(h − d) if the control is on for appropriate choices of a, d > 0. Here we
consider a simplification with

dh

dt
=

{

r1 if c = on

−r2 if c = off
(1)

where ri, i = 1, 2 are positive constants representing the rate of heating or cooling
of the room. The state of c changes from on to off if h rises above a threshold h2

and from off to on if h falls below h1, with h1 < h2.
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Figure 2. The values of h of the return map (10) at times nτ for n = 1, 2, 3 . . . , 2000 with parameters as

in Figure 2 except (a) r2 =
√

2/10, τ = (1 +
√

5)/10, and (b) r2 = 3
√

2/10, τ = 1 +
√

5. Note the banded
structure, with ranges of values of h which are not visited by iterates of the map.

If the control acts instantaneously it is an elementary exercise to show that once
it is in operation the system is periodic; choosing the origin of time to be at a
moment when h = h1 then for t > 0

h(t) =

{

h1 + r1(t − T2n) if t ∈ [T2n, T2n+1]
h2 − r2(t − T2n+1) if t ∈ [T2n+1, T2(n+1)]

(2)

where

T2n = (nr1 + nr2)(h2 − h1), T2n+1 = ((n + 1)r1 + nr2)(h2 − h1). (3)

The temperature therefore oscillates regularly between the two thresholds with
period (r1 + r2)(h2 − h1).

There are many ways to complicate this simple model in an attempt to make it
more realistic. The relaxation and heating of the temperature in (1) can be more
sophisticated; exponential growth or decay from an ambient temperature is often
used. The heating element may continue to heat the room after the unit is switched
off because its elements take time to cool down. Alternatively, or in addition, the
switching on and off of the control can be considered in more detail. For example
there might be a random element to the switching [16] or the control may involve a
time lag leading to a delayed equation [17]. In this paper an alternative complication
is considered. It will be assumed that the control monitors the ambient temperature
at regular but discrete times, nτ , and immediately switches the control if either of
the threshold inequalities h < h1 or h > h2 are satisfied at that time. Although
this is not of immediate relevance to thermostats, one can imagine situations where
continuous monitoring of a variable cannot be done either for technical reasons,
or for reasons of economy, and the thermostat model provides a simple and well
understood example of the ways in which the control operation can be changed
under these circumstances. Note that this is half way towards the quantized models
of [18, 19] where measurements in both space and time are discretized. The effects
of the quantization of space including the effects of time delay in nonlinear control
systems have been studied in [20].

Thus the model introduced here has an additional parameter τ > 0 which de-
scribes the time between successive samples of the temperature. If the temper-
ature evolves according to (1) the control variable in the new model described
above switches from on to off at nτ if c(nτ) = on and h(nτ) > h2, in which case
c(nτ+) = off (where c(s+) = limt↓s(t)) and similarly it switches from off to on

at nτ if c = off and h(nτ) < h1, in which case c(nτ+) = on. We have used strict
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inequalities for mathematical convenience, as will become clear in the next para-
graph when the model is analyzed using a return map technique. Once operational
the temperature is restricted to the interval [h1 − r2τ, h2 + r1τ ] so we can choose
the origin of time so that h(0) ∈ [h1 − r2τ, h1), c(0) = off and c(0+) = on. The
heater will remain on until t = N1τ where

h(N1τ) = h(0) + N1r1τ > h2, h(0) + (N1 − 1)r1τ ≤ h2. (4)

It will then switch off and the room will cool until t = N2τ where

h((N1 + N2)τ) = h(N1τ) − N2r2τ < h1, h(N1τ) − (N2 − 1)r2τ ≥ h1. (5)

Rearranging the two inequalities of (4) gives

N1 − 1 ≤
h2 − h(0)

r1τ
, N1 >

h2 − h(0)

r1τ
(6)

or

N1 = ⌊
h2 − h(0)

r1τ
⌋ + 1 = ⌊

h2 + r1τ − h(0)

r1τ
⌋ (7)

where ⌊x⌋ is the floor function, the largest integer less than or equal to x (this is
where there is some convenience in the choice of strict inequality referred to in the
opening paragraph of this section). Similarly

N2 = ⌊
h(N1τ) − h1

r2τ
⌋ + 1 = ⌊

h(N1τ) + r2τ − h1

r2τ
⌋. (8)

Putting these together with (4) and (5) gives the simplified equations

h(N1τ) = h(0) + r1τ⌊
h2 + r1τ − h(0)

r1τ
⌋

h((N1 + N2)τ) = h(N1τ) − r2τ⌊
h(N1τ) + r2τ − h1

r2τ
⌋

(9)

Since h((N1 + N2)τ) ∈ [h1 − r2τ, h1) as was h(0) we can now iterate this process
to obtain the sequence h0 = h(0), h1 = h(N1τ), . . . of values of the temperature at
switching points:

h2n+1 = h2n + r1τ⌊
h2 + r1τ − h2n

r1τ ⌋

h2n+2 = h2n+1 − r2τ⌊
h2n+1 + r2τ − h1

r2τ
⌋

(10)

with h2n ∈ [h1 − r2τ, h1) and h2n+1 ∈ (h2, h2 + r1τ ]. Composing these we get a
single equation for even switching levels as a function of the previous even switch-
ing temperature. These equations are now conventional difference equations, albeit
involving the floor function, as opposed to the hybrid system we began with. Fig-
ures 2 and 2 show the results of some numerical simulations of (10). These figures
show the time sequence obtained by iterating the return map (10) on [h1−r2τ, h1).
The horizontal axis is (discrete) time, and the vertical axis is h, with parameters
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as indicated in the captions. In Figure 2 the iterates appear to lie in a continuous
interval of values which lies below h1 = 18. The two time series shown in Figure 2
have a more complicated structure with clear evidence of bands: there are inter-
vals of h which contain no iterates of the orbit shown. Note that the top of the
uppermost band appear to be the threshold h1.

The results certainly suggest that the motion is quasi-periodic, but there are
also some less expected features: the banding is interesting. The closer the lower
switching values are to h1 the better the control is working, and vice versa, so
the banding suggests oscillation between efficient and inefficient operation of the
thermostat. The bands will be explained in the next section, where we show that
the analysis divides into two cases, one with bands and the other without. Further
details of the special cases that arise in the banded case are pursued in subsequent
sections.

3. Analysis of the map

The map (10) is in two parts: L : [h1 − r2τ, h1) → (h2, h2 + r1τ ] and R : (h2, h2 +
r1τ ] → [h1 − r2τ, h1). Due to the symmetry obtained by reversing the direction
of temperature and exchanging subscripts we may assume that r2 ≥ r1 and hence
that r2τ ≥ r1τ . It has already been noted that these maps can be written using
the floor function and are of the form h → h+ α(h) where α is piecewise constant,
but it will be useful to spell this out explicitly. Define N1 by

h1 + (N1 − 1)r1τ ≤ h2 < h1 + N1r1τ (11)

then the first map, L, is continuous on domains defined in terms of the points ur

where

ur = h2 − (N1 + r)r1τ, r = 0, . . . , k (12)

with k defined by

h2 − (N1 + k + 1)r1τ < h1 ≤ h2 − (N1 + k)r1τ (13)

The temperatures ur are thus those which reach temperature h2 after time (N1 +
k − 1)r1τ . The map L is thus

L(x) =







x + (N1 + k + 1)r1τ if x ∈ [h1 − r2τ, uk],
x + (N1 + r)r1τ if x ∈ (ur, ur−1], r = 1, . . . , k,
x + N1r1τ if x ∈ (u0, h1).

(14)

Note that the central branches of this map (if they exist) map the intervals
(ur, ur−1] onto (h2, h2 + r1τ ].

Since r1τ ≤ r2τ the image of the map R can have either one or two components
(r1τ is the length of the domain of R and r2τ is the length of the range of R). Let
N2 be defined by

h2 − N2r2τ < h1 ≤ h2 − (N2 − 1)r2τ (15)

The first case occurs if

h2 + r1τ − N2r2τ < h1 (16)
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since in this case R is defined as

R(x) = x − N2r2τ (17)

If h1 ≤ h2 + r1τ − N2r2τ then the image of R has two components:

R(x) =

{

x − N2r2τ if x ∈ (h2, h1 + N2r2τ),
x − (N2 + 1)r2τ if x ∈ [h1 + N2r2τ, h2 + r1τ ].

(18)

The choice made earlier to work with h < h1 as the criterion for switching on the
heater rather than h ≤ h1 leads to a slight anomaly in that if h2+r1τ−N2r2τ = h1,
i.e. equality holds in (16), then the second component of R in (18) is defined
on a point. This complicates some features of the analysis and simplifies others.
However, we can see that if (16) holds then the image of (h2, h2 + r1τ ] under R
has one component, whilst if h2 + r1τ − N2r2τ > h1 then it has two non-trivial
components: these two cases correspond to the one band and two band solutions
observed in the numerical experiments described earlier, as will be explained later.
To determine the dynamics of the full system, the composition R ◦ L needs to be
analyzed.

3.1. Case I: h2 + r1τ − N2r2τ < h1

In this case the image of the upper interval is the single interval

J = (h2 − N2r2τ, h2 + r1τ − N2r1τ ] (19)

in the lower interval, and hence when looking for recurrent dynamics we need
only consider this subinterval. This interval has length r1τ and since the distance
between the points ur is also r1τ , and the distance between u0 and h1, and h1−r2τ
and uk are both less than r1τ , the interval J contains one and only one of the points
ur, um say, where

h2 − N2r2τ < um = h2 − (N1 + m)r1τ ≤ h2 + r1τ − N2r1τ (20)

Combining (14) and (17) gives R ◦ L = T where

T (x) =

{

x + (N1 + m + 1)r1τ − N2r2τ if x ∈ (h2 − N2r2τ, um]
x + (N1 + m)r1τ − N2r2τ if x ∈ (um, h2 + r1τ − N2r2τ ]

(21)

Since um = h2 − (N1 + m)r1τ , R(um) = h2 + r1τ − N2r2τ , and limx↓um
T (x) =

h2 − N2r2τ , T is a rescaled circle map with rotation number ρ where1

1 − ρ =
um − (h2 − N2r2τ)

r1τ

1Here and below rotation numbers ρ are easily read off from the corresponding induced map defined on an
interval [a, b] with ‘discontinuity’ c ∈ (a, b) by noting that the rotation number is simply ρ = (b−c)/(b−a)
or 1−ρ = (c−a)/(b−a). This follows either from direct calculation or from the observation that the Haar
(Lebesgue) measure is invariant under the map and the integer value of the lift of the map increase by one
if an iterate falls in the interval (c, b].
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Figure 3. Representation of the map T (x) for Case I

or

ρ =
(N1 + m + 1)r1τ − N2r2τ

r1τ
(22)

A map that arises in the current case is schematically represented in Fig. 3.1.

3.2. Case II: h2 + r1τ − N2r2τ > h1

In this case the image of the upper interval intersects h1 after N2 iterations, but
is not contained in [h1 − r2τ, h1) and so the image of the map R consists of two
intervals: I1 = [h2 − N2r2τ, h1) on which the map is R(x) = x − N2r2τ , and
I0 = [h1 − r2τ, h2 + r1τ − (N2 + 1)r2τ ] with R(x) = x − (N2 + 1)r2τ . To consider
recurrent behaviour we need to look at the map R ◦ L on the union of these two
intervals. Note that the difference between the lower endpoint of I1 and the upper
endpoint of I0 is

(h2 − N2r2τ) − (h2 + r1τ − (N2 + 1)r2τ) = r2τ − r1τ > 0

so the two intervals do not intersect and there is a gap of length r2τ − r1τ between
them. This is precisely the simple banding observed in the numerical experiments
of the previous section. As in the previous section all recurrent behaviour can be
described by restricting the dynamics to I0 ∪ I1. Note that since the combined
length of I0 and I1 is r1τ (the length of the upper interval), which is the distance
between the (ui), and r2τ > r1τ , at most one of the points can lie in each interval
Ij , j = 0, 1. Hence ui ∈ I0 ∪ I1 implies that i ∈ {0, k} and there are four cases to
consider:

• all the points {ui} lie in the gap;

• u0 ∈ I1 and uk /∈ I0;

• u0 /∈ I1 and uk ∈ I0; and

• u0 ∈ I1 and uk ∈ I0.

In the following two sections we will consider the first two cases. Such a presentation
is sufficient to obtain an understanding of the complexity of the dynamics that can
occur in our simple system. The remaining two cases can be considered in a like
manner although with a proliferation of subcases and are omitted here for the sake
of brevity.

The results proved above can be summarized by the following lemma.
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Lemma 3.1: Consider the return map T = L◦R defined by (14)and (17) or (18),
defined on [h1 − r2τ, h1) derived from the thermostat model with r2 > r1. Define
N1 and N2 as in (11) and (15). Then there are two cases:

• (a) If h2 +r1τ −N2r2τ < h1 (case 3.1) then the attractor is contained in a single
interval and the return map restricted to this interval is, up to rescaling, a rigid
rotation. If the rotation number is irrational then the dynamics is dense on this
interval; if it is rational then every point is periodic.

• (b) If h2 + r1τ − N2r2τ ≥ h1 (case 3.2) then the attractor is contained in two
disjoint intervals, leading to the appearance of bands. Note that in the case of
equality, one of these intervals is trivial: it is the single point h1 − r2τ .

4. All the points {ui} lie in the gap

This is the only one of the subcases enumerated above for which a short and simple
argument provides a description of the dynamics. Even in this case there are four
subcases which need to be treated separately.

Let us start with the case in which the points ui, i = 0, . . . , k, all lie in the gap
between I0 and I1. In this case uk ≥ h2 + r1τ − (N2 + 1)r2τ

(N1 + k + 1)r1τ ≤ (N2 + 1)r2τ (23)

and u0 ≤ h2 − N2r2τ or, using (12)

N2r2τ ≤ N1r1τ (24)

which follows from the observation that u0 = h2 −N1r1τ is less than the left hand
end point of the N th

2 iterate of (h2, h2 + r1τ ] which is just h2 − N2r2τ . Both the
maps L|I0

and L|I1
are homeomorphisms:

L(x) =

{

x + (N1 + k + 1)r1τ if x ∈ I0

x + N1r1τ if x ∈ I1
(25)

and so

L(I0) = [h1 − r2τ + (N1 + k + 1)r1τ, h2 + r1τ − (N2 + 1)r2τ + (N1 + k + 1)r1τ ]
L(I1) = [h2 − N2r2τ + N1r1τ, h1 + N1r1τ)

(26)
Now, by assumption R takes the form (18) and so we need to consider a number of
cases depending on whether L(Ij) contains the discontinuity c = h1 + N2r2τ . Note
that (23) implies that

h1 − r2τ + (N1 + k + 1)τ < h1 + N2r2 (27)

i.e. that the left hand end point of L(I0) is to the left of c, and hence either c ∈ L(I0)
or L(I0) lies to the left of c, in which case R|L(I0) is an isometry and R◦L(I0) ⊆ I1.
Similarly (24) implies that

h1 + N2r2 ≤ h1 + N1r1τ (28)

and so either c ∈ L(I1) or L(I1) lies to the right of c, in which case R|L(I1) is an
isometry and R ◦ L(I1) ⊆ I0.
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|I0| = 1
2r1τ |I1| = 1

2r1τ

h1 − r2τ umuk u0
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h1

Figure 4. Representation of the map T (x) for Case II subcase 4.1.

h1

h1

T

T 2

umh1 − r2τ

I0

I1

J0 J1

|I0|

c̄

Figure 5. Representation of the map T (x) in Case II subcase 4.2. T (x) acting on I1 is shown in the bottom
right hand corner. The induced map T is shown in the bottom left hand corner.

4.1. The case c /∈ L(I0) ∪ L(I1)

If c /∈ L(I0) ∪ L(I1) then |I0| = |L(I0)| = |R ◦ L(I0)|, |I1| = |L(I1)| = |R ◦ L(I1)|,
|I0| + |I1| = r1τ and the properties of the isometry described above imply that c
is the mid-point of [h2, h2 + r1τ ] and T (I0) = I1; T (I1) = I0. In this special case,
then, all points in I0 ∪ I1 have period two under T . This is schematically depicted
in Fig. 4.

4.2. The case c ∈ L(I0), c /∈ L(I1)

Since c /∈ L(I1), L(I1) lies to the right of c and using the appropriate parts of (14)
and (18) if x ∈ I1 then

T (x) = x + N1r1τ − (N2 + 1)r2τ (29)

so

T (I1) = [h2 − N2r2τ + N1r1τ − (N2 + 1)r2τ, h1 + N1r1τ − (N2 + 1)r2τ) (30)

and is contained in I0. Now, c ∈ L(I0), i.e.

h1−r2τ+(N1+k+1)r1τ < h1+N2r2τ < h2+r1τ−(N2+1)r2τ+(N1+k+1)r1τ (31)
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so T (I0) is in two parts, depending on whether x is to the right or left of the
preimage of c under L|I0

: c̄ = (h1 + N2r2) − (N1 + k + 1)r1τ : for x ∈ I0

T (x) =

{

x + (N1 + k + 1)r1τ − N2r2τ if x < c̄
x + (N1 + k + 1)r1τ − (N2 + 1)r2τ if x > c̄

(32)

with T (x) ∈ I0 if x < c̄ and T (x) ∈ I1 if x > c̄. Note that

lim
x↑c̄

T (x) = h1 lim
x↓c̄

T (x) = h1 − r2τ (33)

The map T is sketched in Figure 5. To analyze this map we use the idea of renor-
malization (or induced maps) which has been used so effectively in the treatment
of circle maps and beyond (e.g. [21, 22]). Define intervals J0 and J1 in I0 by

J0 = [h1 − r2τ, c̄) J1 = (c̄, b] (34)

where

b = T (h1) = h1 + N1r1τ − (N2 + 1)r2τ (35)

which is in I0 and define the induced map T on J0 ∪ J1 by

T (x) =

{

T 2(x) if x ∈ J0,
T (x) if x ∈ J1.

(36)

By equations (35) and (33), T (c̄−) = b and T (c̄+) = h1 − r2τ and T has slope one
everywhere, so it is a circle map with rotation number ρT = (b− c̄)/(b−(h1−r2τ)),
i.e. on rearranging a little

ρT =
N1r1τ − N2r2τ

(N2 + 1)r2τ − (N1 + k + 1)r1τ
− 1 (37)

which can be viewed as the proportion of time an orbit spends in J1 under T .
To obtain the ‘rotation number’ of T , ρ(T ), by which we mean the proportion of
times an orbit spends in I1, note that if x ∈ J0 (which is in I0) then T (x) ∈ I1 and
T 2(x) = T (x) ∈ I0, and if x ∈ J1 then T (x) = T (x) ∈ I0. Hence an orbit of T of
length M which visits J0 P0 times and J1 P1 times (so P0 + P1 = M) corresponds
to an orbit of length 2P0 + P1 which visits I0 P0 + P1 times and I1 P0 times, and
so the proportion of visits to I1 is P0/(2P0 + P1). Now, as M → ∞, P1/M → ρ(T )
and P0/M → 1 − ρ(T ) and so

ρ(T ) =
1 − ρ(T )

2 − ρ(T )
(38)

which could be expressed in terms of the standard parameters using (37).

4.3. The case c /∈ L(I0), c ∈ L(I1)

This is essentially similar to the previous case, with the roles of I0 and I1 reversed.
T is in two parts when restricted to I1, and T |I0

is the simple linear map

T (x) = x + (N1 + k + 1)r1 − N2r2 (39)
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since L(I0) lies to the left of c. Since c ∈ L(I1) there exists c1 ∈ I1 such that
c1 + N1r1 = c, and for x ∈ I1

T (x) =

{

x + N1r1τ − N2r2τ if x < c1

x + N1r1τ − (N2 + 1)r2τ if x > c1
(40)

So the induced map, defined on I1 this time is

T (x) =

{

T (x) if x < c1

T 2(x) if x > c1
(41)

and restricted to an appropriate subinterval this is a circle map. The calculation
of the rotation number is similar to the previous section and is omitted.

4.4. The case c ∈ L(I0), c ∈ L(I1)

In this case T is in two parts when restricted to both I0 and I1, and T |I0
is given by

(32) as before whilst T |I1
is given by (40). Although this looks more complicated,

it turns out that the calculations are the same as in previous cases. There are two
cases, depending on the relative sizes of the intervals to the left of c̄ in I0 and to
the right of c1 in I1, i.e. on c̄ − h1 + N2r2 and h1 − c1. If the first is smaller, then
T ([h1 −N2r2, c̄)) is contained in (c1, h1] and so no points can reach the interval in
I1 to the left of c1 under iteration by T and the case is effectively equivalent to
subsection 4.2, whilst if the order is opposite then the case is effectively equivalent
to subsection 4.3. There is thus no need to consider this further.

5. Other cases

The remaining cases split into so many subcases that we believe that the interest
derived from the results are not balanced by the time and effort required to describe
them. We will briefly describe the dynamics for

u0 ∈ I1 and uk /∈ I0 (42)

In this, the second of the four cases enumerated above, L|I0 is a homeomorphism
as in the previous section, whilst L|I1 is in two parts:

L(I1) =

{

x + N1r1τ if u0 < x < h1

x + (N1 + 1)r1τ if h2 − N2r2τ < x < u0
(43)

and note in passing that since u0 = h2 − N1r1τ the assumption of this section is
that

N2r2 > N1r1 (44)

together with (23). Note further that since I0 = [h1 − r2τ, h2 + r1τ − (N2 + 1)r2τ)
we must have h2 + r1τ − (N2 + 1)r2τ − (h1 − r2τ) > 0 or

h2 − h1 − N2r2τ + r1τ > 0 (45)

This inequality has an important consequence.
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Lemma 5.1: If u0 ∈ I1 and uk /∈ I0 then L(I1) consists of two disjoint intervals,
and the point of discontinuity of R, c = h1 + N2r2τ , lies above the lower of these.

Proof: Using (43), L(u0, h1) = (h2, h1 + N1r1τ) and L(h2 − N2r2τ, u0) = (h2 −
N2r2τ + (N1 + 1)r1τ, h2 + r1τ). These two intervals are disjoint provided

h2 − N2r2τ + (N1 + 1)r1τ > h1 + N1r1τ (46)

i.e. provided

h2 − h1 − N2r2τ + r1τ > 0 (47)

which is guaranteed by (45). The second part follows immediately from (44), which
completes the proof of the lemma.

Of course, this means that if c is in one of the intervals making up L(I1), it must
be in the upper one, and this will be the case provided

h2 − N2r2τ + (N1 + 1)r1τ < h1 + N2r2τ (48)

or

h2 − h1 − N2r2τ + r1τ < N2r2τ − N1r1τ (49)

Recall also that for x ∈ I0,

L(x) = x + (N1 + k + 1)r1τ (50)

and by the argument already given to derive (27), either c ∈ L(I0) or L(I0) lies to
the left of c. There we have therefore four subcases once again, but we will treat
only one of these in any detail.

5.1. The case c /∈ L(I0) and c /∈ L(I1)

It is a straightforward consequence of (23) that the left hand endpoint of L(I0) is
less than or equal to c, and hence that if c /∈ L(I0) then L(I0) lies to the left of c
and hence its image under R is in I1. Moreover, T = R ◦ L for x ∈ I0 is simply

T (x) = x + (N1 + k + 1)r1τ − N2r2τ (51)

In the right hand interval of I1, IR
1 say, L(IR

1 ) is to the left of c and so its image
under R is also in I1 and for x ∈ IR

1

T (x) = x + N1r1τ − N2r2τ (52)

and T (IR
1 ) = (h2 −N2r2τ, h1 + N1r1τ −N2r2τ). Finally the image of the left hand

interval of I1, IL
1 say, under L is above c, so the image under T = R ◦ L lies in I0

with

T (x) = x + (N1 + 1)r1τ − (N2 + 1)r2τ (53)

for x ∈ IL
1 , and T (IL

1 ) = (h2 + (N1 + 1)r1τ − r2τ, h2 + r1τ − (N2 + 1)r2τ) and so
the right hand end point of this interval is the right hand end point of I0. Since
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I0 I1

h1 − r2τ um u0

h1

h1v

|I1|

|I0|

|I0|

T

T 2

Figure 6. Representation of the map T (x) in Case II subcase 5.1. T (x) acting on I0 is shown in the bottom
left hand corner. The induced map T is shown in the upper right hand corner.

v = T 2(h2 + r1τ − (N2 + 1)r2τ) > u0 we can define the induced map T as

T =

{

T 2(x) if h2 − N2r2τ < x < u0

T (x) if u0 < x < v
(54)

Then T captures the recurrent dynamics of T and is a circle map with rotation
number

ρ(T ) =
v − u0

v − h2 − N2r2τ
(55)

from which the standard argument shows that the proportion of time spent in I1

by an orbit under T is ρ(T ) given by

ρ(T ) =
ρ(T )

2 − ρ(T )
(56)

The action of the map T (x) on the points in the intervals I0 and I1 is schemati-
cally depicted in Fig. 6. The remaining subcases for the case (42) require a great
deal more effort, and so the details, and the description of the dynamics for the
remaining cases, has not been attempted in detail. We pass on to the general case
where the dynamics is defined by nonlinear differential equations.

6. The General Case

The dynamics of the linear model described above gives a sense of the different
behaviours which can be expected with digital sampling, but some features are due
to the linear nature of the flow, and so it is worth making some limited remarks
about the more general case

dh

dt
= {

f(h) if c = on
−g(h) if c = off

(57)

where f and g are strictly positive functions on their domains of definition. Chang-
ing our notation for the thresholds, so c changes from on to off if h rises above α
(which was h2) and from off to on if h falls below b (which was h1), b < α, then
if the control is on and temperature sampled at regular time intervals τ for some
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fixed τ > 0, the highest the temperature can rise to is β where

∫ β

α

dh

f(h)
= τ (58)

Similarly, the lowest the temperature can fall is a defined by

∫ b

a

dh

g(h)
= τ (59)

Now let φf (h0, t) be the solution of the on equation at time t with initial condition
h = h0, and φg(h0, t) the equivalent solution flow for the off equation. Thinking
about the initial increase in temperature from a define τf by

∫ b

a

dh

f(h)
= τf (60)

and, similarly, τg by

∫ β

α

dh

g(h)
= τg (61)

so that

φf (a, τf ) = b φg(β, τg) = α (62)

and so, using the standard group property of the flows,

φf (a, t + τf ) = φf (b, t) φg(β, t + τg) = φg(α, t) (63)

Equations (58) and (59) are equivalent to

φf (α, τ) = β, φg(b, τ) = a (64)

The arguments are going to be analogous to those of the previous sections, al-
though (not surprisingly) rather more possibilities can arise. Define Nf and Ng to
be the least positive integers such that

φf (b,Nf τ) > α, φg(α,Ngτ) < b (65)

and (cf. the definition of the points ui) let

Mf = card ([∪n≥0φf (α,−nτ)] ∩ [a, b)) (66)

and

Mg = card ([∪n≥0φg(b,−nτ)] ∩ [α, β)) (67)

We now want to derive return maps on the interval [a, b) as in previous sections.
Some cases are easy to describe.

Lemma 6.1: If Mf = Mg = 0 then the return map has at least one attracting
fixed point.
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Proof: Since Mf = 0, φf (a,Nf τ) > α or there would be a preimage of α in [a, b).
Hence φf ([a, b), Nf τ) ⊂ [α, β). Similarly, Mg = 0 implies that φg([α, β), Ngτ) ⊂
[a, b). The return map T thus has T ([a, b)) ⊂ [a, b) and is monotonic and increasing
as x < y implies φf (x, t) < φf (y, t). Thus T has at least one stable fixed point, and
all iterates of the map are asymptotically fixed.

At the opposite extreme there can be chaos.

Lemma 6.2: If Mf ≥ 2 and Mg ≥ 3 (or Mf ≥ 3 and Mg ≥ 2) then the return
map is chaotic.

Proof: If Mf ≥ 2 then let u0 be such that u0 = φf (α,−Nf τ) and u1 = φf (u0,−τ).
Note that a ≤ u1 < u0 < b. Moreover, φf ((u1, u0), (Nf + 1)τ) = (α, β). Similarly,
since Mg ≥ 3 there exist v0 < v1 < v2 in [α, β] such that

φg((v0, v1), (Nf + 1)τ) = φg((v1, v2), (Nf + 2)τ) = (a, b) (68)

The return map T on [a, b) is therefore such that the image of (u1, u0) covers itself
twice and the dynamics contains an invariant set equivalent to a full shift on two
symbols – possibly with a countable number of orbits removed because the intervals
are open. This is the one-dimensional equivalent of the horseshoe, a hallmark of
chaos.

The intermediary cases are more complicated. For example, if Mf = 0 and Mg =
1 then φf ((a, b), Nf τ) ⊂ (α, β), and the single preimage of b in [α, β) is either in
φf ((a, b), Nf τ) or it is not. In the latter case T is a monotonic map and the attractor
a fixed point as in Lemma 6.1. In the former case T is a piecewise monotonic
map with a single discontinuity. This class contains the slope one maps described
above, but include a range of more complicated dynamics and transitions to chaos
as described in [23, 24].

Note that some of the more abstract conditions here can be expressed in terms of
the parameters. For example the following lemma connects the condition Mf = 0
with an inequality between τ and τf .

Lemma 6.3: If Mf = 0 then τ > τf .

Proof: If Mf = 0 then

α < φf (a,Nf τ) < φf (b,Nf τ) ≤ β = φ(α, τ) (69)

Flowing back through time −Nfτ under f this implies that

φf (α,−Nf τ) < φf (a, 0) < φf (b, 0) ≤ φ(α, (−Nf + 1)τ) (70)

Taking the last inequality and flowing back an additional −τ and then using the
first inequality and the definition of τf gives

φf (b,−τ) ≤ φ(α,−Nf τ) < φf (a, 0) = φf (b,−τf ) (71)

and taking the inequality φf (b,−τ) < φf (b,−τf ) and flowing through τ for clarity,
φf (b, 0) < φf (b, τ − τf ). Since f is strictly positive this implies that τ − τf > 0 as
required.

No doubt other more complicated connections can be made, but these results
establish the principles under which the general cases could be elucidated.
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7. Conclusions

In the paper we studied the dynamics of a simple one-dimensional on/off control
system where the control variable was given at discrete time intervals. In the case
when the system evolution was assumed linear in the on and off sates we were able
to obtain a re-scaled circle map that captures the system dynamics. We have shown
that depending on the system parameters we might encounter a family of periodic
orbits, quasi-periodic oscillations or a banding structure of quasi-periodicity. Using
equivalent methodology to that which allowed us to study the linear case we ex-
tended the analysis to the case when the system evolution is governed by generic
non-linear functions. In particular, we have shown that a fixed point attractor and
chaotic dynamics are present in this more general case. Some results that link the
sampling time with the width of the interval on which the asymptotic dynamics
might settle have been also presented (see Lemma 4).

Further investigations are directed toward understanding of delay, hysteretic and
stochastic effects on the dynamics of systems with continuous and discrete transi-
tions where digital sampling of a state/control variable is used.
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