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1. Introduction

This note is a complement to the paper [Tr2], where super real closed rings are introduced
and studied. A super real closed ring A is a commutative unital ring A together with an
operation FA : An −→ A for every continuous map F : IRn −→ IR, n ∈ IN, so that all term
equalities between the F ’s remain valid for the FA’s. For example if C(X) is the ring of real
valued continuous functions on a topological space X, then C(X) carries a natural super real
closed ring structure, where FC(X) is composition with F . Super real closed rings provide a
natural framework for the algebra and model theory of rings of continuous functions.

A bounded super real closed ring A is a commutative unital ring A together with an
operation FA : An −→ A for every bounded continuous map F : IRn −→ IR, n ∈ IN, so that
all term equalities between the F ’s remain valid for the FA’s (cf. (2.7) below).

In particular every super real closed ring is a bounded super real closed ring by forgetting
the operation of the unbounded functions. An example of a bounded super real closed ring,
which is not a super real closed ring, is the ring Cpol(IRn) of all polynomially bounded
continuous functions IRn −→ IR.

We show that
• bounded super real closed rings are precisely the classical localizations of super real closed

rings (cf. (3.6)).
• bounded super real closed rings are precisely the convex subrings of super real closed rings

(cf. (4.6)).
• there is an idempotent mono-reflector A 7→ Â from the category of bounded super real

closed rings to the category of super real closed rings (cf. (5.12)). This means that every
bounded super real closed ring A has a super real closed hull Â, Â is minimal and uniquely
determined up to a unique A-isomorphism. For example ̂Cpol(IRn) = C(IRn)

• Inside every bounded super real closed ring A there is a largest super real closed ring
AΥ (cf. (6.2)). For example (Cpol(IRn))Υ = C∗(IRn) (=the ring of bounded continuous
functions IRn −→ IR).

2000 Mathematics Subject Classification: Primary 03C60; Secondary 46E25, 54C05, 03E15
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The motivation for writing this note is as follows: If A is a ring of continuous functions say
A = C(IRn), then the Zariski sheaf Spec A is in general not a sheaf of rings of continuous
functions. It is indeed not a super real closed ring in a natural way. On the other hand by
the localization theorem (3.6) below, Spec A is always a sheaf of bounded super real closed
rings and this is also true if we start with a bounded super real closed ring A.

Hence it is desirable to extend the commutative algebra of super real closed rings to the
bounded case. In order not to repeat arguments, we develop tools which allow the use of
the reflector A 7→ Â to explain what’s going on in A. For example, forming reside rings and
classical localizations behave well with respect to the reflector, cf. (5.11) and (5.13). The
close relation of the ideals of A and Â is worked out in (5.8) and in (5.9).

The results mentioned above can be used to transfer most of the commutative algebra,
developed in [Tr2] sections 11, 12 and 13 (with the appropriate adaptions) to bounded super
real closed rings. It would be tedious to elaborate this here, instead we present instruments
which allow such a transfer easily, whenever it is needed in subsequent work.

The results in section 6 are not of this instrumental style. As stated above, we prove the
existence of a largest super real closed ring inside every bounded super real closed ring and
we state two explicit descriptions of this ring.

2. Definition of bounded super real closed rings

We shall make use of the theory of real closed ring introduced by N. Schwartz (cf. [Schw]).
However we will use it in the way explained in [Tr2], section 2. We recall this briefly. Let Cn

be the set of all continuous maps IRn −→ IR which are 0-definable in the field IR; in other
words whose graph is a boolean combination of subsets of IRn × IR defined by polynomial
inequalities P (x̄, y) ≥ 0 with P (x̄, y) ∈ Z[x̄, y]. A ring A is real closed if there is a collection
of functions (fA : An −→ A | n ∈ IN, f ∈ Cn), such that
1. If f ∈ Cn is constant 0 or constant 1, then fA is constant 0 or constant 1; if f : IR −→ IR

is the identity, then fA : A −→ A is the identity; if f : IR2 −→ IR is addition or
multiplication in IR, respectively, then fA : A2 −→ A is addition or multiplication in A,
respectively.

2. If f ∈ Cn, k ∈ IN and fi ∈ Ck (1 ≤ i ≤ n), then

[f ◦ (f1, ..., fn)]A = fA ◦ (f1,A, ..., fn,A).

(2.1) Fact. Every real closed ring is reduced ([Tr2], (2.2)) and
(i) For every real closed ring there is a unique collection of functions as in the definition

above. This is [Tr2], (2.13), where the functions fA are explicitly constructed from the
pure ring A.

(ii) Every ring-homomorphism A −→ B between real closed rings respects the new functions
fA and fB ([Tr2], (2.16)).

¤

Because of (2.1) we may identify a real closed ring with its underlying pure ring.

(2.2) Fact. Let A be a real closed ring. The relation f ≤ g ⇔ ∃h ∈ A : f − g = h2 defines
a partial order on A and A together with ≤ is a lattice ordered ring. The supremum of f
and −f is denoted by |f |. A subring B of A is convex if f ≤ h ≤ g and f, g ∈ B implies
h ∈ B. By [Tr2], (10.5) we have
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(i) There is a smallest convex subring Hol(A) of A, called the holomorphy ring, namely

Hol(A) = {f ∈ A | |f | ≤ N for some N ∈ IN}.
(ii) The convex subrings of A are precisely the subrings of A containing Hol A and all these

subrings are real closed.
(iii) If B is a convex subring of A, then A = S−1·B is the localization of B at S = A× ∩B.
(iv) There is a largest real closed ring C having A as a convex subring. C is called the

convex closure of A (cf. [Tr2]:(11.2)). If C = A, then A is called convexly closed.
For example, real closed fields are convexly closed.

¤
For a topological space X let C(X), C∗(X) denote the continuous functions, the bounded
continuous functions X −→ IR, respectively.

(2.3) Definition. A function F : IRn −→ IR is called polynomially bounded if there is
some polynomial P ∈ IR[X1, ..., Xn] with

|F (x)| ≤ P (x) (x ∈ IRn).

Let Cpol(IRn) be the ring of polynomially bounded continuous functions IRn −→ IR.

(2.4) Observation. Since every polynomial from IR[X1, ..., Xn] is bounded by a power of
the polynomial 2 + X2

1 + ... + X2
n, a function F : IRn −→ IR is polynomially bounded if and

only if if there is some p ∈ IN such that

|F (x)|
(2 + x2

1 + ... + x2
n)p

≤ 1 (x ∈ IRn).

(2.5) Proposition.
(i) Cpol(IRn) is a convex subring of C(IRn)
(ii) Cpol(IRn) = C∗(IRn)[x1, ..., xn]
(iii) Cpol(IRn) = S−1 ·C∗(IRn), where

S = {F ∈ C∗(IRn) | there is Q ∈ IR[X1, ..., Xn] with F ·Q ≥ 1 on IRn}.
(iv) Cpol(IRn) = C∗(IRn)P , where C∗(IRn) denotes the ring of bounded continuous functions

IRn −→ IR and P is the polynomial 2 + X2
1 + ... + X2

n.

Proof. This is obvious from (2.4). ¤

(2.6) Definition. Recall from [Tr1], 5.1 the following notation:

Υ := {s : IR −→ IR | s is continuous and s−1(0) = {0}}.
We define

Υpol := Υ ∩ Cpol(IR).

(2.7) Definition.
(a) Let LΥpol be the first order language extending the language {+,−, · , 0, 1} of rings,

which has in addition an n-ary function symbol F for every polynomially bounded con-
tinuous function F : IRn −→ IR and every n ∈ IN0.

(b) Let TΥpol be the LΥpol -theory which extends the theory of real closed rings and which
has the following additional axioms:
1. The axioms of a commutative unital ring (with 1) in the language {+,−, ·, 0, 1}.
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2. The axiom ∀xy (+(x, y) = x + y ∧ ·(x, y) = x·y ∧ id(x) = x ∧ −(x) = −x ∧ 1(x) =
1∧0(x) = 1). Hence the symbols from the language of rings have the same meaning as
the corresponding symbols when reintroduced in LΥpol as symbols, naming continuous
functions.

3. All the sentences

∀x̄ F (f
1
(x̄), ...., f

n
(x̄)) = F ◦ (f1, ..., fn)(x̄) (F ∈ Cpol(IRn), f1, ..., fn ∈ Cpol(R̄x̄)).

The models of TΥpol are called bounded super real closed rings.

Observe that the Null ring is also considered as a bounded super real closed ring. Moreover,
since all semi-algebraic functions IRn −→ IR are polynomially bounded, it is clear that every
bounded super real closed ring is real closed.

(2.8) Definition. A homomorphism between LΥpol-structures is called a bounded super
homomorphism. An LΥpol -substructure of an LΥpol -structure is called a bounded super
substructure.

(2.9) Reminder. If we drop the super script “ pol” everywhere in (2.7) and (2.8) we get the
definition of the language LΥ, the definition of a super real closed ring (cf. [Tr2], (5.1)) and
the definition of a super homomorphism.

An Υ-radical ideal of a super real closed ring A is an ideal I of A, which is closed under
Υ (by which we mean closed under all the functions sA, s ∈ Υ). Those are precisely the
kernels of super homomorphism (cf. [Tr2]:(6.3)).

If A is super real closed, then HolA is a super real closed subring of A, as follows imme-
diately from [Tr2]:(9.2)(i).

Bounded super real closed rings arise naturally from super real closed rings as convex sub-
rings:

(2.10) Lemma. If B is bounded super real closed (e.g. if B is super real closed) and A is a
convex subring of B, then A is a bounded super real closed subring of B.

Proof. Take F ∈ Cpol(IRn) and a1, ..., an ∈ A. We have to show FB(a1, ..., an) ∈ A. Since
F is polynomially bounded, there is some P ∈ IR[X1, ..., Xn] with |F | ≤ P on IRn. Let
χ : IR −→ IR be defined by χ(x) = −x, if x ≤ 0 and χ(x) = 0 if x ≥ 0. Then |F | ≤ P reads
as χ ◦ (P − |F |) = 0 on IRn. Since B is bounded super real closed, also (χ ◦ (P − |F |))B = 0.
By definition, this means χB ◦ (P −|F |)B = 0. Since B is real closed χB(b) = 0 is equivalent
to b ≥ 0 in B (b ∈ B). Hence we have (P − |F |)B(a1, ..., an) ≥ 0. In the bounded super
real closed ring B, this means |FB(a1, ..., an)| ≤ P (a1, ..., an) ∈ A. Since A is convex in B,
FB(a1, ..., an) ∈ A. ¤

3. Localization of bounded super real closed rings

First recall how we can localize super real closed rings:

(3.1) Theorem. (cf. [Tr2]:(7.4))
Let A be a super real closed ring and let 1 ∈ S ⊆ A be closed under multiplication and Υ.
Then there is a unique expansion of the localization S−1A to a super real closed ring such
that the localization map A −→ S−1A is a super homomorphism.
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The operation of F ∈ C(IRn) on (S−1A)n is given as follows: There are t ∈ Υ and a
continuous function G ∈ C(IRn × IR) with

F (x1, ..., xn)·t(y) = G(x1 ·y, ..., xn ·y, y) ((x̄, y) ∈ IRn × IR).

Then for f1, ..., fn ∈ A and g ∈ S

FS−1A(
f1

g
, ...,

fn

g
) :=

GA(f1, ..., fn, g)
tA(g)

.

(3.2) Lemma. Let F, G ∈ C(IRn) such that {G = 0} ⊆ int{F = 0}, the interior of the zero
set of F . Then there is a unique H ∈ C(IRn) with F = H ·G such that H = 0 on {G = 0}.

If there are a bounded subset B of IRn and some ε ∈ IR, ε > 0 such that |G|IRn\B | ≥ ε,
then |H| ≤ c·|F | for some c ∈ IR, c > 0.

Proof. Existence and uniqueness of H is clear. Assume there are B, ε as stated. Then
K := B \ int{F = 0} is compact and G does not have zeroes on K. Let c ∈ IR, such that
c ≥ 1

ε and 1
c ≤ |G|K |. Then for every x ∈ IRn we have |H(x)| ≤ c·|F (x)|: this holds true

if F (x) = 0, since F = H ·G and H vanishes on {G = 0}. If F (x) 6= 0, then x 6∈ B or
x ∈ K = B \ int{F = 0}. In both cases we get the assertion by the choice of c. ¤
(3.3) Corollary. Let A be bounded super real closed. Let r ∈ IR , F1, F2 ∈ Cpol(IRn) and
a1, ..., an ∈ A be such that |ai| ≤ r (1 ≤ i ≤ n) and such that F1(x) = F2(x) for all x ∈ IRn

with |x| < r + 1.
Then

F1,A(a1, ..., an) = F2,A(a1, ..., an).

Proof. Let G ∈ C(IRn) be the distance function to the ball with radius r around 0. By
assumption, {G = 0} ⊆ int{F1 − F2 = 0}. By (3.2), there is some H ∈ C(IRn) with
F1 − F2 = H ·G and since G ≥ 1 outside {|x| ≤ r + 1} we know that |H| ≤ c·|F1 − F2| for
some c ∈ IR. Since F1, F2 are polynomially bounded, also H ∈ Cpol(IRn). Thus

F1,A(a1, ..., an)− F2,A(a1, ..., an) = HA(a1, ..., an)·GA(a1, ..., an).

Since |ai| ≤ r for each i we know that GA(a1, ..., an) = 0, which implies the corollary. ¤
(3.4) Proposition and Definition. Let A be a bounded super real closed ring. The
holomorphy ring Hol A is a bounded super real closed subring of A and there is a unique
super real closed ring structure on Hol A, which expands the bounded super real closed ring
structure.

For F ∈ C(IRn) and a1, ..., an ∈ Hol(A) we have

(†) FHol A(a1, ..., an) = GHol A(a1, ..., an)

whenever G ∈ Cpol(IRn) is such that for some r ∈ IN with |ai| ≤ r we have F (x) = G(x)
(x ∈ IRn, |x| ≤ r + 1).

Proof. Hol A is a bounded super real closed subring of A, since for all a1, ..., an ∈ Hol A
and each F ∈ Cpol(IRn), there are r ∈ IR with |ai| ≤ r and a bounded F ∗ ∈ C∗(IRn) such
that F (x) = F ∗(x) (|x| ≤ r + 1); hence by (3.3), FA(a1, ..., an) = F ∗A(a1, ..., an) ∈ HolA.

By (3.3), we may use (†) to define an LΥ-structure on Hol(A) which by definition expands
the bounded super real closed ring structure on Hol A. It is straightforward (using (3.3)) to
check that this defines the unique super real closed ring structure on Hol A which expands
the bounded super real closed ring structure. ¤
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(3.5) Theorem. Let F ∈ Cpol(IRn) and P (T ) ∈ IR[T ], T = (T1, ..., Tn) of total degree d
with |F | ≤ |P | on IRn. Then there is a unique continuous function G ∈ C(IRn × IR) with

(∗) F (x1, ..., xn)·yd+1 = G(x1 ·y, ..., xn ·y, y) ((x̄, y) ∈ IRn × IR).

Moreover G is polynomially bounded.

Proof. Existence is given by [Tr2]:(7.2)(ii). Uniqueness holds, since G(x1, ..., xn, y) is
uniquely determined by (∗) for all (x̄, y) ∈ IRn × IR with y 6= 0. Moreover the proof of
[Tr2]:(7.2)(ii) shows that G is again polynomially bounded (by a polynomial of total degree
d. ¤
(3.6) Theorem. Let A be a bounded super real closed ring and let 1 ∈ S ⊆ A be multiplica-
tively closed. Then there is a unique expansion of the localization S−1A to a bounded super
real closed ring such that the localization map A −→ S−1A is a bounded super homomor-
phism.

The operation of F ∈ Cpol(IRn) on (S−1A)n is given as follows: Pick d ∈ IN0 such that
F is bounded by a polynomial of total degree d and take a polynomially bounded continuous
function G ∈ C(IRn × IR) with

F (x1, ..., xn)·yd+1 = G(x1 ·y, ..., xn ·y, y) ((x̄, y) ∈ IRn × IR).

Such functions exist by (3.5). Then for f1, ..., fn ∈ A and g ∈ S

FS−1A(
f1

g
, ...,

fn

g
) :=

GA(f1, ..., fn, g)
gd+1

∈ S−1A.

Proof. The proof is parallel to the proof of the localization theorem [Tr2]:(7.4), using (3.5)
instead of [Tr2]:(7.2)(i). ¤
(3.7) Corollary. Let ϕ : A −→ B be a super homomorphism between bounded super real
closed rings and let 1 ∈ S ⊆ A be multiplicatively closed such that ϕ(S) ⊆ B×. Then the
natural map S−1A −→ B is a super homomorphism, too.

Proof. This follows immediately from the explicit definition of the bounded super real
closed structure on S−1 ·A in (3.6). ¤

4. The super real closed hull

For a bounded super real closed ring A, we shall now define the smallest super real closed
ring containing A as a bounded super real closed subring.

(4.1) Theorem and Definition. Let A be a bounded super real closed ring. Let

Â = S−1 ·Hol A,

where S is the closure of A× ∩Hol A under multiplication and Υ (recall: this means “closed
under all the functions sHol A, s ∈ Υ”); here we consider Hol(A) equipped with the super real
closed ring structure defined in (3.4). Then there is a unique LΥ-structure on Â such that
Â is a super real closed ring having A as a bounded super real closed subring. Â is called the
super real closed hull of A.

Proof. Firstly, as A× ∩HolA ⊆ S we have A = (A× ∩Hol A)−1 ·Hol A ⊆ S−1 ·Hol A = Â.
By (3.4), Hol(A) is a bounded super real closed subring of A and there is a unique expansion
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of this structure to a super real closed ring. By definition, S is closed under multiplication
and Υ. By (3.1), there is a unique LΥ-structure on Â such that Â is a super real closed
ring having HolA as a super real closed subring. Since Â is also the localization of A at S,
(3.6) implies that A is a bounded super real closed subring of Â.

It remains to show that Â with the LΥ-structure defined above is the unique super real
closed ring structure on Â having A as a bounded super real closed subring. However, any
other super real closed ring B expanding the pure ring Â having A as a bounded super real
closed subring, has Hol A as a super real closed subring (cf. [Tr2]:(9.2)(i)) and the underlying
bounded super real closed ring structure is the one induced from A. By (3.4), the super
real closed ring structures of B and Â induced on Hol A are equal. From the uniqueness
property in (3.1) we know that B is the super real closed ring Â. ¤
(4.2) Corollary. Let F, G ∈ Cpol(IRn).
(i) If {F = 0} ⊆ {G = 0}, then TΥpol ` ∀x̄ F (x̄) = 0 → G(x̄) = 0.
(ii) If {F ≥ 0} ⊆ {G ≥ 0}, then TΥpol ` ∀x̄ F (x̄) ≥ 0 → G(x̄) ≥ 0.

Proof. (i). Let A |= TΥpol . By [Tr2]:(5.5)(iv) the super real closed ring Â is a model of

∀x̄ F (x̄) = 0 → G(x̄) = 0.

Since A is a bounded super real closed subring of Â (by (4.1)), also A is a model of this
sentence.
(ii) follows from (i), since in every real closed ring A, the formula x ≥ 0 is equivalent to
pA(x) = 0, where p : IR −→ IR is the infimum of the identity function and the constant
function 0. ¤
(4.3) Lemma. Let A be a bounded super real closed subring of the super real closed ring
B. There is a unique A-algebra homomorphism Â −→ B and this homomorphism is an
embedding of super real closed rings.

Proof. We have S0 := A× ∩ Hol A ⊆ T := B× ∩ HolB. Since B is super real closed, T is
closed under Υ: this follows from [Tr2]:(6.12), which says that all maximal ideal of B are
Υ-radical.

Since Hol A is a super real closed subring of HolB by (3.4), T ∩Hol A is Υ-closed as well.
Thus the closure S of S0 under Υ and multiplication is contained in T , too. Hence we get a
unique A-algebra homomorphism ϕ : Â = S−1 ·Hol(A) −→ T−1 ·Hol(B) = B and this map
is injective. It remains to show that ϕ is a super homomorphism. This follows immediately
from the definition of the LΥ-structure on both rings in (3.1). ¤
(4.4) Corollary. If A is a super real closed ring, then Â (defined for the underlying
bounded super real closed ring) is equal to A. In particular, the LΥ-structure of A is uniquely
determined by the LΥpol-structure. ¤
(4.5) Corollary. Let B be a super real closed ring and let A be a bounded super real closed
subring of A. Then B ∼=A Â as (bounded) super real closed rings if and only if B is generated
by A as a super real closed ring.

Proof. Let C ⊆ Â be the super real closed subring generated by A. By (4.3) there is
a super real A-algebra monomorphism Â −→ C. Composing this map with the inclusion
C −→ Â and using uniqueness shows that C = Â. Hence Â is generated by A as a super
real closed ring.

Conversely suppose B is generated by A as a super real closed ring. By (4.3), we may
view Â as a super real closed subring of B. Since B is generated by A we get B = Â. ¤
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(4.6) Proposition. Let A be a bounded super real closed ring. Then A is convex in Â,
in other words Â is a subring of the convex closure B of A. There is a unique super real
closed ring-structure on B extending the bounded super real closed ring structure on A. In
particular, every bounded super real closed ring which is convexly closed (e.g. a field) has a
unique expansion to a super real closed ring.

Proof. Since Hol(A) is convex in A, the convex closure B of Hol A contains A. By
[Tr2]:(11.2)(iii) we know that B is the localization of Hol A at the set T of all non zero-divisors
t of Hol A with the property that HolA is convex in (Hol A)t. It follows A× ∩ HolA ⊆ T .
Since T is closed and closed under Υ by [Tr2]:(11.11), the closure S of A×∩Hol A is contained
in T . Hence Â = S−1 ·Hol(A) ⊆ T−1 ·Hol(A) = B, in other words A is convex in Â.

By [Tr2]:(11.12), there is a (unique) expansion of B to a super real closed ring having Â
as super real closed subring. Since B is a localization of Â we get the uniqueness statement
of the proposition from the uniqueness statement in (3.6) together with (4.4). ¤

(4.7) Corollary. Let A be a bounded super real closed subring of a super real closed ring
B. Then A is convex in the super real closed ring generated by A in B.

Proof. By (4.5) and (4.6). ¤

5. Super real ideals

(5.1) Definition. An ideal I of a bounded super real closed ring A is called super real if
sA(I) ⊆ I for every s ∈ Υpol. Observe that in this case I is a radical ideal, in particular I
is convex and satisfies a ∈ I ⇔ |a| ∈ I (a ∈ A).

Certainly, every ideal I of A is contained in a smallest super real ideal of A, denoted by
Υ
√

I.

If A is a super real closed ring, then by [Tr2]:(6.10), the super real ideals are precisely the
Υ-radical ideals (clearly Υpol is a set of generalized root functions as defined in [Tr2]:(5.5)).

(5.2) Examples. Let A be a bounded super real closed ring.
(i) If F ∈ Cpol(IR) is strictly positive everywhere, then in general FA(a) is not a unit for

every unit a ∈ A. For example if A is the bounded super real closed ring Cpol(IR),
F = exp(−x2) and a = 1 + x2 ∈ A.

(ii) If a ∈ A is a unit, then in general, there is some s ∈ Υpol, which is bounded away from
0 outside [−1, 1] such that sA(a) is not a unit. For example if A is the bounded super
real closed ring Cpol(IR), s = exp(− 1

|x| ) and a = 1
1+x2 ∈ A.

Hence in this example, the ideal I = (s(a)) of A is proper, but the super real radical
of I is not proper. In particular, maximal ideals of bounded super real closed rings are
not super real in general. The example also shows that this is not resolved if we replace
Υpol by the set of all s ∈ Υpol, which are bounded away from 0 outside a neighborhood
of 0: or to replace Υpol by the set of all bounded s ∈ Υ such that βs does not have
zeroes different from 0 in the Stone-Cech compactification βIR of IR.

(5.3) Remark. If A ⊆ B is an extension of rings and I is an ideal of A, then I ·B denotes
the ideal generated by I in B. Recall that for a convex subring A of a real closed ring B
and every radical ideal I of A we have I ·B = {a·b | a ∈ I, b ∈ B} and this ideal is again
radical.
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Our first goal in this section is to show that (5.3) remains valid in the bounded super real
closed context. That is, whenever A ⊆ B is a convex extension of bounded super real closed
rings and I is a super real ideal of A, then I·B is a super real ideal of B (cf. (5.7)). In order
to prove this we show that for every s ∈ Υpol, there are t ∈ Υpol and F ∈ Cpol(IR2) with
s(x·y) = t(x)·F (x, y). This is achieved in (5.6) below. First two preparational lemmas from
elementary analysis:

(5.4) Lemma. Let A ⊆ IR2 be compact with projection [a, b] onto the first coordinate. Let C
be the convex hull of A. Then C is again compact and the function f : [a, b] −→ IR defined
by f(x) = max Cx is continuous, convex and satisfies f(a) = max Aa, f(b) = maxAb. Here
Cx denotes the set {y ∈ IR | (x, y) ∈ C} and similarly for Aa, Ab.

Moreover, if A is the graph of a strictly increasing function [a, b] −→ IR, then also f is
strictly increasing.

Proof. C is compact by classical convex geometry (hint: C is the union of 3-simplices
with vertices in A, now use compactness of A). Hence f is well-defined. Since C is convex,
the function f is clearly convex, i.e. satisfies f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y) for all
0 ≤ λ ≤ 1. We have f(a) = maxAa, since for every y > max Aa, there is obviously a convex
set containing A but not containing the point (a, y). Similarly f(b) = max Ab.

Suppose f is not continuous. Take a point x ∈ [a, b], some ε > 0 and a sequence (xn) ⊆
[a, b] converging to x such that |f(xn)− f(x)| ≥ ε. Since C is compact we may assume that
(f(xn)) converges as well, say with limit y. Then (x, y) ∈ C, hence by definition of f(x),
y ≤ f(x) and by choice of ε and the xn we have y + ε < f(x). Hence there are xn, arbitrary
close to x such that f(xn) + ε

2 < f(x). But this contradicts the convexity inequality for f .

Finally assume that A is the graph of a strictly increasing function g : [a, b] −→ IR. For
a ≤ x < y ≤ b we show f(x) < f(y). Since g is increasing, C is contained in [a, b]×[g(a), g(b)]
and so f ≤ g(b) everywhere with f(b) = g(b).
If f(x) < g(b), then by convexity of f , f(y) > f(x). On the other hand f(x) = g(b) is not
possible, since C is the union of the convex hulls of finite subsets of A =Graph(g): no such
set contains (x, g(b)) as g is strictly increasing. ¤

(5.5) Lemma. Let sn ∈ Υ (n ∈ IN). Then there is some t ∈ Υ, 0 ≤ t ≤ 1, symmetric (i.e.
t(−x) = t(x)), non-decreasing and convex in [0,∞) such that for every n ∈ IN there is some
δ > 0 with

t(x) ≥ |sn(x)| (|x| < δ).

Proof. We may replace sn(x) by

|x|+ max{|sk(y)| | |y| ≤ |x|, 1 ≤ k ≤ n}.
Then the new sn is symmetric (i.e. sn(x) = sn(−x)), continuous, its restriction to [0,∞) is
a strictly increasing homeomorphism [0,∞) −→ [0,∞) and we have s1 ≤ s2 ≤ ....

Let ρn := s−1
n ( 1

n ), where s−1
n denotes the compositional inverse of sn ¹ [0,∞). Then

ρn ≤ s−1
1 ( 1

n ), otherwise 1
n = s1(s−1

1 ( 1
n )) < s1(ρn) ≤ sn(ρn) = 1

n , a contradiction. Since
limn→∞ s−1

1 ( 1
n ) = 0 also limn→∞ ρn = 0.

Moreover ρn+1 < ρn, otherwise 1
n = sn(s−1

n ( 1
n )) = sn(ρn) ≤ sn(ρn+1) ≤ sn+1(ρn+1) = 1

n+1 ,
a contradiction.

Hence (ρn) is a strictly decreasing sequence with limn→∞ ρn = 0 and we define a function
τ : (0, ρ1] −→ IR as follows: Given x ∈ (0, ρ1] there is a unique n ∈ IN such that ρn+1 < x ≤
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ρn. Take the unique λ ∈ (0, 1] with x = λρn + (1− λ)ρn+1 and define

τ(x) = max{sn(x), λ
1
n

+ (1− λ)
1

n + 1
}.

Then τ(ρn) = 1
n (n ∈ IN) and

lim
x→ρn+1,x>ρn+1

τ(x) = max{sn(ρn+1),
1

n + 1
} =

1
n + 1

as sn(ρn+1) ≤ sn+1(ρn+1) =
1

n + 1
.

Hence τ is continuous. For x ∈ (ρn+1, ρn] we have τ(x) ≤ max{sn(ρn), 1
n} = 1

n , which shows
that limx→0 τ(x) = 0 and τ has a continuous extension to [0, ρ1] via τ(0) = 0.

Since each sn is strictly increasing, the function τ is increasing in each interval [ρn+1, ρn].
Since τ(ρn) = 1

n we get that τ is a strictly increasing homeomorphism [0, ρ1] −→ [0, 1].

We now define a function t : [0, ρ1] −→ [0, 1]. Let C be the convex hull of the graph of τ
and let

t(x) := sup Cx (0 ≤ x ≤ ρ1),

where Cx := {y ∈ IR | (x, y) ∈ C}. By (5.4), t is a strictly increasing and convex homeomor-
phism [0, ρ1] −→ [0, 1]. We extend t to IR via t(x) = 1 if x ≥ ρ1 and t(x) = t(−x) if x < 0.
Then t is symmetric, 0 ≤ t ≤ 1 and it is straightforward to check that t is still convex in
[0,∞).

It remains to show that for n ∈ IN, there is some δ > 0 with t(x) ≥ sn(x) (|x| < δ):
We take δ = ρn and we may assume that x ∈ (0, δ). Pick m ≥ n with ρm+1 < x ≤ ρm. By
definition of τ , τ(x) ≥ sm(x), thus τ(x) ≥ sm(x) as sm ≥ sn. By definition of t we have
t(x) ≥ τ(x) which shows the claim. ¤

(5.6) Proposition. Let s ∈ Υ. There are t ∈ Υ with 0 ≤ t ≤ 1, c ∈ IR and F ∈ C(IR2)
such that

s(x·y) = t(x)·F (x, y) and |F (x, y)| ≤ c·
(

1 + (1 + |y|)·|s(x·y)|
)

((x, y) ∈ IR2)

Proof. Let s0(x) = x and for n > 0, sn(x) := max|y|≤n n·|s(y ·x)|. Then sn ∈ Υ and from
(5.5) we get some t ∈ Υ, symmetric with 0 ≤ t ≤ 1, non-decreasing and convex in [0,∞)
such that for every n ∈ IN0 there is some δ > 0 with

t(x) ≥ |sn(x)| (|x| < δ).

By definition of sn for n ≥ 1 this means

(∗) t(x) ≥ n·|s(yx)| (|x| < δ, |y| ≤ n).

We first show that the function s(x·y)
t(x) , defined on (IR \ {0})× IR has a continuous extension

F through 0 on IR× IR:

Pick b ∈ IR. For n ∈ IN we have to find some δ > 0 with | s(x·y)
t(x) | < 1

n for all x ∈ (−δ, δ), x 6=
0 and all y with |b − y| < δ. Enlarge n if necessary such that |b| < n and take δ > 0 with
|b| + δ < n such that (∗) holds. Let 0 < |x| < δ and |b − y| < δ. Then |y| < |b| + δ < n.
Thus |s(xy)| ≤ 1

n t(x), as desired.

It remains to find c ∈ IR such that for all (x, y) ∈ IR2, x 6= 0 we have

(†) |s(x·y)
t(x)

| ≤ c·(1 + (1 + |y|)·|s(x·y)|).



Super real ideals 11

By choice of t there is some δ > 0 such that t(x) ≥ |s(x)| and t(x) ≥ |x| for all x with |x| < δ.
It is enough to find an element c satisfying (†) separately on each of the the following four
subsets of IR2, covering IR2:

Case 1. |x| ≥ δ.
Then t(x) = t(|x|) ≥ t(δ) > 0 since t is symmetric and increasing in [0,∞). Hence | s(x·y)

t(x) | ≤
| s(x·y)

t(δ) | and we may choose c := 1
t(δ) .

Case 2. |x| < δ and |y| ≤ 1.

As F is continuous we may choose c as the maximum of |F | on the rectangle [−δ, δ]× [−1, 1].

Case 3. |x| < δ and |y| ≥ 1 and |x·y| ≥ δ.
Then by the choice of δ we have t(x) = t(|x|) ≥ |x|, hence | s(x·y)

t(x) | ≤ | s(x·y)
x | ≤ |y · s(x·y)

δ |, since
1
|x| ≤ |yδ | by assumption in case 3. Hence we may choose c = 1

δ .

Case 4. |x| < δ and |y| ≥ 1 and |x·y| < δ.
Since t is convex in [0,∞) and 1

|y| ≤ 1 we have t(x) = t(|x|) = t( 1
|y| ·|x·y|) ≥ 1

|y| ·t(|x·y|) =
1
|y| ·t(x·y). Since |x·y| < δ we have t(x·y) ≥ |s(x·y)| by the choice of δ. Hence

|s(x·y)
t(x)

| ≤ |y|· t(x·y)
t(x·y)

= |y|

and we may choose c = 1. ¤

(5.7) Proposition. Let A be a convex subring of a bounded super real closed ring B. If I
is a super real ideal of A then I ·B is super real, too.

Proof. For a ∈ I, b ∈ B and s ∈ Υpol we have to show that sB(a·b) ∈ I ·B. By (5.6) there
are t ∈ Υpol, c > 0 and F ∈ C(IR2) with

s(x·y) = t(x)·F (x, y) ((x, y) ∈ IR2)

such that |F (x, y)| ≤ c·
(

1+ (1+ |y|)·|s(x·y)|
)

everywhere. Since s is polynomially bounded

also F is polynomially bounded. Hence sB(a·b) = tB(a)·FB(a, b). Since tB(a) = tA(a) ∈ I
we get the claim. ¤

If A is a super real closed ring and I is an ideal of A, then there is a largest super real ideal
IΥ of A contained in I and IΥ = {a ∈ I | sA(a) ∈ I for all s ∈ Υ}. (cf. [Tr2]:(6.7)).
With the aid of (5.7), this can be extended to bounded super real closed rings:

(5.8) Proposition and Definition. Let A be a bounded super real closed ring. If I is an
ideal of A, then there is a largest super real ideal IΥ contained in I. We have

IΥ = {a ∈ I | sA(a) ∈ I for all s ∈ Υpol} = (I ∩Hol A)Υ ·A.

Proof. Let J := (I∩HolA)Υ. By (5.7) we know that J·A is super real. Moreover it is clear
that every super real ideal of A contained in I has to be contained in K := {a ∈ I | sA(a) ∈
I for all s ∈ Υpol}. In particular J ·A ⊆ K and it remains to show that K ⊆ J ·A.

Pick a ∈ K. Since 1
1+a2 , a

1+a2 ∈ HolA we have a
1+a2 ∈ I ∩ HolA and it remains to show

that a
1+a2 ∈ (I ∩ HolA)Υ. It suffices to show sA(| a

1+a2 |) ∈ I for every strictly increasing
s ∈ Υ and indeed by [Tr2]:(6.7) it suffices to take s ∈ Υpol. Since | a

1+a2 | ≤ |a| we have√
sA(| a

1+a2 |) ≤
√

sA(|a|) ∈ I by our choice of a in K. Now the convexity condition for



12 Marcus Tressl

real closed rings (∗) implies that
√

sA(|a|) divides sA(| a
1+a2 |) in A. Hence sA(| a

1+a2 |) ∈ I as
desired. ¤

(5.9) Theorem. Let I be an ideal of a bounded super real closed ring A. Then

Υ
√

I ·Â =
Υ
√

I ·Â and Υ
√

I =
Υ
√

I ·Â ∩A.

Proof. The inclusion Υ
√

I · Â ⊆ Υ
√

I ·Â follows from Υ
√

I ⊆ Υ
√

I ·Â and the inclusion
Υ
√

I ·Â ⊇ Υ
√

I ·Â holds, since by (5.7), Υ
√

I ·Â is super real.

Clearly ( Υ
√

I ·Â) ∩A contains Υ
√

I and it remains to show that

( Υ
√

I ·Â) ∩A ⊆ Υ
√

I.

We may assume that I = Υ
√

I. Take b ∈ (I ·Â)∩A. In order to show b ∈ I we may replace b
by b2, hence we may assume that b ≥ 0. Since 1+b2 is a unit in A we have b

1+b2 ∈ (I·Â)∩A.
Since b = b

1+b2 ·(1 + b2) we may replace b with b
1+b2 and we may assume that 0 ≤ b ≤ 1.

Since b ∈ I ·Â, there are a ∈ I and c ∈ Â with b = a ·c. As b ≥ 0, b = |b| = |c| · |a| and
we may assume that a, c ≥ 0, too (observe that I is radical, hence |a| ∈ I). By (4.5), Â is
generated by A as a super real closed ring. Thus there are F ∈ C(IRn) and a1, ..., an ∈ A
with c = FÂ(a1, ..., an).

Pick ϕ : [0,∞) −→ [1,∞) continuous and strictly increasing with |F (x̄)| ≤ ϕ(|x̄|) (x̄ ∈
IRn). Define t : IR −→ IR by

t(y) =

{ |y|
ϕ( 1

y2 )
if y 6= 0

0 if y = 0.
Using [Tr2]:(7.2)(i) with s(x) = x we get t ∈ Υ and some G ∈ C(IRn × IR) with

(∗) F (x1, ..., xn)·t(y) = G(x1y, ..., xny, y) on IRn × IR.

Since ϕ is strictly increasing and ≥ 1 everywhere it is straightforward to see that t|[0.∞) :
[0.∞) −→ [0.∞) is an homeomorphism which is polynomially bounded and whose compo-
sitional inverse is polynomially bounded, too. Hence t ∈ Υpol and there is some t1 ∈ Υpol

with t ◦ t1(y) = t1 ◦ t(y) = y for all y ≥ 0. As a ≥ 0 we get a = tA(t1,A(a)) from (4.2)(ii).
Since I is a super real ideal, also a0 := t1,A(a) ∈ I. From (∗) we then get

b = c·a = FÂ(a1, ..., an)·tÂ(a0) = GÂ(a1 ·a0, ..., an ·a0, a0).

Let H := (G ∨ 0) ∧ 1. Then in IR we have

∀(x̄, y) : 0 ≤ G(x1y, ..., xny, y) ≤ 1 ⇒ G(x1y, ..., xny, y) = H(x1y, ..., xny, y).

Since this sentence is also valid in Â and 0 ≤ b ≤ 1 we get

b = HÂ(a1 ·a0, ..., an ·a0, a0).

Since H is bounded it follows b = HA(a1 ·a0, ..., an ·a0, a0). As H(0) = G(0) = 0, there is
some s ∈ Υpol with H(z1, ..., zn+1) ≤ s(z2

1 + ... + z2
n+1) for all z1, ..., zn+1 ∈ IR: choose s so

that s(t) ≥ max{H(z) | ∑
z2
i ≤ t} (t ≥ 0).

It follows 0 ≤ b = HA(a1·a0, ..., an·a0, a0) ≤ sA((a1a0)2 + ... + (ana0)2 + a2
0). Since a0 ∈ I

and I is super real, we get b ∈ I as desired. ¤

Note that in general for a proper ideal I of a bounded super real closed ring A, the ideal
IΥ ·Â is properly contained in (I ·Â)Υ (e.g. if I ·Â = Â, cf. (5.2)(ii))

(∗) The convexity condition says: 0 ≤ a ≤ b ⇒ b|a2.



Super real ideals 13

(5.10) Scholium. Let A be bounded super real closed ring. An ideal of A is super real if
and only if I is the kernel of a bounded super homomorphism A −→ B into a bounded super
real closed ring.

Proof. If ϕ : A −→ B is such a homomorphism and a ∈ I, then sA(a) ∈ I, since
ϕ(sA(a)) = sB(ϕ(a)) = sB(0) = 0.

Conversely suppose I is super real. By (5.7), I ·Â is super real, too. Together with (5.9)
it follows that I ·Â is a super real ideal of Â lying over I. By [Tr2]:(6.3), super real ideals of
Â are kernels of super homomorphisms. Hence we can compose A −→ Â with Â −→ Â/I ·Â
and we get that I is the kernel of a bounded super homomorphism. ¤

(5.11) Corollary. Let A be bounded super real closed and let I ⊆ A be a super real ideal.
There is a unique LΥpol-structure on A/I such that A/I is a bounded super real closed ring
and the residue map A −→ A/I is a bounded super real homomorphism.

Moreover, there is a unique A-algebra homomorphism Â −→ Â/I and this homomorphism
is super real with kernel I·Â. In particular, there is a unique A-algebra isomorphism of super
real closed rings

Â/(I ·Â)
∼=−→ Â/I

Proof. By (5.7) we know that I ·Â is a super real ideal of Â lying over I. Since super
real ideals are kernels of super homomorphisms by (5.10), we can compose A −→ Â with
Â −→ Â/I ·Â and get that I is the kernel of a bounded super homomorphism. The image is
A/I and it is clear that the LΥpol-structure on A/I is uniquely determined by saying that
the residue map A −→ A/I is a bounded super real homomorphism.

We get an embedding of rings A/I −→ Â/I ·Â, which is a bounded super real homomor-
phism. By (4.3), we may view Â/I as a super real closed subring of Â/I ·Â. Since Â is
generated by A as a super real closed ring, also Â/I ·Â is generated by A/I as a super real
closed ring, thus Â/I ·Â = Â/I. Hence we have a super real homomorphism ϕ : Â −→ Â/I
with kernel I · Â. There can only be one such A-algebra homomorphism, since Â is the
localization of A at (Â)× ∩A. ¤

(5.12) Theorem. If ϕ : A −→ B is a bounded super homomorphism between bounded super
real closed rings A and B, then there is a unique extension of ϕ to a ring homomorphism
ϕ̂ : Â −→ B̂ and this extension is super real.

The functor F from bounded super real closed rings to super real closed rings, which maps
A to Â and ϕ to ϕ̂ is an idempotent mono-reflector. This means: F is left adjoint to the
inclusion from the category of super real closed rings into the category of bounded super real
closed rings, F ◦ F = F and the adjoint morphism A −→ Â is a monomorphism.

Proof. First we prove the assertion about ϕ. Uniqueness again follows from the fact that
Â is the localization of A at (Â)× ∩A. Existence of ϕ̂ follows from (5.11) and (4.3).

Hence the functor F is well defined. By (4.4), F ◦ F = F , which also shows that F is a
reflector. F is a mono-reflector, since A −→ Â is a monomorphism. ¤

We conclude this section by showing that the reflector A 7→ Â is also well-behaved with
respect to localization:

(5.13) Proposition. Let A be a bounded super real closed ring, let 1 ∈ S ⊆ A be multiplica-
tively closed and let T be the closure of S in Â under multiplication and Υ. Recall from (3.1)
that there is a unique super real closed ring structure on T−1 ·Â such that the localization
map Â −→ T−1 ·Â is a super homomorphism.
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The natural morphism ϕ̂ : Â −→ ̂S−1 ·A induced by the localization map ϕ : A −→ S−1·A,
sends T into ( ̂S−1 ·A)× and the induced map

T−1 ·Â −→ ̂S−1 ·A
is an A-algebra isomorphism of super real closed rings.

Proof. Since ϕ(S) consists of units of S−1 ·A also ϕ̂(S) consists of units of ̂S−1 ·A.
Since T is the closure of S under multiplication and Υ, ϕ̂(T ) is the closure of ϕ̂(S) under
multiplication and Υ. Since ̂S−1 ·A is super real closed, every maximal ideal of ̂S−1 ·A is
super real (cf. [Tr2]:(6.12)), hence for every for every s ∈ Υ and each element b ∈ ̂S−1 ·A, b

is a unit in ̂S−1 ·A if and only if s(b) is a unit in ̂S−1 ·A. This proves that indeed ϕ̂(T ) ⊆
( ̂S−1 ·A)×.

In order to show that the induced map T−1·Â −→ ̂S−1 ·A is an isomorphism it now suffices
to verify the universal condition defining T−1 ·Â in the category of super real closed rings
for ̂S−1 ·A, more precisely for the morphism Â −→ ̂S−1 ·A. Let ψ : Â −→ B be a super
homomorphism into a super real closed ring B with ψ(T ) ⊆ B×. Then ψ ¹ A : A −→ B is a
super homomorphism with ψ|A(S) ⊆ B× and by (3.7) there is a unique super homomorphism
h : S−1 ·A −→ B such that ψ|A = h ◦ ϕ. By (5.12), ĥ : ̂S−1 ·A −→ B is the unique super
homomorphism extending h with ψ = ĥ ◦ ϕ̂. ¤

6. The super real core

(6.1) Proposition. Let A0 be a convex subring of the super real closed ring A. Then there
is a largest super real closed subring of A that is contained in A0.

Proof. By [Tr2]:(9.2)(i), the convex hull of a super real closed subring of A is itself a
super real closed subring of A. Hence, by using Zorn, it is enough to show for convex super
real closed subrings B, C of A, that the ring D generated by B and C in A is again a
super real closed subring of A. By [Tr2]:(10.5) we know that D is a convex subring of A
and by [Tr2]:(9.2)(i), it is enough to show that D is closed under Υ: Let b1, ..., bn ∈ B
and c1, ..., cn ∈ C. Pick s ∈ Υ. It is enough to show |sA(b1c1 + ... + bncn)| ≤ d for some
d ∈ D. We may certainly assume that s is symmetric (i.e. s(−x) = s(x)) and strictly
increasing on (0,∞). The Cauchy-Schwarz inequality implies s(x1y1 + ...+xnyn) ≤ s(|x||y|)
for all x = (x1, ..., xn), y = (y1, ..., yn) ∈ IRn, where |x|, |y| denote the euclidean norm of x, y
respectively. Since s(|x||y|) ≤ s(|x|2) + s(|y|2) we get s(x1y1 + ... + xnyn) ≤ s(|x|2) + s(|y|2)
on IRn×IRn. Thus sA(b1c1+ ...+bncn) ≤ sA(b2

1+ ...+b2
n)+sA(c2

1+ ...+c2
n) ∈ D as desired.¤

(6.2) Corollary and Definition. For any bounded super real closed ring A there is a
largest bounded super real closed subring, denoted by AΥ with the property ÂΥ = AΥ. We
call AΥ the super real core of A.

Proof. By (6.1), AΥ is the largest super real closed subring of Â, which is contained in A.
¤

Observe that AΥ is convex in A, since Hol A ⊆ AΥ. For a proper ideal I of A we know
IΥ = (I ∩HolA)Υ ·A from (5.8). Hence IΥ = (I ∩AΥ)Υ ·A as well.

On the other hand Υ
√

I ∩AΥ in general properly contains Υ
√

I ∩AΥ (e.g. if Υ
√

I = A).
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(6.3) Corollary. For any bounded super real closed ring A we have

AΥ = {a ∈ A | sÂ(a) ∈ A for all s ∈ Υ}.

Proof. Since AΥ is a super real closed subring of Â we have “⊆”. Conversely take a ∈ A
with sÂ(a) ∈ A for all s ∈ Υ. Let B be the super real closed subring generated by a in
Â. Thus B = {FÂ(a) | F ∈ C(IR)}. Certainly every element of B is bounded in absolute
value by some sÂ(a) for some s ∈ Υ. Hence by choice of a, the convex hull C of B in Â is
contained in A. C is a super real closed subring of B by [Tr2]:(9.2)(i). Hence a ∈ C ⊆ AΥ.¤

(6.4) Observation. If B is a real closed ring and A ⊆ B is a convex subring, then A is a
domain if and only if B is a domain, and A is local if and only if B is local (as follows from
the Gelfand-Kolmogorov Theorem). In particular for every bounded super real closed ring A
we have
(i) A is a domain ⇔ Â is a domain ⇔ AΥ is a domain ⇔ HolA is a domain.
(ii) A is local ⇔ Â is local ⇔ AΥ is local ⇔ HolA is local.

(6.5) Examples. Let

A := {f ∈ C(IR2) | f is polynomially bounded in the second coordinate}.
Hence f ∈ A if and only if for every x ∈ IR, the function f(x, ) : IR −→ IR is polynomially
bounded. Clearly A is a convex subring of C(IR2), hence A is a bounded super real closed
subring of C(IR2). We have Â = C(IR2) and

AΥ = {f ∈ C(IR2) | f is bounded in the second coordinate}.

Here a super real closed ring properly between C∗(IR) and C(IR): Take

A = {f ∈ C(IR) | f is bounded on (0,∞)}.
Also note that there are many super real closed ring properly between C∗([0,∞)) and
C([0,∞)), e.g

A = {f ∈ C(IR) | f is bounded on IN}
has this property since x·distIN(x) ∈ A \ C∗(IR).

The formation of the super real core is functorial: If ϕ : A −→ B is a bounded super
homomorphism between bounded super real closed rings, then ϕ|AΥ is a super homomor-
phism AΥ −→ BΥ: since ϕ̂ respects the LΥ-structure on Â by (5.12), ϕ(AΥ) is a super real
closed subring of B̂ contained in B, i.e. ϕ(AΥ) ⊆ BΥ. Hence the assignment A −→ AΥ

is functorial, by sending ϕ to ϕ|AΥ . We shall not make use of this here. Instead, we state
another description of the super real core.

Since Hol A ⊆ AΥ ⊆ A, there are subsets S of Hol A with AΥ = S−1 ·HolA. We can
compute the largest such set upon input A:

(6.6) Proposition. For any bounded super real closed ring A, the largest multiplicatively
closed subset S of Hol A satisfying AΥ = S−1 ·Hol A is

S = {a ∈ HolA | sHol A(a) ∈ A× for all s ∈ Υ}.

Proof. The super real closed subrings of Â contained in A are all of the form T−1 ·Hol A,
where T ⊆ A× ∩ HolA. Since AΥ is the largest super real closed subring of Â contained in
A, the set T := (AΥ)× ∩Hol A is the largest among all of them. It remains to show T = S.



16 Marcus Tressl

If a ∈ T , then a is a unit in AΥ and since AΥ is super real closed, all elements sAΥ(a) are
units of AΥ as well. Since (AΥ)× ⊆ A× we get a ∈ S.

Conversely let a ∈ S. The set T0 := {sHol A(a) | s ∈ Υ} is closed under multiplication and
Υ (note that s1, s2 ∈ Υ implies s1(x)·s2(x) ∈ Υ and s1 ◦ s2 ∈ Υ). Therefore T−1

0 ·HolA has
a unique super real closed ring structure (induced from Â). Since a ∈ S we know T0 ⊆ A×

and therefore T−1
0 ·Hol A ⊆ A. So by the choice of T we obtain T0 ⊆ T . Thus a ∈ T0 ⊆ T .

¤
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