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The directional effect of a magnetic field on the onset of oscillatory convection is studied
numerically in a confined three-dimensional cavity of relative dimensions 4:2:1
�length:width:height� filled with mercury and subject to a horizontal temperature gradient. The
magnetic field suppresses the oscillations most effectively when it is applied in the vertical direction,
and is the least efficient when applied in the longitudinal direction �parallel to the temperature
gradient�. In all cases, however, exponential growths of the critical Grashof number, Grc �Gr, ratio
of buoyancy to viscous dissipation forces� with the Hartmann number �Ha, ratio of magnetic to
viscous dissipation forces� are obtained. Insight into the damping mechanism is gained from the
fluctuating kinetic energy budget associated with the time-periodic disturbances at threshold. The
kinetic energy produced by the vertical shear of the longitudinal basic flow dominates the oscillatory
transition, and when a magnetic field is applied, it increases in order to balance the stabilizing
magnetic energy. Moreover, subtle changes in the spatial distribution of this shear energy are at the
origin of the exponential growth of Grc. The destabilizing effect of the velocity fluctuations strongly
decreases when Ha is increased �due to the decay of the velocity fluctuations in the bulk
accompanied by the appearance of steep gradients localized in the Hartmann layers�, so that an
increase of the shear of the basic flow at Grc is required in order to sustain the instability. This yields
an increase in Grc, which is reinforced by the fact that the shear of the basic flow naturally decreases
at constant Gr with the increase of Ha, particularly when the magnetic field is applied in the vertical
direction. For transverse and longitudinal fields, the decay of the velocity fluctuations is combined
with an increase of the shear energy term due to a sustained growth in stabilizing magnetic energy
with Ha. © 2008 American Institute of Physics. �DOI: 10.1063/1.2856125�

I. INTRODUCTION

Directional solidification is used in the processing of
semiconducting and optoelectronic materials, whose perfor-
mance relies on the homogeneity of the crystalline material.1

In the horizontal Bridgman technique, the molten crystal is
contained in a crucible which is withdrawn horizontally from
a furnace. Thus, the melt is subject to a horizontal tempera-
ture gradient, which drives endwall convection. In practice,
instabilities in the melt-phase adversely affect the quality of
the crystal, as they impose temperature-fluctuations at the
solidification front and lead to striations in the crystalline
product.2 The application of a magnetic field is common in
modern crystal growing facilities because of its overall
damping effect on the convective flow. In particular, stria-
tions may be eliminated by choosing a suitable magnetic
field, as shown independently by Utech and Fleming3 and
Hurle.4

Thus, there is considerable interest in understanding the
damping action of the magnetic field on time-dependent end-
wall convection in molten metals. The melts are typically
excellent thermal conductors so that the Prandtl number �ra-

tio of viscous to thermal diffusivity� is of the order of 10−2.
The other parameters governing the magnetohydrodynamic
convective flow are the Grashof number �ratio of buoyancy
to viscous diffusion forces� and the Hartmann number �ratio
of Lorentz to viscous diffusion forces�.

The influence of a magnetic field on oscillatory convec-
tion in a horizontal Bridgman geometry was first addressed
experimentally by Hurle et al.5 They considered a transverse
magnetic field �perpendicular to both gravity and the applied
temperature gradient� and found that the critical Grashof
number for the onset of time-periodic convection, Grc, fol-
lowed a Ha2 dependence, which indicates the damping of
oscillations with increasing magnetic field. A later study with
the same experimental apparatus6 revealed chaotic dynamics
for supercritical values of Ha. In strongly time-dependent
convective flows in a vertical slot, temperature fluctuations
were enhanced under weak, horizontal magnetic fields due to
the formation of large scale convective structures. These
were in turn suppressed with the increase of Ha. Recent ex-
periments by Hof et al.7 focused on the directional effect of
the magnetic field in a rectangular enclosure of relative di-
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mensions 5.0:1.3:1.0 �length:width:height�. They found that
the critical Grashof number scales exponentially with Ha for
the three principal orientations of the magnetic field. The
magnetic field suppresses the oscillation most effectively
when it is applied in the vertical direction �Grc /Grc�Ha=0�
�exp�5.5�10−3Ha3��, compared with the transverse
and longitudinal directions �Grc /Grc�Ha=0��exp�1.1
�10−2Ha2� and Grc /Grc�Ha=0��exp�2.0�10−3Ha2�, re-
spectively�. The dependence of the frequency of the oscilla-
tions on Gr was found to be approximately similar to that
measured in the absence of a magnetic field.

The exponential growth of Grc with Ha demonstrates the
considerable effect of the magnetic field on the time-
dependent flow even for small values of Ha, for which the
modifications of the underlying bulk flow are usually consid-
ered as minimal compared to the strong modifications ob-
served at large Ha.8–12 In this paper, we provide insight into
the damping mechanisms at play through the direct compu-
tation of Hopf bifurcation points and the analysis of the as-
sociated three-dimensional flow solutions. Similar continua-
tion calculations have been performed in the absence of a
magnetic field in a rectangular parallepiped enclosure, re-
vealing multiple flow structures depending on the values of
the aspect ratios and Prandtl number.13 Here, we choose an
enclosure of dimensions 4:2:1 and a Prandtl number of Pr
=0.026, for which the time-periodic flow at Ha=0 is well
understood and characterized.14 Coincidentally, the enclosure
dimensions chosen by Hof et al.7 have been found to yield
significant resolution issues.15

Most previous theoretical work on the magnetohydrody-
namic damping of oscillatory convection has been focused
on the linear stability analysis of convective flows in infi-
nitely extended layers subject to a horizontal temperature
gradient.16–19 When the horizontal confining plates are
rigid,16 the vertical field is most effective at stabilizing the
flow, suppressing both two-dimensional steady instability
modes �Grc /Grc�Ha=0��exp�Ha2�� and three-dimensional
oscillatory modes �Grc /Grc�Ha=0�−1�Ha2�. The strong
stabilization of the two-dimensional modes correlates with a
similar reduction in the shear energy normalized by Grc. The
horizontal directions of the field are significantly less effec-
tive at damping instabilities, with the transverse and longitu-
dinal field each acting only on three-dimensional and two-
dimensional modes, respectively. Qualitatively similar
results are found in the case of a free upper surface,17 while
the effect of vertical and horizontal magnetic fields on the
stability of thermocapillary convective flows has been ad-
dressed numerically by Priede and Gerbeth.20,21

The stability of endwall convection in a two-dimensional
channel with an aspect ratio �length/height� of 4 has been
established by means of Galerkin simulations.22 The vertical
orientation of the magnetic field was most efficient at post-
poning the onset of oscillations to higher values of Grc,
whereas the longitudinal field was the least efficient, consis-
tently with the experimental findings of Hof et al.7 The fact
that several different oscillatory modes were encountered at
onset, however, and that the critical Grashof number was
found to depend nonmonotonically on Ha, giving rise to hys-
teresis phenomena, indicates significant deviations from the

experimental results. This is not surprising given the three-
dimensional nature of the bulk convective flow in enclosures
of moderate lateral extent.12,23 By performing three-
dimensional continuation calculations of magnetohydrody-
namic convection for the three principal directions of the
magnetic field, we find monotonic Hopf bifurcation curves,
where Grc depends exponentially on Ha as in the experi-
ments of Hof et al.7 We shed light on the damping mecha-
nisms involved with the analysis at marginal stability of the
fluctuating kinetic energy budget associated with time-
periodic disturbances.

II. MATHEMATICAL FORMULATION
AND NUMERICAL METHOD

The mathematical model consists of a differentially
heated, rectangular parallelepiped cavity filled with an elec-
trically conducting low-Pr fluid and placed in a constant
magnetic field. The cavity has aspect ratios Ax=L /h and Ay

= l /h, where L is the length of the cavity �along x�, h its
height �along z� and l its width �along y�, as shown schemati-
cally in Fig. 1. The vertical endwalls are isothermal and held

at different temperatures, T̄h at the right hot endwall and T̄c at
the left cold endwall, resulting in a horizontal applied tem-
perature gradient. The sidewalls are adiabatic and all the
walls are electrically insulating. The fluid is assumed to be
Newtonian with constant physical properties �kinematic vis-
cosity �, thermal diffusivity �, density ��, except for the
density in the buoyancy term, which in the Boussinesq ap-
proximation, depends linearly on temperature, �=�m�1
−��T̄− T̄m��, where � is the thermal expansion coefficient,

T̄m is the mean temperature, T̄m= �T̄h+ T̄c� /2, and �m is the

value of the density at T̄m. Moreau24 has shown that in
most laboratory experiments using molten metals, the in-
duced magnetic field is negligible, so that the applied mag-
netic field, B= �B �eB, can be considered as the effective
magnetic field. Thus, the convective motion is governed
by the Navier–Stokes equations coupled to an energy equa-

tion. Using h, h2 /�, � /h, �m�2 /h2, �= �T̄h− T̄c� /Ax, � �B� and
�e� �B � /h ��e is the electric conductivity� as scales for the
length, time, velocity, pressure, temperature, induced electric
potential and induced current respectively, these equations
take the following form:

� · u = 0, �1�

gVl plane

Vt plane Hl plane

T̄hT̄c

x

z

y O

L

l

h

FIG. 1. Schematic diagram of the geometry of the differentially heated
cavity.
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�u

�t
+ �u · ��u = − �p + �2u + GrTez + Ha2j � eB, �2�

�T

�t
+ �u · ��T =

1

Pr
�2T . �3�

The dimensionless variables are the velocity vector u
= �u ,v ,w�, the pressure p, the temperature T= �T̄− T̄m� /�, and
the induced electric current density j. The nondimensional
parameters arising from the scaling of the equations are the
Grashof number, Gr=�g�h3 /�2, the Prandtl number, Pr
=� /� and the Hartmann number Ha= �B �h��e /��m. ez and
eB are unit vectors in the vertical direction and in the direc-
tion of B, respectively. In the equation of motion �2�, the
body force Ha2j�eB is the Lorentz force, which results from
the interaction between the induced electric current density j
and the applied magnetic field B. The dimensionless electric
current density j is given by Ohm’s law for a moving fluid,

j = − �	 + u � eB, �4�

where 	 is the dimensionless electric potential. Combining
the continuity equation for j, � · j=0, and Ohm’s law �4�, we
obtain the dimensionless equation governing the electric
potential,

�2	 = eB · �� � u� . �5�

The boundary conditions are given by �T /�z=0 on z
= 
1 /2 and �T /�y=0 on y= 
Ay /2, T=−Ax /2 on
x=−Ax /2 and T=Ax /2 on x=Ax /2, and u=0 and �	 /�n=0
on all boundaries.

In the Boussinesq approximation, the steady convective
flow in this geometry exhibits two distinct symmetries for
moderate Gr,14 a reflection symmetry Sl with respect to the
longitudinal Vl plane �left-right symmetry� and a �-rotational
symmetry Sr about the transverse y-axis. These symmetries
are defined, respectively, as

Sl: �x,y,z,t� → �x,− y,z,t�, �u,v,w,T� → �u,− v,w,T�,

Sr: �x,y,z,t� → �− x,y,− z,t�, �u,v,w,T� → �− u,v,− w,− T� .

The combination of these two symmetries yields a symmetry
Sc with respect to the center point of the cavity �Sc=Sl ·Sr�.
When increasing Gr, bifurcations to new flow states �steady
or oscillatory� will occur, at which some of these symmetries
will usually be broken.

Equations �1�–�5� coupled to the boundary conditions
were solved in a three-dimensional domain using a spectral
element method described by Karniadakis et al.25 The time
discretization was carried out using a semi-implicit splitting
scheme where the nonlinear terms were first integrated ex-
plicitly, the pressure was then solved through a pressure
equation enforcing the incompressibility constraint �with a
consistent pressure boundary condition derived from the
equations of motion�, and the linear terms were finally inte-
grated implicitly. This time-integration scheme was used for
transient computations with the third-order accurate formu-
lation described in Karniadakis et al.25

The same refined mesh comprising 47�49�27 points
�in the x, y, and z directions, respectively� was chosen for all
our calculations of convective flow in a cavity of aspect ra-
tios Ax=4 and Ay =2, subject to a magnetic field of varying
direction and magnitude. As shown by the convergence tests
given in Table I, this mesh yields excellent resolution of the
threshold, Grc, in the absence of a magnetic field. The preci-
sion slightly decreases when the intensity of the applied
magnetic field is increased, but it remains satisfactory even
for the largest values of Ha �Table I�. The least accurate
results are obtained for a vertical magnetic field at Ha=8.3
�the highest value of Ha used for this field direction�. In this
case, the variation of Grc with Ha is very steep, but the value
of Grc changes by less than 0.25% when the mesh is further
resolved.

We focused on following steady flow solutions by incre-
menting Gr, and locating bifurcation points at a critical value
of the Grashof number, Grc. The Newton method described
by Henry and Ben Hadid13 was used to calculate each steady
state solution. Leading eigenvalues and their corresponding
eigenvectors were then determined using Arnoldi’s method
�ARPACK library26� by time-stepping the linearized equa-
tions, as described by Mamun and Tuckerman.27 The real
parts of the leading eigenvalues were monitored in order to
locate the bifurcation point approximately �i.e., the largest
value of Gr for which the real part of the leading eigenvalue
remained negative�. The steady solution and the leading
eigenvectors corresponding to this estimated threshold were
in turn used as initial guesses in the direct calculation of the
bifurcation point, which was performed using the Newton
method described by Petrone et al.28 and Henry and Ben
Hadid.13 In the Newton methods used for both steady state
solving and threshold calculations, the main idea was to
solve the linear systems appearing at each Newton step with
an iterative solver, and to compute right-hand sides and
matrix-vector products corresponding to these linear systems
by performing adapted first order time steps of the basic or
linearized problem. The advantage of this method was that
the Jacobian matrix did not need to be constructed or stored.
The GMRES algorithm from the NSPCG �Ref. 29� software
library was used as the iterative solver.

Important information concerning the physical mecha-
nisms involved in the transition to the oscillatory state and
in the stabilization by the applied magnetic field can be

TABLE I. Mesh refinement tests of numerical accuracy of the critical
Grashof number Grc for the onset of time-periodic convection in a laterally
heated three-dimensional cavity �Ax=4, Ay =2, and Pr=0.026�: �a� without
magnetic field �Ha=0�, �b� with a vertical magnetic field �Ha=8.3�, �c� with
a transverse magnetic field �Ha=21�, �d� with a longitudinal magnetic field
�Ha=43.5�. In cases �b�–�d�, the value of Ha is the highest value used in the
calculations for the given direction of the magnetic field.

Mesh 43�45�23 47�49�27 51�53�31

�a� 32728.8 32726.9 32726.6

�b� 213794 213273 212746

�c� 217367 217301 217395

�d� 233615 233618 233646
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obtained from the calculation at threshold of the fluctuating
kinetic energy budget associated with time-periodic
disturbances. The basic steady solution at threshold
�u ,v ,w ,T��x ,y ,z� �or �ui ,T��xi�	 and the complex critical ei-
genvector �u� ,v� ,w� ,T���x ,y ,z� �or �ui� ,T���xi�	 both enter
the equation of energy budget given by

�k

�t
= eshear + evisc + ebuoy + emagn + epres, �6�

where �k / �t is the rate of change of the fluctuating kinetic
energy defined as k=Re�ui�ui�* /2� �Re and the superscript *
denoting the real part and the complex conjugate, respec-
tively�, and

eshear = Re
− uj�
�ui

�xj
ui�*�,

evisc = Re
−
�ui�

�xj

�ui�*

�xj
�,

ebuoy = Re�GrT�ui�*�i3�,

emagn = Re�Ha2�j� � eB�u�*�,

epres = Re
−
�p�

�xi
ui�*� .

eshear represents the production of fluctuating kinetic energy
by shear of the basic flow, evisc the viscous dissipation of
fluctuating kinetic energy, ebuoy the production of fluctuating
kinetic energy by buoyancy, emagn the dissipation of fluctuat-
ing kinetic energy by the magnetic forces, and epres the re-
distribution of fluctuating kinetic energy by the pressure fluc-
tuations. We can also define the total �or volume integral�
fluctuating kinetic energy as K=�kd. The rate of change
of K is given by an equation similar to Eq. �6�, which in-
volves the volume integral energy terms �denoted by E�,

�K

�t
= Eshear + Evisc + Ebuoy + Emagn. �7�

Note that the volume integral pressure term is zero and has
therefore not been included in Eq. �7�. At threshold, the criti-
cal eigenvector is associated with an eigenvalue of zero real
part. This implies that �k /�t and �K /�t are both equal to zero
at marginal stability. The calculation of all the individual
energy contributions enables us to determine which term
plays a dominant role in triggering the instability through
production of fluctuating kinetic energy. The corresponding
spatial fields e�x ,y ,z� can in turn be analyzed to locate the
production regions. Note that, as shown by Kaddeche
et al.,16 Evisc and Emagn are stabilizing by nature and thus
negative terms.

Finally, if we normalize Eq. �7� by −Evisc= �Evisc�, which
is always positive, we can get another equation involving
normalized energy terms E�=E / �Evisc� at threshold,

Eshear� + Ebuoy� + Emagn� = 1. �8�

Positive �negative� energy terms are destabilizing �stabiliz-
ing�, respectively. In the remainder of the paper, we simplify
the discussion of the damping mechanism by referring to the
growth or decay of the absolute values of each energy term.

III. RESULTS

We focus on the transition to oscillatory flow in our
model and explore the directional effect of a magnetic field
on this transition, by applying the magnetic field in the three
principal directions �vertical, i.e., parallel to gravity; trans-
verse, i.e., perpendicular to gravity and to the imposed tem-
perature gradient; and longitudinal, i.e., perpendicular to
gravity and parallel to the imposed temperature gradient�. We
choose a cavity of aspect ratios Ax=4 and Ay =2, as the onset
of time-dependent flow in this geometry has already been
thoroughly studied by Henry and Buffat14 in the absence of a
magnetic field. They characterize the flow transitions for sev-
eral values of the Prandtl number, including Pr=0.026 which
corresponds to mercury. For Pr=0.026, the increase of Gr
leads to the concentration of the main convective circulation
into a large roll in the core of the cavity. The oscillatory
transition, which occurs through a Hopf bifurcation at a criti-
cal value of the Grashof number, Grc, is accompanied by the
breaking of the Sr and Sl symmetries, and results in a peri-
odic flow, where the roll oscillates around the central point of
the cavity. The analysis of the fluctuating kinetic energy bud-
get close to threshold has shown that the main destabilizing
contribution comes from shear, and more precisely from the
term connected to the vertical gradient of the longitudinal
velocity of the mean flow. Here, we choose to examine the
influence of the magnetic field on this specific flow transi-
tion. Also, the shear term mentioned above has recently been
shown to be responsible for the destabilization of convective
flows in end-heated cavities over a wide range of aspect ra-
tios and Prandtl number values,13 suggesting that the findings
of our case study may extend to a broad range of parameters.
In Sec. III A, we discuss the dependence of Grc on the Hart-
mann number, and calculate the global energy budgets in the
three-dimensional cavity. In order to facilitate the under-
standing of the damping effect of the magnetic field in the
three-dimensional cavity, we choose in Sec. III B to extend
the analysis of the more academic case of a fluid layer of
infinite lateral extent, confined between horizontal plates and
subject to a horizontal temperature gradient, which is
strongly stabilized in the presence of a vertical magnetic
field.16 The spatial distribution of the fluctuating kinetic en-
ergy budget is subsequently analyzed for the magnetic-field-
delayed transition in the three-dimensional cavity in Sec.
III C, based on the methods introduced in Sec. III B.

A. Stability curves and energy budgets
for the three-dimensional cavity

Stability curves representing the dependence of Grc on
Ha, are shown in Fig. 2�a� for the three principal directions
of the magnetic field �vertical along z, transverse along y,
and longitudinal along x�. The Hopf bifurcation at Ha=0 was
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located first, using the method discussed in Sec. II. The
threshold, Grc, was computed directly by Newton’s method,
using previously calculated initial guesses for the bulk flow
and the leading eigenvector. This direct method was subse-
quently employed to gradually obtain the Hopf bifurcation
points for increasing values of Ha for each direction of the
magnetic field. For each incremental value of Ha, the steady
solution and leading eigenvector determined at the previous
step were used as initial guesses.

The steep monotonic growth of Grc with Ha shown in
Fig. 2�a� demonstrates that all three directions of the mag-
netic field have a strong stabilizing influence. The dotted
lines represent fits to the data for each direction of the mag-

netic field of the form Grc /Grc�Ha=0��exp�aHab�. Expo-
nential fits were found to represent the numerical data most
accurately over the entire range of Ha studied, compared
with low order polynomial fits of the form 1+aHab, which
diverged from the data as Ha increased. Thus, in all three
cases, the critical Grashof number exhibits an exponential
dependence on powers of Ha, so that values of Ha of a few
units are sufficient to double the threshold values. There are,
however, significant differences in efficiency between the
three directions of the magnetic field. The vertical magnetic
field suppresses the oscillation most effectively with av=12
�10−3 and bv=2.4. Both the transverse and longitudinal
fields are less effective than the vertical magnetic field at
postponing the Hopf bifurcation, since the fits to the onset
curves yield lower but approximately similar powers of Ha
of bt=1.7 and bl=1.6. The action of a transverse field, how-
ever, results in significantly enhanced stabilization compared
to that of the longitudinal field as at=11�10−3 is approxi-
mately 2.3 times larger than al=4.75�10−3. These findings
are in qualitative agreement with the experimental results of
Hof et al.,7 who also measured exponential dependencies of
Grc on powers of Ha, and observed the strongest damping for
the vertical magnetic field followed by the transverse and
finally the longitudinal fields. The stabilization in our three-
dimensional model, however, is slightly weaker than in the
experiment, with smaller exponents for the Ha dependence
of the exponential, for each direction of the magnetic field.
Note that the fits to the data are not expected to hold for any
value of Ha, due to the complete reorganization of the basic
flow at high Hartmann numbers.

The dependence on Ha of the critical frequency of oscil-
lation, �c, is shown in Fig. 2�b�. ��c is the imaginary part of
the leading eigenvalue at the Hopf bifurcation point.� The
continuous nature of the curves indicates that the same mode
of instability is retained over the range of Ha investigated for
all three directions of the magnetic field, consistently with
the experimental observations of Hof et al.7 This also points
to important differences with the two-dimensional model of
Gelfgat and Bar-Yoseph,22 who encountered multiple modes
of oscillations. The functional dependence of the frequency
on Ha is similar to that of the thresholds, thus yielding a
stronger increase for the vertical magnetic field compared to
the two other directions. Furthermore, when the critical fre-
quency is plotted against Grc �see Fig. 2�c��, the curves cor-
responding to the different directions of magnetic field col-
lapse, indicating that the growth of the critical frequency can
be directly correlated to that of the threshold of the instabil-
ity independently of the magnetic field. This result is closely
linked to the observation by Hof et al.7 that the Grashof
number dependence of the frequency of oscillation above
onset is virtually independent of the magnetic field.

The four energy terms contributing to the rate of change
of the total fluctuating kinetic energy at threshold �shear of
the basic flow, buoyancy, viscous and magnetic dissipation,
listed in Eq. �7�� were calculated from the basic flow solution
and critical eigenvector. The shear term was decomposed
into its nine individual contributions, corresponding to the
gradients in each of the three directions of the three compo-
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FIG. 2. Variation of the oscillatory threshold Grc �a� and of the correspond-
ing angular frequency �c �b� as a function of Ha for a laterally heated
three-dimensional cavity and three orientations of the magnetic field �+ for
the vertical magnetic field, � for the transverse field, � for the longitudinal
field�. The dotted lines in �a� are the fits given in the text. The plot of the
angular frequency as a function of Grc is shown in �c�. Other parameters are
Ax=4, Ay =2, and Pr=0.026.
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nents of the basic velocity, in order to identify the dominant
ones. In addition, all the energy terms were normalized by
�Evisc� as expressed in Eq. �8�.

The main individual energy contributions at threshold
are shown as a function of Ha in Fig. 3 for the three orien-
tations of the magnetic field. In all three cases, the dominant
production of fluctuating kinetic energy is due to the shear of
the basic flow. This destabilizing contribution is close to 1
for Ha=0 as it acts to balance the viscous dissipation term,
while the contribution of buoyancy is insignificant. As Ha is
increased, the contribution of the destabilizing shear in-

creases approximately proportionally to that of the stabiliz-
ing magnetic dissipation, while the buoyancy contribution
remains negligibly small. These changes with increasing Ha
are more pronounced for the transverse magnetic field than
for the longitudinal field. Interestingly, they are weakest in
the case of the vertical field, where the total shear and mag-
netic energy contributions exhibit only small growths before
levelling off for values of Ha between 7.5 and 8, and then
decreasing for larger values of Ha. Moreover, the decompo-
sition of the shear term indicates that the production of fluc-
tuating kinetic energy is essentially due to the strongly de-
stabilizing term connected to �u /�z, whereas the term
connected to �u /�x is clearly stabilizing and all other terms
are small in comparison, and thus negligible.

The above results demonstrate that the oscillatory tran-
sition is dominated by the shear of the basic flow, and more
specifically by the vertical shear of the longitudinal velocity.
This is the case both in the absence and in the presence of a
magnetic field. When Ha�0, the stabilizing magnetic con-
tribution leads to the increase of both the total and dominant
shear contributions. In the case of the vertical magnetic field,
however, the stabilizing magnetic contribution rapidly levels
off as Ha increases, despite the continued growth of the in-
stability threshold. This suggests that the magnetic contribu-
tion is not the dominant source of stabilization in our flow
configuration.

B. Energy analysis of the transitions in a laterally
heated layer subject to a vertical magnetic field

We have seen in Sec. III A that the mechanisms respon-
sible for the stabilization of the oscillatory flow in the pres-
ence of a magnetic field cannot simply be inferred from the
analysis of the global energy budget. Thus, a detailed exami-
nation of the spatial distribution of the shear energy is nec-
essary to gain insight into the damping action of the mag-
netic field. Our first approach is to consider the simpler
problem of magnetohydrodynamic damping in an extended
fluid layer confined between rigid, horizontal walls and sub-
ject to a horizontal temperature gradient,16 which presents
important similarities with our three-dimensional problem
and offers the advantage of an analytical basic flow solution.
Indeed, the linear stability analysis of this basic flow yields a
strong increase of the threshold for the two-dimensional
steady instability, scaling as Grc /Grc�Ha=0��exp�Ha2�. In
addition, the analysis at threshold of the kinetic energy bud-
get associated with the two-dimensional disturbances has
shown that the dominant destabilizing contribution comes
from the shear of the basic flow, and specifically the term
connected to ��u /�z�, which incidentally is the only shear
term in this simplified geometry.

An advantage of the analysis performed by Kaddeche
et al.16 is that the basic flow u�Gr,Ha� is directly propor-
tional to Gr, u�Gr,Ha�=Gr uG�Ha�. Thus, Gr can be factored
out of the shear energy term, so that Eshear� =GrEshear� . A simi-
lar transformation applies to the energy due to buoyancy,
which can be written as Ebuoy� =GrEbuoy� . Equation �8� at mar-
ginal stability can then be rewritten as
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FIG. 3. Fluctuating kinetic energy budget associated with the oscillatory
disturbances at threshold in a laterally heated three-dimensional cavity for
the three orientations of the magnetic field: vertical �a�, transverse �b�, and
longitudinal �c�. The contributions, normalized by �Evisc�, are given as a
function of Ha. Solid lines represent the total production by shear �increas-
ing above 1�, the magnetic dissipation �decreasing below 0�, and the buoy-
ancy contribution �around 0�. Nonsolid lines represent the individual shear
contributions, but only those larger than 0.1 in absolute value are given.
Other parameters are Ax=4, Ay =2, and Pr=0.026.
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Grc�Eshear� + Ebuoy� � = 1 − Emagn� , �9�

which leads to

Grc

Grc0

= 
Eshear0
� + Ebuoy0

�

Eshear� + Ebuoy�
�

R1

�1 − Emagn� �

R2

, �10�

where the values with the subscript 0 refer to the case where
Ha=0. Kaddeche et al.16 find that the strong increase of Grc

with Ha is caused by the growth of the first factor R1 �see
Table II, where the results for Pr=0.001 are reproduced�. In
this case, buoyancy is very weak, so that the growth of Grc is
the consequence of the strong reduction in energy generated
by shear through Eshear� , when the vertical magnetic field is
applied.

In order to deepen the analysis of the shear term Eshear� ,
we have recomputed the case corresponding to Pr=0.001.
The kinetic energy budget associated with two-dimensional
disturbances is shown in Fig. 4 for Ha=0 and Ha=14, by
plotting the individual energy contributions corresponding to
those expressed in Eq. �6�. Each energy term is normalized
by �Evisc�, which yields e� terms. For Ha=0 �Fig. 4�a��, the
shear term is destabilizing in the central half of the layer. The
viscous dissipation occurs in the regions adjacent to the
walls, each of which extends to approximately a quarter of
the depth of the layer, while the buoyancy term is very small
everywhere. Thus, the pressure redistributes the energy of
the disturbances from the center toward the walls. Significant
changes occur when the magnetic field is applied �Ha=14,
Fig. 4�b��. The influence of the destabilizing shear extends
over a broader region, while the viscous and small magnetic
dissipations are concentrated in thin boundary layers �Hart-
mann layers�, which develop along the walls.

The Eshear� term is given by the integral across the layer
of eshear� �z�, which can itself be written as the product of two
terms: �−�uG /�z�, a quantity related to the analytical basic
flow, which is independent of Grc and only dependent on Ha,
and �Re�w�u�*� / �Evisc � �, a quantity related to the velocity
disturbances at the threshold Grc. Note that the quantities
Re�w�u�*� and �Evisc� both depend on the normalization cho-
sen for the critical eigenvector, due to the definition of the
disturbances to within a multiplicative constant. Their ratio,

�Re�w�u�*� / �Evisc � �, however, is independent of this normal-
ization, and thus, this quantity is intrinsic to the flow pertur-
bations. The z-profiles of these three quantities are plotted in
Fig. 5 for increasing values of Ha. The most striking feature
of these plots is the exponential decrease of eshear� as Ha is
increased up to Ha=14 �Fig. 5�a��, which drives the strong
increase of the instability threshold. Note that the term
�−�uG /�z� �Fig. 5�b�� determines the sign of eshear� , since
�Re�w�u�*� / �Evisc � � �Fig. 5�c�� is positive across the entire
layer. Thus, the positive values of �−�uG /�z� found in the
central part of the layer delimit the region of destabilization
by shear. The maximum positive value of eshear� �correspond-
ing to the most effective destabilization� is located at z=0,
which also corresponds to the position of the inflection point
of the basic velocity profile. Near the boundaries, however,
eshear� takes small negative values, indicating a region of weak
stabilization. As mentioned by Kaddeche et al.,16 the strong
decrease of eshear� is connected to a decrease of �−�uG /�z� in
the central region, due to the flattening of the basic velocity
profile around the inflection point induced by the vertical
magnetic field �Fig. 5�b��. The decrease of eshear� , however, is
dominated by the rapid decay of the velocity disturbances
�Re�w�u�*� / �Evisc � � shown in Fig. 5�c�. Hence, the strong
stabilization of the flow with increasing Ha results primarily
from the efficient reduction of the scaled velocity distur-
bance product, rather than the modification of the basic ve-
locity profile by the magnetic field.

TABLE II. Characterization of the stabilization by a vertical magnetic field
for the two-dimensional steady disturbances developing in a laterally heated
layer at Pr=0.001 �Grc0

=7943�.

Ha R1 R2 Grc /Grc0

3 1.36 1.11 1.51

5 2.25 1.28 2.88

7 4.81 1.48 7.10

9 14.79 1.55 22.88

10 28.47 1.52 43.27

11 56.54 1.48 83.48

12 115.89 1.42 164.51

13 239.76 1.36 325.99

14 491.09 1.30 640.60
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FIG. 4. Spatial distribution of the kinetic energy budget associated with the
two-dimensional steady disturbances at threshold in a laterally heated layer
at Pr=0.001, without magnetic field �Ha=0� �a� and with a vertical magnetic
field �Ha=14� �b�. The buoyancy contribution which is small everywhere is
not plotted.
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The scaled norms of the velocity disturbances contribut-
ing to the disturbance term discussed above, �u� � /��Evisc� and
�w� � /��Evisc�, are in turn plotted individually in Fig. 6. Both
velocity components decrease strongly in the center of the
layer where destabilization by shear occurs, whereas
�u� � /��Evisc� exhibit a weaker decrease along the walls, lead-
ing to the development of sharp gradients in the boundary
layers of the form ��u� /�z�. Moreover, these gradients in-
creasingly dominate viscous dissipation as Ha increases,
with contributions of 77.8%, 84.6%, 97.6%, and 99.6% for
Ha=0, 5, 10, and 14, respectively. Thus, it is the develop-
ment of these gradients as Ha is increased, which is respon-
sible for the strong viscous dissipation in the Hartmann lay-
ers shown in Fig. 4�b� for Ha=14.

Overall, the increasing contrast between the strong ve-

locity gradients near the boundaries �driving the viscous dis-
sipation energy �Evisc��, and the weak velocities in the center
of the layer �contained in Re�w�u�*� and responsible for the
destabilization�, seems to be at the origin of the strong de-
crease of �Re�w�u�*� / �Evisc � � observed when Ha is
increased.

In the three-dimensional cavity, however, the bulk flow
is not simply proportional to Gr. Thus, we cannot extract Gr
from the fluctuating kinetic energy equation and have to keep
Eshear� in Eq. �8�. In order to make a parallel between the
simpler case of the extended layer and the three-dimensional
model, the z-profiles of eshear� and �−�u /�z� at Grc are pre-
sented in Fig. 7 for the extended layer. �In the following, the
shear �−�u /�z� at Grc will be denoted as �−�u /�z�c.� When
Ha increases, the destabilization region indicated by the posi-
tive values of eshear� broadens and the maximum value of eshear�
undergoes a small increase �Fig. 7�a��. The term �−�u /�z�c

increases strongly with Ha, but this is due to the sharp rise in
Grc �Fig. 7�b��. We will comment further on these profiles
when discussing the three-dimensional case in Sec. III C.

C. Shear energy analysis at threshold
in the three-dimensional cavity

A shear energy analysis analogous to that presented in
Sec. III B is performed at the onset of time-dependence in
the three-dimensional cavity. We focus on the dominant de-
stabilizing shear term connected to ��u /�z� and analyze its
evolution with increasing magnetic field. As in Sec. III B,
this shear energy term is the volume integral of the product
of two terms evaluated at threshold, the derivative of the
basic flow, �−�u /�z�c, and the product of the velocity fluc-
tuations divided by the viscous dissipation term,
�Re�w�u�*� / �Evisc � �.

Isolines of these two fields and their product are plotted
in the Hl and Vt planes �see Fig. 1 for the definition of the
planes� in Fig. 8 for Ha=0. The symmetries of the bulk flow
�Sr and Sl� are both broken at the Hopf bifurcation point, but
the flow retains its symmetry about the center of the cavity,
Sc �see Sec. II�. Because of the Sl symmetry breaking, the
velocity fluctuations u� and w� have opposite signs at points
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FIG. 5. Variation with Ha of the z-profiles of shear eshear� �a� and of its
decomposition terms �−�uG /�z� �b� and �Re�w�u�*� / �Evisc � � �c� associated
with the basic flow and the two-dimensional steady disturbances at thresh-
old, when a laterally heated layer at Pr=0.001 is stabilized by a vertical
magnetic field. For Ha varying from 0 to 14, the maximum values of the
profiles are, respectively, 4.1383�10−4, 1.6285�10−4, 0.1078�10−4, and
0.0076�10−4 for �a�, 0.0417, 0.0235, 0.0093, and 0.0050 for �b�, 9.932
�10−3, 6.938�10−3, 1.156�10−3, and 0.151�10−3 for �c�.
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reflected about the Vl plane and are zero in this plane. The
breaking of the Sr symmetry results in u� and w� retaining
the same sign at points separated by a �-rotation about the
transverse y-axis. Thus, the product of u� and w� retains the
same sign at all these points, and is zero in the Vl plane. In
Fig. 8�b�, �Re�w�u�*� / �Evisc � � takes significant positive val-
ues in two regions at midheight and midlength in the cavity
on either side of the Vl plane. �−�u /�z�c remains positive and
approximately constant in these regions �see Fig. 8�a��.
Hence, it is the velocity disturbance field which primarily
determines the domain where �−�u /�z�c�Re�w�u�*� / �Evisc � �
has non-negligible positive values �Fig. 8�c��.

The same scalar fields as in Fig. 8 were examined at
threshold when vertical, transverse and longitudinal mag-
netic fields were applied. The regions where the contribution
of the shear energy is not negligible are similar to those
observed in the case of Ha=0. Similar general trends were
also found in all three cases, with an increase of �−�u /�z�c

and a decrease of �Re�w�u�*� / �Evisc � �, as Ha is raised. These
findings are analogous to the results in the extended layer
�see Figs. 7�b� and 5�c��.

A quantitative measure of the effect of the magnetic field
on the local components of the shear energy at threshold is
obtained by plotting profiles of �−�u /�z�c and
�Re�w�u�*� / �Evisc � � along the y axis �z=0 and x=0�. The
profiles are shown in Figs. 9–11 for the vertical, transverse,
and longitudinal directions of the magnetic field, respec-
tively. A reduction in �Re�w�u�*� / �Evisc � � occurs as Ha is

-6
-5
-4
-3
-2
-1
0
1
2
3
4

-0.5 -0.25 0 0.25 0.5

e’
sh

ea
r

z

(a)

Ha=0
Ha=5

Ha=10
Ha=14

0

5000

10000

15000

20000

25000

-0.5 -0.25 0 0.25 0.5

(-
∂u

/∂
z)

c

z

(b)

Ha=0
Ha=5

Ha=10
Ha=14
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decomposition terms �−�u /�z�c �b� �the other term �Re�w�u�*� / �Evisc � � is
already given in Fig. 5�c�	 associated with the basic flow and the two-
dimensional steady disturbances at threshold, when a laterally heated layer
at Pr=0.001 is stabilized by a vertical magnetic field. For clarity, the plot of
�−�u /�z�c is focused on the positive values. For Ha varying from 0 to 14, the
maximum values of the profiles are, respectively, 3.287, 3.731, 3.705, and
3.873 for �a�, 331, 538, 3205, and 25629 for �b�.
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FIG. 8. Isolines of �−�u /�z�c �a�, �Re�w�u�*� / �Evisc � � �b�, and
�−�u /�z�c�Re�w�u�*� / �Evisc � � �c� associated with the basic flow and the os-
cillatory disturbances at Grc in a laterally heated three-dimensional cavity
without magnetic field �Ha=0�: views in the Hl plane �left pictures� and in
the Vt plane �right pictures�. For �−�u /�z�c, nine isolines are plotted from 0
to 800 �step 100; 0 is on the vertical boundaries and on the isolines inter-
secting these boundaries; for clarity, the negative isolines in the Vt plane are
not given�; for �Re�w�u�*� / �Evisc � �, 14 isolines from −0.6�10−3 to 3.3
�10−3 �step 0.3�10−3; 0 is on the boundaries and on the isolines intersect-
ing the boundaries�; for �−�u /�z�c�Re�w�u�*� / �Evisc � �, nine isolines from 0
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boundaries�. Other parameters are Ax=4, Ay =2, and Pr=0.026.
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tively�. Other parameters are Ax=4, Ay =2, and Pr=0.026.
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increased in all three cases, which is similar to, albeit weaker
than, that observed in the case of the extended layer �see Fig.
5�c��. This decrease is accompanied by an expansion of the
profiles in the longitudinal direction, and in the case of the
vertical magnetic field, by a narrowing of the profiles in the
transverse direction, which further contributes to the de-
crease of the �Re�w�u�*� / �Evisc � � contribution to the shear
energy term. In order to retain the energy balance necessary
to trigger the onset of time-dependence, the reduction in
�Re�w�u�*� / �Evisc � � induces a strong increase of �−�u /�z�c

in all three cases, but this is most pronounced in the case of
the vertical field, where it occurs for small values of Ha.
�The appearance of peaks in the y-profile of �−�u /�z�c in the
presence of a vertical magnetic field is linked to the prefer-
ential development of the longitudinal basic velocity in the
parallel layers as Ha is increased.9� Moreover, the increase of
�−�u /�z�c in the presence of transverse and longitudinal
fields is additionally linked to the global increase of the shear
energy term connected to �−�u /�z��Re�w�u�*� / �Evisc � �,
which occurs in order to compensate for the stabilizing effect
of the magnetic energy, as discussed in Sec. III A. Note that
this stabilizing effect becomes significant at lower values of
Ha for the transverse magnetic field than for the longitudinal
field �see Fig. 3�.

It is the growth with Ha of the term �−�u /�z�c that ex-
plains the rise in critical Grashof number. A similar, albeit
stronger, increase of �−�u /�z�c was also identified in the ex-
tended layer �see Fig. 7�b��. In that configuration, however,

the situation was simpler to analyze because of the propor-
tionality of the basic velocity field with Gr, which allowed us
to define �−�uG /�z� independent of Grc and depending only
on Ha �see Fig. 5�b��. The strong increase of Grc with Ha �by
a factor of 640.6 when Ha was varied from 0 to 14 in Table
II� might be justified by the combined effects of the strong
increase of �−�u /�z�c �maximum value multiplied by 77.43
�Fig. 7�b��	 and the decrease of �−�uG /�z� �maximum value
divided by 8.34 �Fig. 5�b��	. In the case of the three-
dimensional cavity, a similar exact analysis cannot be per-
formed because the influences of Gr and Ha on the basic
velocity field cannot be isolated. The effect of Ha on the
basic velocity field, however, can be studied at a fixed value
of Gr. For Gr=Grc0

�the threshold value for Ha=0�, the
maximum values of �−�u /�z� are shown to decrease with
increasing Ha in Fig. 12 for the three directions of the mag-
netic field. This evidence suggests that the increase of Grc

with Ha must be particularly strong to induce the observed
increase of �−�u /�z�c at Grc, when at constant Gr=Grc0

, this
term would decay with increasing Ha. The reduction is par-
ticularly steep in the case of the vertical magnetic field, con-
sistently with the observation of the strongest increase of
Grc, whereas the decay of �−�u /�z� at constant Gr for the
transverse and longitudinal fields is weaker and postponed to
larger values of Ha �a slight increase is even observed for the
transverse field for Ha between 5 and 10�.

The results presented in this section demonstrate that for
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�Re�w�u�*� / �Evisc � � �b� associated with the basic flow and the oscillatory
disturbances at Grc in a laterally heated three-dimensional cavity submitted
to a transverse magnetic field �Ha=0, 5, 10, 15, and 20 labelled by +, �, �,
�, �, respectively�. Other parameters are Ax=4, Ay =2, and Pr=0.026.
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a vertical magnetic field, both the strong decrease of
�Re�w�u�*� / �Evisc � � �decrease of its intensity and narrowing
of the productive zone� and the strong decrease of
�−�u /�z� at constant Gr with increasing Ha, are responsible
for the sharp rise in the thresholds, while the influence of the
magnetic dissipation is found to be weak. For the transverse
and longitudinal magnetic fields, however, the magnetic dis-
sipation is significant as it induces an increase of the domi-
nant shear term. It is nevertheless the decrease of
�Re�w�u�*� / �Evisc � �, although less efficient than for the ver-
tical field, but more efficient for the transverse field than for
the longitudinal field, which dominates the increase of the
thresholds with Ha.

Finally, the analysis performed on the extended layer
model suggests that the decrease of �Re�w�u�*� / �Evisc � � as
Ha is increased may be linked to the combined effects of
strong gradients in the velocity fluctuations developing in the
Hartmann boundary layers along the walls �these gradients
induce stronger viscous dissipation�, and comparatively
weak velocity fluctuations in the bulk where the destabiliza-
tion process by shear is effective.

IV. CONCLUSION

The directional effect of a magnetic field on the onset of
time-periodic convection has been studied numerically in a
confined three-dimensional cavity. The critical Grashof num-
ber and frequency at the Hopf bifurcation point exhibit simi-
lar exponential dependencies on the Hartmann number, Ha.
The vertical field is the most efficient at postponing the onset
of oscillations to larger values of Gr, followed by the trans-
verse and longitudinal fields, in accordance with the experi-
mental findings of Hof et al.7

The variation of the global energy budget with Ha, cal-
culated at threshold for each of the three principal directions
of the magnetic field, indicates that the oscillatory transition
is dominated by the vertical shear of the longitudinal flow,
and that the magnetic energy is not the dominant source of
stabilization, particularly in the presence of a vertical mag-
netic field. The examination of the spatial distribution of the
dominant shear energy term is required to gain insight into

the magnetohydrodynamic damping mechanism. This quan-
tity is given by the product of the shear of the basic flow
�−�u /�z�c at Grc and the velocity fluctuations
��Re�w�u�*� / �Evisc � �	. The strong decrease of
�Re�w�u�*� / �Evisc � � that results from the formation of steep
gradients of the velocity fluctuations in the Hartmann layers
and the weakening of these velocity fluctuations in the bulk,
couples to the decrease of �−�u /�z� at constant Gr with in-
creasing Ha to induce the exponential growth in critical pa-
rameters. This mechanism alone is at the origin of the damp-
ing in the case of a vertical magnetic field, whereas for
transverse and longitudinal fields, it acts in combination with
the growth in stabilizing magnetic energy.
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