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DEFINABLE ADDITIVE CATEGORIES

MIKE PREST

Abstract. This is essentially the talk I gave on definable additive cat-
egories; I define these categories, say where they came from, describe
some of what is around them and then point out the 2-category which
they form.

Definable additive categories

Definable additive categories give a context, generalising that of the category
of modules over a ring, in which much of the structure and many of the
arguments familiar from modules are still available.

We say that a full subcategory D of the category Mod-R of (right) mod-
ules over a ring R is a definable subcategory if it is closed under direct
products, direct limits and pure subobjects, where we say that an embedding
A→ B is pure if some ultrapower of it is split. There are many equivalent
definitions of purity but we use this one because it needs only direct limits
and products; let us recall this.

Let (Mi)i∈I be an indexed set of modules (more generally, of objects of
a category with direct products and direct limits). An filter on the index
set I is a set F of subsets of I such that I ∈ F , ∅ /∈ F , F is closed under
finite intersections and, if J ∈ F and J ⊆ J ′ ⊆ I then J ′ ∈ F . The products
MJ =

∏
i∈J Mi, with J ∈ F , together with the canonical projection maps

MJ ′ → MJ , whenever J ⊆ J ′, form a directed system and the direct limit
of this system is the reduced power, M I/F , of the Mi with respect to
F . Clearly it is the quotient of the full product MI =

∏
i∈I Mi by the

submodule consisting of those tuples (mi)i∈I which are 0 on a set of indices
belonging to F . In the case that F is an ultrafilter, that is, a maximal filter,
equivalently for every subset J of I either J or I \ J is in F , we use the
term ultraproduct. In the case that all the component structures Mi are
isomorphic, to M say, we refer to a reduced power and an ultrapower,
and write M I/F .

A more down-to-earth definition of purity is that an inclusion A ≤ B
between R-modules is pure if every finite system of R-linear equations∑

i xirij = aj (j = 1, . . . ,m) with constants aj from A, the rij ∈ R and
with a solution in B already has a solution in A. That these are equiva-
lent follows because there is an index set I and an ultrafilter F on I such
that for every R-module A, AI/F is pure-injective (a result of Sabbagh, [22,
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10 MIKE PREST

Thm. 1]); and, for the other direction, use the fact that the embedding of a
module into any of its reduced powers is pure.

The definition of purity via systems of linear equations might seem less
widely applicable since it makes reference to the elements of the structures
involved; nevertheless, definable categories always are realisable as definable
subcategories of locally finitely presented abelian categories and it follows
that “elementwise” definitions can be made and arguments using “elements”
usually translate from modules to this generality. Of course in the general
case, one loses some features, in particular the existence of enough projective
objects.

To obtain the general notion of definable subcategory we replace the ring
R by any skeletally small preadditive category R: that is, R is a category
with, up to isomorphism, only a set of objects and with each hom-set having
an abelian group structure such that composition is bilinear. If R has just
one object then it is a ring (the endomorphisms of the single object being the
ring in the usual sense). We denote by Mod-R the abelian, Grothendieck
category (Rop,Ab) of contravariant additive functors from R to the cate-
gory Ab of abelian groups. Then we say that a preadditive category D is
definable if it is equivalent to a definable subcategory of Mod-R, meaning
a full subcategory closed under products, direct limits and pure subobjects.

We will see later that every definable category may be realised as a de-
finable subcategory of Mod-R for some skeletally small abelian category R;
in this case Mod-R is locally coherent.

On the other hand, a preadditive category is said to be finitely accessi-
ble if it has direct limits, if every object is a direct limit of finitely presented
objects and if there is, up to isomorphism, just a set of finitely presented ob-
jects (in this generality the definition of an object C being finitely presented
is that the representable functor (C,−) commutes with direct limits). If C
is a finitely accessible additive category with products then we may make
the same definition of “definable subcategory” but it can be seen that the
collection of definable categories is not enlarged by this, because each such
category C is itself a definable subcategory of a category of the form Mod-R.
One also needs the observation that a definable subcategory of a definable
subcategory is, fairly immediately from the definitions (noting that purity
has an “internal” definition), a definable subcategory. One also needs to
note that if D is a definable subcategory of some category C then D has
products and direct limits which coincide with the restrictions of those in C
to D.

We give some examples.
First consider the category Mod-Z = Ab of abelian groups. Examples

of definable subcategories are the category of torsionfree abelian groups
(not an abelian category, note); the category of divisible abelian groups
(a category with no finitely presented object apart from 0); the category
of abelian groups of exponent bounded by some integer n. On the other
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hand the category of those abelian groups with bounded exponent is not
definable since it does not have products. The category of torsion abelian
groups is definable - it is a locally finitely presented abelian category, in
particular an accessible additive category with products - but certainly not
a definable subcategory of Mod-Z. There are, in fact, uncountably many
definable subcategories of Mod-Z, essentially for the same reasons that we
will see in the case of artin algebras of infinite representation type.

One of the first results about definable categories (though the terminology
was different) was that of Eklof and Sabbagh [5, 3.16], showing that if R is a
ring then the class of absolutely pure right modules is definable iff R is right
coherent (and that the class of injective modules is definable iff R is right
noetherian). A module M is absolutely pure if every embedding M → N
into any R-module N is pure; equivalently M is fp-injective, meaning that
it is injective over any embedding with finitely presented cokernel. The same
authors showed [23, Thm. 4] that the class of flat left R-modules is definable
iff R is right coherent and the class of projective left modules is definable iff
R is left perfect and right coherent.

IfM is a module of finite length over its endomorphism ring then Add(M),
the category of direct summands of arbitrary direct sums of copies of M, is
a definable subcategory (see, e.g. [19, 4.3.30].

Apart from module, and more general functor, categories, examples of
definable categories include certain categories of comodules [4] (in particular
the category of comodules over a k-coalgebra where k is a field) and certain
categories of sheaves (in particular the category of sheaves of modules over
a locally noetherian ringed space [20]).

A completely different route to these categories was noticed by Herzog
(for modules) and Krause [14] (in general): they are precisely the categories
(equivalent to one) of the form Ex(A,Ab) where A is a skeletally small
abelian category and Ex(A,B) denotes the category of exact additive func-
tors from A to B - the exactly definable categories.

Model theory and the Ziegler spectrum

If you look at the papers of Eklof and Sabbagh referred to then you will
see, not the statements that certain categories are definable, rather that
certain classes of modules are “elementary” - a notion belonging to mathe-
matical logic but, in somewhat more algebraic terms, meaning closed under
ultraproducts and elementary subobjects. “Elementary subobject” is not an
algebraic concept but, in the context of modules, if the class is closed under
direct summands (as those mentioned above are) then being closed under
elementary subobjects is equivalent to being closed under pure submodules.
Indeed, an alternative characterisation of definable subcategories is those
subcategories closed under ultraproducts, pure submodules and (finite) di-
rect sums.
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The importance of definable categories for the model theory of modules
(the fact that they are in some sense “typical” rather than just giving many
important and nice examples) was, first, a consequence of the pp-elimination
of quantifiers for modules and then was driven home by Ziegler’s work [24]
on the model theory of modules; in particular Ziegler showed that these
categories are in bijection with the closed subsets of the topological space
which he introduced. The pp-elimination of quantifiers theorem, due in-
dependently to Baur, Monk and others (see [16, p. 36] for references), says
that formulas in the first-order model theory of modules reduce to statements
which may be made using “pp formulas” - and these are just projections of
systems of linear equations, so have clear algebraic meaning; in particular,
formulas with many alternations of universal and existential quantifiers are
not needed. This gives rise to another characterisation of definable subcat-
egories: those which are defined by the equivalence of a set of pairs of pp
formulas.

In Ziegler’s paper, which built on earlier work of Garavaglia [8] but went
far beyond and which transformed the landscape of the subject, a topol-
ogy was defined on the set of indecomposable pure-injectives (by “indecom-
posable” we mean direct-sum indecomposable but not 0). A module N is
pure-injective if N is injective over pure embeddings, equivalently if every
pure embedding N → M into any module M is split. There is a struc-
ture theorem, which appears first (to my knowledge) in the work [6, 7.21]
of Fisher, and which states that every pure-injective is the direct sum of a
“discrete” part - the pure-injective hull of a direct sum of indecomposable
pure-injectives - and a “superdecomposable” part - a module without any
indecomposable direct summand. Ziegler showed that every module is el-
ementarily equivalent to (satisfies the same first-order sentences as) some
direct sum of indecomposable pure-injectives (it was known already from
Sabbagh [22, Cor. 4 to Thm. 4] that every module is elementarily equiva-
lent to its pure-injective hull). This meant that theories (in the technical
model-theoretic sense) of modules were strongly reflected by the indecom-
posable pure-injective direct summands of their models. In particular this
means that every definable subcategory is determined by the indecompos-
able pure-injective objects that it contains. So Ziegler defined a topology
on the set, pinjR, of isomorphism-types of indecomposable pure-injectives,
as follows: a basis of open sets consists of the
• (φ/ψ) = {N ∈ pinjR : φ(N) > ψ(N)} as φ/ψ ranges over pairs of pp
formulas (i.e. projected systems of linear equations) such that φ ≥ ψ in the
sense that, in any module, the solution set to φ contains the solution set to
ψ.

This does give a basis for a topology and the resulting space, denoted
ZgR, is termed the (right) Ziegler spectrum of R. Ziegler showed that the
above sets are, provided one allows pp formulas with any finite number of
free variables, exactly the compact open sets and there is a bijection between
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the closed subsets and the elementary classes closed under direct sums and
direct summands (that is, the definable subcategories). Before describing
this bijection we give alternative ways, which do not involve model theory,
of defining the topology.

One makes use of an associated functor category: denote by mod-R the
full subcategory of finitely presented modules and set Fun-R = (mod-R,Ab)
to be the category of additive functors from mod-R to Ab. Denote by
fun-R = (mod-R,Ab)fp the category of finitely presented such functors.
For F ∈ fun-R set:
• (F ) = {N ∈ pinjR :

−→
F N 6= 0} where

−→
F denotes the unique extension of

F (a functor on finitely presented modules) to a functor on Mod-R which
commutes with direct limits (since every module is a direct limit of finitely
presented modules it is obvious how to define

−→
F and that it is well-defined

is easy to check).
Then these sets, as F ranges over fun-R, give a basis for the same topology,

indeed the same basis since, as was shown by Burke [2], the category of
finitely presented functors is equivalent to the category of pp-pairs (given a
pp formula φ the assignment M 7→ φ(M) defines a functor which may be
seen to be in fun-R, so pp pairs φ/ψ also define finitely presented functors,
and conversely ([16, p. 251] or, better, [19, §10.2.5])).

Independently Auslander [1], and Gruson and Jensen [9] showed that
there is a duality d : (mod-R,Ab)fp ' ((R-mod,Ab)fp)op, that is, fun-R '
(fun-(Rop))op. We use the notation fund-R for fun-(Rop). Note that this is a
strong result: there is nothing like a duality between the categories of right
and left modules (in general not even if we restrict to finitely presented
modules) but if we step up one level of representation then we obtain a
perfect duality. This allows another presentation of this basis of open sets:
• (dF ) = {N ∈ pinjR : (dF,N ⊗R −) 6= 0} where N ⊗R − is regarded
as a functor from R-mod to Ab, where dF ranges over arbitrary (by the
duality) functors in fund-R. This follows immediately from the formula
(dF,N ⊗R −) '

−→
F N [17] (see [19, 10.3.5]).

There is yet another presentation, pointed out by Crawley-Boevey [3],
which makes use of neither model theory nor the functor category:
• (f) = {N ∈ pinjR : (f,N) is not epi} where f : A → B ranges over
morphisms in mod-R and (f,N) : (B,N) → (A,N) is the obvious map.

This follows from the fact that every finitely presented functor from
mod-R to Ab has a presentation of the form (B,−) → (A,−) → F → 0
where, by Yoneda, the morphism between the projective functors (B,−) and
(A,−) has the form (f,−) for some such f .

This space was used by Ziegler to resolve a number of questions in the
model theory of modules; at the same time it opened new avenues for ex-
ploration. In particular it gives rise to a notion of support of a module M,
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namely the set of indecomposable pure-injective direct summands of mod-
ules elementarily equivalent to M ; at least that was the original formulation
but it may be said otherwise:
• supp(M) = {N ∈ pinjR : ∀F ∈ fun-R,

−→
F N = 0 whenever

−→
F M = 0}.

Alternatively the support of M is the set of those N ∈ pinjR such that
(N ⊗R −) is torsionfree for the finite type torsion theory on (R-mod,Ab)
which is congenerated by the injective hull of the functor M ⊗R −. The
functor M ⊗R− is an absolutely pure object of the functor category but the
torsion theory cogenerated by its injective hull E(M ⊗ −) (' H(M) ⊗ −
where H(M) denotes the pure-injective hull of M) need not be of finite type
(unless M is a so-called elementary cogenerator), so we mean the finite type
torsion theory whose torsion class is contained in that determined by M⊗−
and which is largest such.

Therefore to a closed subset X of ZgR we may assign X = {M ∈ Mod-R :
supp(M) ⊆ X}. By [24, 4.7, 4.10] this gives a bijection between closed
subsets of ZgR and those full subcategories of Mod-R closed under ultra-
products, direct sums and pure submodules; that is, between closed subsets
of ZgR and definable subcategories of Mod-R. Proofs of the equivalences
of the various definitions of definable subcategories may be found (done in
some generality) in [21]. The other direction of the correspondence is given
by taking a definable subcategory to its intersection with pinjR.

None of this depends on our having started with the category of modules
over a ring: if we replace the ring R by a skeletally small preadditive category
R then everything works, and with few changes. The only point which needs
some consideration is what we mean by an “element” of an object of (for
instance) a functor category: in fact if C is any finitely accessible category
then by an “element” of an object C of C one should mean a morphism
from a finitely presented object A ∈ C to C. There is room for flexibility, in
that a restricted set of generating (in some sense) finitely presented objects
may be chosen. For instance if C = Mod-R then usually we choose just the
single finitely presented object RR and then the equivalence (RR,M) ' M
encapsulates the relation between this notion of “element” and the usual one.
But one could have, for each finitely presented module A, the notion of an A-
element of M, meaning a morphism from A to M. In fact, regarding Mod-R
as a definable subcategory (namely that consisting of the exact functors,
given by evaluation) of (fun-R,Ab) = (fun-R)-Mod, we could take an even
wider notion of element, meaning, after unwinding the definition, that an
F -element of M, where F ∈ fun-R, is just an element of the result,

−→
F M,

of evaluation of F (rather,
−→
F ) at M. Model theory handles this by using a

multi-sorted language with a sort for each element of the chosen generating
set of finitely presented objects (see, for example, [19, Appx. B]).

The bijection between closed subsets of ZgR and definable subcategories
of Mod-R is computationally very useful, especially in those cases where the
space ZgR has been given a reasonably clear description [19, Chpt. 8].
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For instance if R is an artin algebra (a ring with artinian centre and
which is finitely generated as a module over its centre, for example any
algebra finite-dimensional over a central subfield), then every indecompos-
able module of finite length is a point of ZgR. Moreover, the existence of
Auslander-Reiten sequences gives (in fact, is more or less equivalent to) the
fact that every such point is isolated (=open) in the space. Furthermore
these finite-dimensional points are dense in the space (see, e.g., [19, 5.3.36]
for this). Typically “natural” sets of finite-length modules give rise to in-
teresting definable subcategories. One sees in particular that, if R is not of
finite representation type, hence has an infinite set of isolated points in ZgR,
then there are at least continuum many definable subcategories of Mod-R:
take any set of isolated=finite-length points of ZgR, form the closure, not-
ing that no new isolated points get in, and take the corresponding definable
subcategory. The same argument applies to ZgZ.

Associated Structures

Now we turn to the structure surrounding a definable category: first, the
associated functor category.

Suppose that D is a definable subcategory of Mod-R. Define SD = {F ∈
fun-R : FD = 0} where FD = 0 is short for

−→
F D = 0 for every D ∈ D. It

is easily checked that SD is a Serre subcategory of fun-R: it is closed under
subobjects, quotient objects and extensions. Indeed, every Serre subcate-
gory of fun-R arises in this way and the correspondence between definable
subcategories of Mod-R and Serre subcategories of fun-R is bijective. If
we define a hereditary torsion theory, τD say, on Fun-R = (mod-R,Ab)
by declaring the torsion class to be that generated by SD then we obtain
a torsion theory of finite type (one definition of this is by the condition
that the torsionfree class be closed under direct limits) and every torsion
theory on Fun-R of finite type arises in this way. Since Fun-R is locally
coherent it follows (see [19, 11.1.33] for a proof and references) that the lo-
calisation of Fun-R with respect to τD is again locally coherent and has (up
to equivalence), for its subcategory of finitely presented = coherent objects
the quotient category fun-R/SD. We set fun(D) = fun-R/SD and refer to
this as the functor category of D: since it is fun-R modulo those functors
which are 0 when restricted to D (and also since it has a parallel model-
theoretic interpretation) this seems reasonable; but is it well-defined? That
is, suppose that D is equivalent, as a category, to the definable subcategory
D′ of Mod-R′; then is fun-R/SD ' fun-R′/SD′?

This is in fact the case, and follows from results of Krause [14, §2] which
give a characterisation in terms of the category of all pure-injective objects
of D. But there is a simpler characterisation, namely ([18, 12.10]) fun(D) '
(D,Ab)

Q
→ - the category of those additive functors from D to Ab which

commute with direct products and direct limits. All the rest of the associated
structure that we go on to mention can be defined in terms of D and this
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functor category (and the actions of the one on the other) so the issue of
well-definedness is resolved.

For example, associated to the definable subcategory D is the closed sub-
set D = D ∩ ZgR of ZgR. Clearly the set of points can be defined from
D and, from one of the descriptions of the topology, we see that the topol-
ogy can be recovered using fun(D). Equally it can be recovered using the
model theory of D, and that is completely contained in the category fun(D),
regarded as a category of pp pairs, together with its action on D.

The representation of D as an exactly definable category is D '
Ex(fun(D),Ab) where we regard D as a category of functors on fun(D)
simply by evaluation: D 7→ evD : F 7→ FD for D ∈ D.

There is also, associated to a definable category D, a “dual” definable
category which bears the same relation to D as does R-Mod = (R,Ab) to
Mod-R = (Rop,Ab). Namely, if D is a definable subcategory of Mod-R then
take the associated Serre subcategory SD of fun-R and use the aforemen-
tioned duality between the functor categories to obtain Sd

D = {dF : F ∈ SD}.
This is a Serre subcategory of fund-R = fun(R-Mod) so to it corresponds
the definable subcategory {L ∈ R-Mod :

−→
GL = 0 ∀G ∈ Sd

D}. One may check
that this category, which we denote Dd and call the (elementary) dual of
D, is well-defined. It follows from a result of Herzog [10, 4.4] that the Ziegler
spectra of D and its dual Dd are “homeomorphic at the level of topology”,
meaning that there is a (canonical) isomorphism of the lattices of open sets
which also preserves infinite unions. It is not known whether or not these
spaces are homeomorphic at the level of points. Given D ∈ D and E ∈ Dd

one may make some sense of D⊗E (just as one makes sense of M⊗RL when
M ∈ Mod-R and L ∈ R-Mod) though, if taken literally, this does depend on
the representations chosen: one may use the canonical representations with
R = fun(D) but, for instance, whether or not D ⊗ E = 0 can be measured
using any matching representations.

There is another space associated with a definable category D: one takes
its Ziegler spectrum ZgD and then constructs a new topology by taking,
for a basis of open sets, the complements of compact (quasi-compact in the
terminology of some) open sets in the Ziegler topology. This is the rep-
Zariski spectrum; the name arises because it may be regarded as the
Gabriel-Zariski topology of the category Fun(D); that, in turn, is obtained
by applying to Fun(D) that definition of the classical Zariski spectrum of
a commutative noetherian ring which is obtained when it is re-phrased in
terms just of the category of modules.

This rep-Zariski space carries a presheaf of categories, namely, above the
basic open set (F )c (c denoting complement), one places the small abelian
category fun(D)/〈F 〉 where 〈F 〉 is the Serre subcategory generated by the
object F ∈ fun(D). Note that this is the functor category of the definable
subcategory corresponding to the Ziegler-closed set (F )c. The restriction
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morphisms are just the relevant localisation maps (the situation is suffi-
ciently rigidly-defined that we can stay with the language of presheaves and
avoid moving to that of fibred categories and stacks). This is seldom a sheaf
but sometimes significant parts of it do satisfy the glueing condition (see,
e.g., [19, Chpt. 14]). In the case that D is a definable subcategory of a cat-
egory Mod-R of modules over a ring R it also contains within it the thread
consisting of the localisations of the forgetful functor (RR,−), rather the en-
domorphism rings of these objects, and thus one obtains a presheaf of rings
which are, in a weak sense, localisations of R. The ring, End((RR,−)τD),
corresponding to D is referred to as the ring of definable scalars of D
because of its model-theoretic interpretation as exactly that - the ring of pp-
definable maps on objects of D. For more on this ring and some applications,
see [19, Chpt. 6].

We emphasise again that a definable category D carries an internal theory
of purity which coincides with that induced by any definable category of
which it is a definable subcategory. The same applies to the model theory of
objects of D; for example elementary duality of pp formulas is defined and
takes pp formulas for D to those of its elementary dual Dd.

2-categories

Finally we turn to the 2-categories involved. The first, ABEX, is that whose
objects are the skeletally small abelian categories, whose 1-arrows are the
exact functors between these and whose 2-arrows are the natural transfor-
mations. The second, DEF, is that whose objects are the definable additive
categories, whose 1-arrows are the functors which preserve direct products
and direct limits and whose 2-arrows are the natural transformations.

Note that if C and D are definable categories and if I0 : fun(D) → fun(C) is
an exact functor then, since C ' Ex(fun(C),Ab) and D ' Ex(fun(D),Ab),
I0 induces, by composition, a functor I : C → D which, one may check,
preserves direct products and direct limits. The converse is much harder,
was proved by Krause in the case that C is locally finitely presented [14,
7.2] and by Prest in the general case [18, 12.10]: every exact functor from
fun(D) to fun(C) is induced by a functor from C to D which preserves direct
products and direct limits. These functors also turn out to be precisely
the pp-interpretation functors in the sense of model theory. From this one
derives a pair of contravariant 2-equivalences between ABEX and DEF.

In fact, it turns out that this can be derived also from results of Makkai
[15, 5.1] and Hu [12, 5.10(ii)] who work in the general context of Barr-exact
categories. Their methods are very different and, indeed, it was necessary,
at least for me, to work quite hard to understand their language before
comprehending the relation between their results and those just stated.

Finally, we point out something of the richness of this context of definable
categories.
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It is easily observed that the complexity of a ring R qua ring is quite
unrelated to the complexity of its category of modules; on the other hand
the functor category fun-R much better reflects this complexity. There are,
for instance, a number of dimensions which reflect the complexity of Mod-R
and which are defined in terms of fun-R (see, e.g., [11], [13], [19, Chpt. 13]).
This is also a good point at which to note that the functor category fun-R
is equivalent to the free abelian category, Ab(R), of R, more accurately,
of its opposite: fun-R ' (Ab(R)op) ' Ab(Rop) (see, e.g., [19, §10.2.7]
for references). This category, introduced (in a more general setting) by
Freyd [7, 4.1] is defined by the requirement that any additive functor from
R (regarded as a category and, of course, all this applies with R in place of
R) to an abelian category B factors uniquely-to-natural-equivalence through
the canonical map R→ Ab(R).

The context we have described also contains affine algebraic geometry in
the following sense. Suppose that R is commutative; replace R by Ab(R)
(one may check that the centre of any ring R may be recovered as the centre
of the category Ab(R) - the ring of natural transformations from Ab(R)
to itself). To this, equally to Mod-R, one has the associated rep-Zariski
spectrum with its presheaf of small abelian categories; restrict this presheaf
to the subspace based on the set injR ⊆ pinjR of indecomposable injective
modules and pick out the thread of “localisations” of R described earlier. In
the case that R is also noetherian there is a bijection between the primes of R
and the indecomposable injective modules so this gives us a presheaf of rings
over Spec(R) which, one may check, is exactly the structure sheaf of this
affine variety. Morphisms between rings induce morphisms between these
presheaves so one sees, contained in the anti-equivalence between ABEX
and DEF, the well-known anti-equivalence between the category of commu-
tative rings and affine algebraic varieties, at least restricted to noetherian
rings (for more general commutative rings the link between primes of R and
indecomposable injective modules is weaker, see, e.g., [19, §14.4]).
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