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Abstract

In the model theory of modules the Ziegler spectrum, the space
of indecomposable pure-injective modules, has played a key role. We
investigate the possibility of defining a similar space in the context of
G-sets where G is a group.

1 Overview

In this paper we investigate the possibility of defining a Ziegler Spectrum for
G-sets where G is a group. The idea of a Ziegler spectrum comes from the
model theory of modules (see [13], [9] or, for a recent account, [8]). Given a
ring R, the Ziegler spectrum for R is a topological space whose points are the
isomorphism types of indecomposable pure-injective R-modules and whose
closed sets correspond to theories in the language of R-modules axiomatised
by universal implications of positive primitive (pp) formulas. This space has
proved to be very useful in the model theory of modules and has applications
to the representation theory of rings and algebras.

In the context of modules, there is an key equivalence between the cat-
egory of positive-primitively-defined imaginaries and the category of finitely
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presented functors on finitely presented modules. In the paper [10] such
an equivalence is established for general locally finitely presented categories,
though in this, non-additive, context it is the positive existential formulas
which take the role played by positive primitive formulas for modules. Posi-
tive existential formulas are formulas built up from atomic formulas using the
logical operations of conjunction, disjunction, and existential quantification.
A coherent theory (a “basic theory” in the terminology of [1]) is a theory
axiomatised by formulas of the form

∀x(ϕ(x) → ψ(x))

where ϕ and ψ are positive existential. A definable subcategory of a locally
finitely presented category (which will be an elementary class in a first-order
language, see, e.g. [1]) is the subcategory of models of a coherent theory (in
that language). (This terminology is slightly different from that in the addi-
tive context where “definable” means axiomatised by implications between
pp formulas; the difference in the additive case between this more restricted
notion and that of coherent theory is, however, of little consequence and often
disappears.) The main objective of this paper is to find a set of G-sets and
a topology on this set whose closed subsets correspond to coherent theories
of G-sets. In other words, we want to define a Ziegler spectrum for G-sets.

The category G-Set of (left) G-sets for a group G is a well behaved locally
finitely presented category. It can be thought of as the category of covari-
ant set-valued functors on the category {G} which has one object such that
Hom(G,G) = G and composition of maps is simply group multiplication. It
is a locally finitely presented topos (by [1, 1.12]) where the regular left G-set
(which is the functor Hom(G,−) : {G} → Set represented by the unique
object G) is a strong finitely presented generator. A G-set is said to be inde-
composable if it is not the coproduct of two proper sub-G-sets. Coproducts
in G-Set are simply disjoint unions. Clearly a G-set is indecomposable if
and only if it is transitive, and every G-set decomposes into a coproduct of
indecomposable G-sets.

The notions of purity and pure-injectivity (atomic compactness) for G-
sets were studied by Banaschewski [2] and the initial indication was that there
were clear parallels between G-sets and modules (e.g. the existence of pure-
injective hulls [2, Prop. 3]). In the first part of this paper we extend some of
these parallels as well as highlight some important differences. For example,
we prove a quantifier elimination result (Theorem 2.5) which says that any
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formula in the language of G-sets is equivalent to a boolean combination
of quantifier-free formulas and certain sentences which look rather like the
“invariant conditions” for modules. This result is probably known but, as
far as we are aware, has not been published previously. We use this theorem
to show that, as in the modules case, every G-set embeds elementarily in its
pure-injective hull (Lemma 3.6).

In the case of modules, one shows that definable subcategories are de-
termined by the indecomposable pure-injective modules they contain. In
particular, a non-trivial definable subcategory of modules must contain a
(non-trivial) indecomposable pure-injective module. One can show this by
starting with any non-trivial module M in the definable subcategory D. The
pure-injective hull of M , denoted H(M) will also be in D. If H(M) de-
composes into a direct sum of indecomposables, then H(M) will contain an
indecomposable pure-injective direct summand which will also be in D. If
H(M) does not decompose into indecomposables, it will, nevertheless, be
elementarily equivalent to a pure-injective module which does so decompose.
That module will also be in D and it has an indecomposable pure-injective
direct summand which is in D ([13, 6.9]).

This argument does not work in the case of G-sets. Despite the fact that
every G-set decomposes into indecomposables, there is a pure-injective G-set
which does not have an indecomposable pure-injective component (Corol-
lary 3.17). Indeed, we will show that there are non-trivial definable subcat-
egories which contain no non-trivial indecomposables whatsoever (Propo-
sition 4.2). Although this implies that the set of indecomposable pure-
injectives is not the right set of G-sets on which to define a Ziegler topology
(whose closed sets correspond to coherent theories), there is a larger set which
does work. However, an explicit description of the resulting space in specific
examples appears to be hard.

The work reported in this paper forms part of the doctoral thesis of the
first author, who has been supported by a MATHLOGAPS Marie Curie
Fellowship (MEST-CT- 2004-504029).
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2 Basic facts about the category G-Set

2.1 Finitely presented and injective G-sets

If C is a category with directed colimits then an object C of C is said to be
finitely presented if the hom-functor (C,−) commutes with directed colimits.
In the case that C is a variety this reduces to the usual notion of “finitely
generated and finitely related” (see, e.g., [1, 3.10]). It is easy to check that,
in the category of G-sets, the finitely presented objects have the following
characterisation.

Proposition 2.1. A G-set X is finitely presented if and only if X has finitely
many orbits and the stabiliser of every element is finitely generated.

In the additive case the injective objects play an important role. First,
they are obvious examples of pure-injective objects. Second, each module
category has a full embedding into a certain abelian functor category under
which the pure-injective modules exactly correspond to the injective functors
(see Section 3.1). Using that embedding is the shortest route to proving many
of the basic properties of pure-injective modules. We will see that such an
embedding is not available in the context of G-sets. In any case we note the
description of the injective G-sets (and, dually, the projective G-sets) as well
as that of injective hull.

Proposition 2.2.
(a) A G-set X is injective if and only if there is some element x ∈ X with

Stab(x) = G.
(b) X is projective if and only if for every element x ∈ X, Stab(x) = 1.

Proof. (a) Suppose that X is injective. Let {∗} be the one-point G-set with
Stab(∗) = G. X embeds into X

∐{∗}. By injectivity of X there is a map
f : X

∐{∗} → X of G-sets such that f �X= idX . Let x = f(∗). Then for
any g ∈ G, gx = f(g∗) = f(∗) = x. So Stab(x) = G.

Conversely, suppose that x0 ∈ X has G as its stabiliser. Let X ⊆ Y be
an inclusion of G-sets. Then we can define a map f : Y → X by f(x) = x
for all x ∈ X and f(y) = x0 for y ∈ Y \ X. Clearly f is a map of G-sets
which splits the embedding X ⊆ Y .

(b) Suppose that X is projective. Let Y =
∐
x∈X Gx be the disjoint

union of copies of the regular left G-set G indexed by X. Then there is an
epimorphism f : Y → X which takes the identity in Gx to x ∈ X. Since
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X is projective, there is a map f ′ : X → Y such that ff ′ = idX . Suppose
gx = x in X. Then gf ′(x) = f ′(gx) = f ′(x) in Gx which implies that g = 1.

Conversely, suppose that the stabiliser of every element in X is trivial.
ThenX must decompose as

∐
iGi where Gi = G for every i. Suppose we have

an epimorphism f : Y → X. Let 1i be the identity of Gi and let f ′(1i) be an
element of f−1{1i}. Then f ′ : X → Y which takes g ∈ Gi to gf ′(1i) ∈ Y is
a section of f . So X must be projective.

Corollary 2.3.
(a) {∗} is the unique indecomposable injective G-set and every other injective

G-set has the form X
∐{∗}.

(b) The regular left G-set G is the unique indecomposable projective object
(which is also a projective generator for G-Set) and any other projective
G-set is isomorphic to a disjoint union of copies of G.

Given a G-set X which is not injective, one can always embed X into the
injective object X

∐{∗}. This is in fact the injective hull of X. The injective
hull of an object X is an injective object which contains X as an essential
subobject. An inclusion X ⊆ Y is essential if any map f : Y → Z with f �X
an embedding is itself an embedding. It is easy to deduce that the injective
hull of X is unique up to isomorphism over X (thereby justifying the use of
the definite article).

Proposition 2.4. Let X be a noninjective G-set. Then, X
∐{∗} is the

injective hull of X.

Proof. Let f : X
∐{∗} → Y be a map such that f �X is an injection. Suppose

f is not an injection. Then there is an x0 ∈ X with f(∗) = f(x0). Since X
is not injective, there is a g ∈ G such that gx0 6= x0. Now f(x0) = f(∗) =
f(g∗) = gf(∗) = gf(x0) = f(gx0). But since f �X is an injection, we must
have x0 = gx0 which is a contradiction. So the embedding X ⊆ X

∐{∗} is
essential.

2.2 Formulas in the language of G-sets

As in the case of modules over a ring, there is a natural language for G-sets
in which we can prove a quantifier elimination result. This language has
function symbols corresponding to the elements of G as its only nonlogical
symbols. We denote this language by LG. We use the same notation for
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these function symbols as for elements of G and no confusion should arise.
The theory of G-sets, TG, is axiomatised by the sentences

∀x(1x = x)

∀x((gh)x = g(h(x)))

In any G-set we can define the following sets.

supp(g) = {x : gx 6= x}
fix(g) = {x : gx = x}

For a tuple g from G, we define

supp(g) =
⋂
i

supp(gi)

fix(g) =
⋂
i

fix(gi)

Theorem 2.5. Every formula of LG is equivalent modulo TG to a Boolean
combination of formulas of the form “|supp(g)∩fix(h)| ≥ k”, “x ∈ supp(g)∩
fix(h)”, and gx = y.

Proof. We can eliminate one existential quantifier at a time. First consider
the formula

∃x (x ∈ supp(g) ∩ fix(h) ∧ s1y = x ∧ s2y = x ∧ s′1y′ = x ∧ s′2y′ = x)

with free variables y, y′. With a little thought it can be seen that this formula
is equivalent to

y ∈ supp(s−1
1 gs1) ∩ fix(s−1

1 hs1, s
−1
2 s1, s

−1
1 s′2(s

′
1)
−1s2) ∧ y = s−1

1 s′1y
′

With this example in mind, it should be clear that it is sufficient to show
that a formula ψ(y1, . . . , yn) of the form

∃x
(
x ∈ supp(g) ∩ fix(h) ∧

n∧
i=1

(yi 6= si1x ∧ · · · ∧ yi 6= siνi
x)

)

is of the required form. Suppose that this formula is true in a G-set X.
Suppose that for each l ∈ {1, . . . , n}, Jl is a set of indices from {1, . . . , νl}
such that the elements s−1

lj yl for j ∈ Jl, l = 1, . . . , n are all distinct and
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such that each s−1
lj yl is in supp(g) ∩ fix(h). Moreover, take the collection of

sets Jl to be a maximal such collection in the sense that for any l, if j /∈ Jl,
then either s−1

lj yl /∈ supp(g) ∩ fix(h) or s−1
lj yl = s−1

ik yi for some i and k ∈ Ji.
Then the formula ψ is true in X when |supp(g) ∩ fix(h)| ≥ ∑n

l=1 |Jl| + 1.
But, since there are only finitely many different variations on this particular
situation, we can enumerate all the possibilities so that ψ can be rewritten
as the disjunction of all formulas

n∧
l=1

∧
j∈Jl

(
s−1
lj yl ∈ supp(g) ∩ fix(h)

)
∧
∧
l 6=m

∧
j 6=j′∈Jl

∧
k∈Jm

(
s−1
lj yl 6= s−1

mkym ∧ s−1
lj yl 6= s−1

lj′ yl
)

n∧
l=1

∧
j /∈Jl

s−1
lj yl /∈ supp(g) ∩ fix(h) ∨

n∨
m=1

∨
k∈Jm

s−1
lj yl = s−1

mkym


∧ |supp(g) ∩ fix(h)| ≥

(
n∑
l=1

|Jl|
)

+ 1

where each Jl ranges over subsets of {1, . . . , νl}. Since ty ∈ supp(g) ∩ fix(h)
is equivalent to y ∈ supp(t−1gt) ∩ fix(t−1ht) and t1y1 = t2y2 is equivalent to
y1 = t−1

1 t2y2, the above formula is of the required form.

This result looks rather like the “pp elimination of quantifiers” result for
modules (see, e.g., [9, Cor 2.13]). It is probably known but we were unable
to find a reference.

Corollary 2.6. In LG, every sentence is equivalent modulo TG to a Boolean
combination of sentences of the form

|supp(g) ∩ fix(h)| ≥ k

Corollary 2.7. For any G-set X, Th(X) has quantifier elimination.

3 Purity and pure-injectivity in G-Set

3.1 Pure embeddings

Recall that an inclusion of G-setsX ⊆ Y is pure if for every positive primitive
formula ϕ(x) and tuple a from X, Y |= ϕ(a) ⇒ X |= ϕ(a). Now a positive
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primitive formula in LG is equivalent to a formula of the form

x1 ∈ fix(g1) ∧ · · · ∧ xn ∈ fix(gn) ∧ fix(h1) 6= ∅ ∧ · · · ∧ fix(hm) 6= ∅

So we have the following proposition, which appears as Lemma 1 in [2].

Proposition 3.1. The extension X ⊆ Y is pure if and only if for any finite
tuple g from G, fixY (g) 6= ∅ implies fixX(g) 6= ∅.

Let R-Mod be the category of left R-modules and mod-R the category
of finitely presented right R-modules. For any left R-module M , one has a
functor given on objects by TM := − ⊗M ∈ (mod-R,Ab), and with the
obvious action on morphisms. T is a fully faithful functor

R-Mod- - (mod-R,Ab)

such that a monomorphism f : M → N is pure inR-Mod if and only if−⊗f :
(−⊗M) → (−⊗N) is a monomorphism in (mod-R,Ab) (see [5, 7.12, B16]).
Furthermore, a module M is pure-injective if and only if the corresponding
functor TM is injective. This functor, which converts the theory of purity in
R-Mod to the simpler theory around injectivity in the functor category, has
been methodologically very useful for the study of purity and the associated
model theory, so it is natural to ask whether there is a similar picture for
G-sets. We show that there is not.

Let X be a right G-set and Y a left G-set. Then X ⊗G Y is the set of
elements x⊗ y factored by the equivalence relation

x⊗ y ∼ x′ ⊗ y′ ⇔ ∃g ∈ G s.t. x′ = xg and y′ = g−1y

(see [6, p. 380]). The operation ⊗ behaves like a tensor product in the sense
that there is a Hom-tensor adjunction. Given a G-set Y and a set E, we
can get a Gop-set (right G-set) Hom(Y,E) where the action of G is defined
by (fg)(y) = f(gy). If ϕ : X ⊗ Y → E is a map of sets, we can get a map
Γϕ : X → Hom(Y,E) of Gop-sets defined by

Γϕ(x)(y) = ϕ(x⊗ y)

Conversely, if ψ : X → Hom(Y,E) is a map of Gop-sets then there is a map
of sets ∆ψ : X ⊗ Y → E defined by

∆ψ(x⊗ y) = ψ(x)(y)
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These maps give an adjunction

Hom(X ⊗ Y,E)
Γ-

�
∆

Hom(X,Hom(Y,E))

As in the case of modules, for any (left) G-set Y , we get an object −⊗Y ∈
(Gop-set,Set) where Gop-set is the category of finitely presented Gop-sets.
For any F ∈ (Gop-set,Set), FG is a G-set with action defined by gx =
F (lg)(x) where lg is the Gop-endomorphism of G given by left multiplication
by g. The map g ⊗ y 7→ gy gives an isomorphism G ⊗ Y ∼= Y of G-sets
and the map f 7→ f(1) gives an isomorphism Hom(G,X) ∼= X of Gop-sets.
Moreover, the map which evaluates a natural transformation at G, gives a
natural isomorphism

Hom(−⊗ Y, F ) ∼= Hom(Y, FG)

where the right-hand Hom is of (left) G-sets.
With the isomorphism Y ∼= G ⊗ Y it is easy to see that the functor

Y 7→ − ⊗ Y is fully faithful so that G-Set embeds into (Gop-set,Set). The
situation looks remarkably similar to the modules case. So can we charac-
terise pure embeddings of G-sets in terms of the tensor product? Unfortu-
nately the answer to this question is negative.

Proposition 3.2. For any X ∈ Gop-set, the functor X ⊗ − preserves
monomorphisms.

Proof. Let f : Y → Y ′ be a monomorphism of G-sets. (X ⊗ f)(x ⊗ y) =
x⊗f(y). Suppose that x⊗f(y) = x′⊗f(y′). Then there is a g ∈ G such that
x′ = xg and f(y′) = g−1f(y). But f(g−1y) = g−1f(y) = f(y′) implies that
g−1y = y′ since f is assumed to be a monomorphism. Hence x⊗ y = x′⊗ y′.

So the functor Y 7→ − ⊗ Y takes all embeddings of G-sets, not just the
pure ones, to embeddings of functors.

We say that a G-set X is pure-injective if every pure embedding f : X →
Y is split, i.e. there is a map g : Y → X such that gf = idX .

Corollary 3.3. Let X be a pure-injective, noninjective G-set. Then −⊗X
is not an injective functor.
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Proof. Since X is noninjective, there is a G-set Y and a monomorphism f
such that f : X → Y is not split. We claim that − ⊗ f is a non-split
embedding. By above it is certainly an embedding. Suppose it were split.
So there is a θ : −⊗Y → −⊗X such that θ ◦ (−⊗ f) = id. Now θ = −⊗ θG
where θG : Y → X. We have that θGf = idX which is a contradiction.

3.2 Pure-injective G-sets and pure-injective hulls

A standard result of model theory gives us that a G-set X is pure-injective if
and only if every atomic type Φ(x) (where x may be infinite) with parameters
from X is realised in X (note this is equivalent to every pp-type in finitely
many variables being realised, see e.g. Hodges [4, Thm 10.7.1]). It is clear
that we need only consider parameter-free types since if a ∈ X and gx = a is
an equation, then x = g−1a is uniquely determined in X. So let Φ(xi)i be a
parameter-free atomic type of X. Assume that Φ is closed under deductive
consequences of equations. Define the equivalence relation ∼ on the set of
variables {xi}i by

xj ∼ xk ⇔ ∃g ∈ G s.t. gxj = xk ∈ Φ

Suppose that ∼ is transitive on {xi}i. Then Φ is equivalent to the type
Φ′(x0) = {gx0 = x0 : gx0 = x0 ∈ Φ} for any chosen x0. For if we have
the formula gxj = xk ∈ Φ, then since ∼ is transitive, there are h, h′ ∈ G
such that xj = h′x0 and xk = hx0 and so since Φ is assumed to contain all
its equational consequences, we have that h−1gh′x0 = x0 ∈ Φ. Hence this
equation is in Φ′ and implies gxj = xk. So Φ is equivalent to a type in one
variable which corresponds to a subset S ⊆ G with the property that for any
finite tuple s from S, fixX(s) 6= ∅. If ∼ is not transitive on {xi}i, then Φ
is equivalent to a family of types in one variable (one for each equivalence
class). So we have the following characterisation of pure-injectivity for G-sets
which appears as Proposition 1 in [2].

Proposition 3.4. The G-set X is pure-injective (or equationally compact)
if whenever S ⊆ G is such that for any finite tuple s from S, fixX(s) 6= ∅,
then fixX(S) :=

⋂
s∈S fixX(s) 6= ∅.

Equivalently, a G-set X is pure-injective if and only if it satisfies the
following condition.
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(3.2.1) If H ≤ G is a subgroup such that fixX(H ′) 6= ∅ for every
finitely generated subgroup H ′ ≤ H, then fixX(H) 6= ∅.

We say that a subgroup S can be conjugated into a subgroup H if one of the
conjugates of S is contained in H. Since a subgroup of G fixes a point of
the transitive G-set G/H if and only if it can be conjugated into H (because
Stab(gH) = gHg−1) we have the following

Corollary 3.5. The transitive G-set G/H is pure-injective if and only if any
subgroup S ≤ G whose finitely generated subgroups can be conjugated into H,
can itself be conjugated into H.

We shall say that a subgroup H ≤ G is PIP (the pure-injectivity property)
if G/H is a pure-injective G-set. Clearly 1 and G are both PIP. Also, any
finite or normal subgroup of G is PIP.

An extensionX ⊆ Y is pure essential if it is pure and whenever f : Y → Z
is a map such that f �X is a pure embedding, then f is an embedding. By
our characterisation of pure embeddings for G-sets, the f of this definition
will in fact be a pure embedding. A G-set Y is the pure-injective hull of
X if Y is pure-injective and contains X as a pure-essential subobject. The
pure-injective hull of X is unique up to isomorphism over X (see [12]). Ba-
naschewski [2] shows that every G-set X has a pure-injective hull which we
denote by H(X). We will now show that H(X) is elementary equivalent
to X (as in the case of modules); also see [11] where it is commented that
Mycielski pointed out that, by Theorems 1 and 5 of [7], every G-set is an
elementary substructure of a pure-injective G-set.

Lemma 3.6. The pure-injective hull H(X) of X is elementarily equivalent
to X and the embedding of X in H(X) is elementary.

Proof. To see this embed X elementarily in a ∅-saturated extension Y (so in
particular Y is pure-injective and the embedding is pure). The hull H(X)
will sit in between X and Y (see Wenzel [12]) and the embedding of H(X)
in Y will be pure (since X ⊆ H(X) is pure-essential).

X-
pure

- H(X)-
pure

- Y

Let ϕ be a sentence of the form |supp(g) ∩ fix(h)| ≥ k. Clearly X |= ϕ
implies H(X) |= ϕ. For the converse, if H(X) |= ϕ then so does Y |= ϕ. But
now since X ⊆ Y is elementary, X |= ϕ. By Corollary 2.6 X ≡ H(X).
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Since complete theories of G-sets have quantifier elimination, the embed-
ding of X in its pure-injective hull H(X) is elementary (as in the case of
modules).

The paper [2] contains a reasonably explicit construction of the pure-
injective hull which we now describe. Let FF(X) be the set of subgroups
H ≤ G such that for any finitely generated H ′ ≤ H, fixX(H ′) 6= ∅. By
Zorn’s Lemma, any such subgroup H is contained in a maximal one. Let
MX be the set of maximal subgroups H in FF(X) such that fixX(H) = ∅.
Note that ifX is pure-injective, then MX = ∅. Clearly each of the sets FF(X)
and MX is closed under conjugacy in G. Let IMX be a set of representatives
of conjugacy classes of subgroups in MX . Then Banaschewski [2] constructs
the pure-injective hull of X as

X
∐ ∐

H∈IMX

G/H


In the modules case, if a pure-injective module has an indecomposable di-

rect summand, then it has an indecomposable pure-injective direct summand.
So, since every G-set decomposes into indecomposables, one might expect
that every pure-injective G-set contains an indecomposable pure-injective
component. This leads one to ask first of all whether some H ∈ MX is PIP.
We will now show that this is equivalent to a problem about ultrafilters.

For convenience we will write, for any set A, A<ω for the set of finite
tuples from A. Fix an infinite G-set X. Define

LX = {fixX(g) : g ∈ G<ω} ∪ {∅}

Then LX is a bounded meet-semilattice (a poset with meets, a top, and a
bottom element). If G = Sym(X) then LX is the full powerset of X. On the
other hand if G acts trivially on X, so that Gx = G for every x ∈ X, then
LX = {X, ∅}.

If F is a filter of LX , then we define the subgroup

HF = {g ∈ G : fix(g) ∈ F}

which is an object of FF(X). The fact that HF is a subgroup follows from
the identity fix(g) = fix(g−1) and the inclusion fix(g, h) ⊆ fix(gh) for any
g, h ∈ G. That HF is in FF(X) follows from the fact that ∅ /∈ F .
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Conversely, if we have a subgroup H ∈ FF(X), then we can define the
filter

F(H) = {A ∈ LX : A ⊇ fix(h) for some h ∈ H<ω}

This is the smallest filter containing the set {fix(h) : h ∈ H}.
Now,

F(HF) = {A ∈ LX : A ⊇ fix(h) some h ∈ H<ω
F }

= {A ∈ LX : A ⊇ fix(h) where fix(h) ∈ F}

so that, clearly,
F(HF) = F

Also,

HF(H) = {g ∈ G : fix(g) ∈ F(H)}
= {g ∈ G : fix(g) ⊇ fix(h) where h ∈ H<ω}

so that
H ⊆ HF(H)

Lemma 3.7. If H is maximal in FF(X), then H = HF(H)

We shall say that a filter F is principal if there is a nonempty subset
Y ⊆ X such that

F = {A ∈ LX : A ⊇ Y }

The notation for such a filter is 〈Y 〉. Note that Y need not be in LX so our
terminology deviates slightly from the standard one.

Lemma 3.8. If F is a principal filter then fix(HF) 6= ∅.

Proof. Suppose F = 〈Y 〉. Since fix(HF) =
⋂F , we have fix(HF) ⊇ Y 6= ∅.

An ultrafilter is a maximal filter. By Zorn’s Lemma, any filter is contained
in an ultrafilter.

Lemma 3.9. An ultrafilter U of LX is principal if and only if fix(HU) 6= ∅.

Proof. Suppose that fix(HU) 6= ∅. Then U is contained in the proper principal
filter 〈fix(HU)〉 and hence must be equal to it.
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We shall write G(Y ) for the point stabiliser of Y .

Lemma 3.10. Let H = G(Y ) then
(a) H = HF(H).
(b) F(H) = 〈Y 〉

Proof. (a) Suppose h ∈ HF(H). Then fix(h) ∈ F(H) so that fix(h) ⊇ fix(g)
for some g ∈ G<ω

(Y ). But this means fix(h) ⊇ Y which in turn means that
h ∈ G(Y ) = H.

(b) Suppose A ∈ F(H). Then A ⊇ fix(h) where h ∈ G<ω
(Y ). So A ⊇

fix(h) ⊇ Y . That is A ∈ 〈Y 〉. Conversely if A = fix(g) ⊇ Y then g ∈ G<ω
(Y )

so that A ∈ F(H).

Lemma 3.11. If H is a maximal subgroup in FF(X) then F(H) = 〈Y 〉 if
and only if H = G(Y ).

Proof. Suppose that F(H) = 〈Y 〉. Let h ∈ H. Then fix(h) ∈ F(H) = 〈Y 〉
so that h ∈ G(Y ). So H ⊆ G(Y ) and by maximality H = G(Y ). The converse
is Lemma 3.10(b).

Lemma 3.12. Let U be an ultrafilter. Then HU is maximal in FF(X).

Proof. Suppose HU ≤ H where H ∈ FF(X). We then have U = F(HU) ⊆
F(H) so that U = F(H). Now let h ∈ H. Then fix(h) ∈ F(H) = U so that
h ∈ HU . So we have H = HU .

Lemma 3.13. If H is maximal in FF(X) then F(H) is an ultrafilter.

Proof. Let U be an ultrafilter containing F(H). Then H ⊆ HF(H) ⊆ HU .
By maximality, H = HU . So F(H) = F(HU) = U .

The following proposition now follows easily from these lemmas.

Proposition 3.14. There is a bijection between ultrafilters of LX and max-
imal subgroups in FF(X). The nonprincipal ultrafilters correspond to those
subgroups in MX .

The groupG acts on the space of ultrafilters of LX by gU = {gA : A ∈ U}.
For any h1, . . . , hn ∈ G, gfix(h1, . . . , hn) = fix(gh1g

−1, . . . , ghng
−1). This

implies that when H is a maximal subgroup in FF(X),

gF(H) = F(gHg−1)

14



Proposition 3.15. A maximal subgroup H ∈ FF(X) is PIP if and only if,
for any filter F ⊆ LX such that F ⊆ ⋃

g∈G gF(H), there is a g0 ∈ G such
that F ⊆ g0F(H).

Proof. (⇒) Suppose H is a PIP maximal subgroup in FF(X). Let F ⊆ LX

be a filter such that F ⊆ ⋃
g∈G gF(H). Then HF is locally conjugated into H.

For suppose s1, . . . , sn ∈ HF . Then fix(s1, . . . , sn) ∈ F and so there is a g ∈ G
such that fix(s1, . . . , sn) ∈ gF(H) = F(gHg−1). So s1, . . . , sn ∈ HF(gHg−1) =
gHg−1. Since H is PIP, there is a g0 ∈ G such that HF ⊆ g0Hg

−1
0 . So

F = F(HF) ⊆ F(g0Hg
−1
0 ) = g0F(H).

(⇐) Suppose S ≤ G is locally conjugated into H. Then in particular S ∈
FF(X). We claim that F(S) ⊆ ⋃

g∈G gF(H). For suppose A ⊇ fix(s1, . . . , sn)
where s1, . . . , sn ∈ S. By assumption, there is a g ∈ G such that s1, . . . , sn ∈
gHg−1. So fix(s1, . . . , sn) ∈ F(gHg−1) = gF(H) and A must be in gF(H)
which establishes the claim. But this means there is a g0 ∈ G with F(S) ⊆
g0F(H) = F(g0Hg

−1
0 ). Hence S ⊆ HF(S) ⊆ HF(g0Hg

−1
0 ) = g0Hg

−1
0 .

So the PIP subgroups in MX correspond to the nonprincipal ultrafilters
U of LX with the property that

(3.2.2) Whenever F ⊆ LX is a filter such that F ⊆ ⋃
g∈G gU , there

is a g0 ∈ G such that F ⊆ g0U .

Proposition 3.16. Let X be a countable set and G = Sym(X). Then none
of the subgroups in MX is PIP.

Proof. In this case LX is the full powerset of X. Let U be a nonprincipal
ultrafilter on X. Let F be a nonprincipal ultrafilter which is not in the set

X = {gU : g ∈ G}

There clearly must be a nonprincipal ultrafilter F /∈ X since there are 22ℵ0

nonprincipal ultrafilters on X (see [3]) but |X| = 2ℵ0 .
Let A ∈ F . If A is cofinite, then A ∈ ⋂

g gU . On the other hand, if A
is infinite-coinfinite, we can choose an infinite-coinfinite set B ∈ U and a
bijection g : X → X such that gB = A. So A ∈ gU . This implies that
F ⊆ ⋃

g gU but F * gU for any g ∈ G.

Corollary 3.17. Let G = Sym(X) for a countable set X. Then there is
a pure-injective G-set, none of whose indecomposable components is pure-
injective.
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Proof. The pure-injective hull H(X) = X
∐(∐

H∈IMX
G/H

)
has this prop-

erty by the above proposition. Note that X itself is not pure-injective: take S
as in Proposition 3.4 to be the subgroup of finitary permutations (i.e. S con-
sists of those permutations each of which fixes all but finitely many elements
of X); clearly fixX(S) = ∅.

The referee has asked whether there is an example with the property of
3.17 and with G countable; we do not see the answer to this and leave it as
an open problem.

4 Definable subcategories and the Ziegler Spec-

trum

4.1 Definable subcategories of G-Set

Recall that in the non-additive context we say that the definable subcate-
gories are those full subcategories whose objects are models of a coherent
theory. For example, for a fixed g ∈ G, the class

{X ∈ G-Set : fixX(g) 6= ∅}

forms a definable subcategory of G-Set.

Lemma 4.1. The collection of definable subcategories is closed under finite
unions and arbitrary intersections.

Proof. Let D1 = ModT1 and D2 = ModT2 be two definable subcategories
where T1 and T2 are sets of coherent sentences. Then D1 ∪D2 = ModT for

T = {ϕ1 ∨ ϕ2 : ϕ1 ∈ T1, ϕ2 ∈ T2}

Since coherent sentences are closed under disjunctions, we have that D1∪D2

is definable.
Now suppose that Di = ModTi for i ∈ I. Then

⋂
i

Di = Mod

(⋃
i

Ti

)

and so
⋂
iDi is definable.
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If the class of all G-sets were a set, then the definable subcategories would
be closed sets for a topology on G-Set. In the case of modules, definable sub-
categories are determined by (nonzero) indecomposable pure-injectives ([13,
4.10], or see, e.g., [8, 5.1.1]) and there is only a set of these up to isomor-
phism. We therefore have a nice (and in some cases completely classifiable
[8, Chapters 5 & 8]) set of modules with a topology whose closed sets corre-
spond to coherent theories. This is the Ziegler spectrum for modules. It is
natural to ask whether the same is true of G-sets. The first natural set to
consider, in view of what is true about modules, is the set of indecomposable
pure-injective G-sets.

4.2 A Ziegler spectrum for G-sets

Proposition 4.2. Let G be a finitely generated free abelian group of rank
≥ 2. Then there is a definable subcategory D containing a non-trivial G-set
such that D contains no indecomposable G-set other than {∗}

Proof. Let {g1, . . . , gn} be a set of free generators for G. Let H1 = 〈g1〉 and
H2 = 〈g2, . . . , gn〉 and put

T = {∃z1(g1z1 = z1), ∃z2(z2 ∈ fix(H2))}

and let D = ModT . Then

G/Q |= T iff ∃h1, h2 ∈ G s.t. Hh1
1 ≤ Q and Hh2

2 ≤ Q

iff H1 ≤ Q and H2 ≤ Q (since G is abelian)

iff Q = G

It is clear from this example that definable subcategories are not deter-
mined by the indecomposable pure-injectives they contain. For example, sup-
pose the group G above has rank ≥ 3. If H ′

1 = 〈g1, . . . , gn−1〉, H ′
2 = 〈gn〉 and

D′ = Mod(fix(H ′
1) 6= ∅∧fix(H ′

2) 6= ∅), then D′ and D both contain {∗} as the
only indecomposable pure-injective but D 6= D′ sinceG/H1

∐
G/H2 ∈ D\D′.

So we have seen that the set of indecomposable pure-injectives (or even
the set of indecomposables) is too small to function as the underlying set for
a “Ziegler topology”. Let {Hi : i ∈ I} be the set of all subgroups of a group
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G and consider the following set:

X =

∐
i∈I′

G/Hi : I ′ ⊆ I s.t. Hi not conjugate to Hj for i 6= j, i, j ∈ I ′


So X is the set of G-sets such that no two indecomposable components are
isomorphic.

Lemma 4.3. Definable subcategories are determined by their intersection
with the set X.

Proof. LetX be anyG-set. LetX ′ be theG-set whose decomposition consists
of exactly one isomorphic copy for each indecomposable G-set occuring in the
decomposition of X. For any subgroup S ≤ G, fixX(S) 6= ∅ ⇔ fixX′(S) 6=
∅. It is now easy to see that X and X ′ satisfy exactly the same coherent
sentences. So X ∈ D if and only if X ′ ∈ D.

Note that with X and X ′ as in the above proof, we have that X ′ is
pure-injective if X is. Let pinj(X) be the set of pure-injectives in X.

Proposition 4.4. Definable subcategories are determined by their intersec-
tion with pinj(X).

Proof. The crucial fact is that if X ∈ X, then also H(X) ∈ X which can be
seen by considering Banaschewski’s construction of H(X) described earlier.

Let D and D′ be two definable subcategories such that D ∩ pinj(X) =
D′ ∩ pinj(X) and suppose that D 6= D′. By the previous lemma this means
that D∩X 6= D′ ∩X. Let X ∈ D∩X such that X /∈ D′ ∩X. Then H(X) ∈
D∩pinj(X). Since X is elementary equivalent to H(X) (by Lemma 3.6) and
X /∈ D′, we must have H(X) /∈ D′ which is a contradiction.

In light of the above proposition, we can define for a groupG, a topological
space ZgG (the Ziegler spectrum of G) which has underlying set pinj(X)\{∗}
and such that the closed sets are of the form

C(T ) = (pinj(X) \ {∗}) ∩ModT

where T ranges over the coherent theories of G-sets.

Proposition 4.5. The Ziegler topology for G-sets has a basis of compact
open sets.

18



Proof. Consider the closed set C(T ) where T = {ϕλ}λ for coherent sentences
ϕλ. So

C(T ) =
⋂
λ

C(ϕλ)

In other words, the open sets of the form O(ϕ) = ZgG \C(ϕ) give a basis of
open sets for ZgG. We claim that each O(ϕ) is compact.

Suppose that O(ϕ) ⊆ ⋃
λO(ϕλ). So

Mod(¬ϕ) ∩ pinj(X) ⊆
⋃
λ

Mod(¬ϕλ) ∩ pinj(X)

But this implies (by Proposition 4.4)

Mod(¬ϕ) ⊆
⋃
λ

Mod(¬ϕλ)

Or, equivalently ⋂
λ

Mod(ϕλ) ⊆ Mod(ϕ)

That is,
{ϕλ}λ ` ϕ

By the compactness theorem for first-order logic, there are λ1, . . . , λn such
that

ϕλ1 , . . . , ϕλn ` ϕ

which implies that

O(ϕ) ⊆
n⋃
i=1

O(ϕλi
)

by retracing the above steps.

Proposition 4.6. Let G be a finite group. Then the points of ZgG are the
G-sets in X \ {∗} and each point is locally closed.

Proof. The first statement is clear since for a finite group G every G-set
is pure-injective. For the second statement, let X ∈ X be the G-set with
indecomposable decomposition

G/H1

∐
· · ·

∐
G/Hn
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For any subgroup H ≤ G, the sentence ∃z Stab(z) = H is definable by the
negation of a coherent sentence, namely

∃z

z ∈ fix(H) ∧ ¬
∨
h/∈H

hz = z


Let O(H) be the basic open set defined by this sentence. Then we can write

{X} =

(
n⋂
i=1

O(Hi)

)
∩
⋂
{O(H)c : H not conjugate to any Hi}

So the point X is locally closed.

It would be nice to describe explicitly the Ziegler topology for some spe-
cific groups. However it seems that it is a hard problem to classify even the
PIP subgroups in the simplest nontrivial examples. Consider for example
the locally finite group FSym(N) of finitary permutations on N (the permu-
tations with finite support). This group has a very simple normal subgroup
structure, with a unique normal subgroup (which has index 2), namely, the
group of even permutations A∞. It is possible that there are no PIP sub-
groups other than the finite subgroups and A∞. However, we have not been
able to decide this question (even after discussions with group-theorists).
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