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Abstract In homogeneous environments, by overturning the possibility of competitive

exclusion among phytoplankton species, and by regulating the dynamics of overall plankton

population, toxin-producing phytoplankton (TPP) potentially help in maintaining plankton

diversity—a result shown recently. Here, I explore the competitive effects of TPP on

phytoplankton and zooplankton species undergoing spatial movements in the subsurface

water. The spatial interactions among the species are represented in the form of reaction-

diffusion equations. Suitable parametric conditions under which Turing patterns may or

may not evolve are investigated. Spatiotemporal distributions of species biomass are

simulated using the diffusivity assumptions realistic for natural planktonic systems. The

study demonstrates that spatial movements of planktonic systems in the presence of TPP

generate and maintain inhomogeneous biomass distribution of competing phytoplankton, as

well as grazer zooplankton, thereby ensuring the persistence of multiple species in space and

time. The overall results may potentially explain the sustainability of biodiversity and the

spatiotemporal emergence of phytoplankton and zooplankton species under the influence of

TPP combined with their physical movement in the subsurface water.

Keywords Phytoplankton · Toxin · Allelopathy · Competitive coexistence ·
Paradox of plankton · Diffusion · Spatial dynamics

1 Introduction

Over many decades, the extreme diversity of phytoplankton and zooplankton species in

marine ecosystems has been a topic of interest for numerous theoreticians and experimen-

talists. To explain how this high diversity of plankton population is maintained in natural

waters, a number of mechanisms based on temporal, spatial, and spatiotemporal dynamics
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have been proposed [e.g., 1–4]. A detailed account of those various mechanisms can be

found in Scheffer et al. [5] and Roy and Chattopadhyay [6]. Apart from several physical

and biological reasons, the complexity of species interaction, mainly on a spatiotemporal

scale, has been identified as a probable reason for the regulation of plankton dynamics

(detailed in Medvinsky et al. [7]). However, a specific group of phytoplankton common

to most aquatic ecosystems has the special physiological feature of releasing both

“toxic” or “allelopathic agents” harmful for the growth of other algae [8, 9]. Observations

both in vitro and in situ have reported the presence of allelopathy among marine algae

[e.g., 10–14]. Algal toxicity is known to have a significant impact on phytoplankton–

zooplankton interactions [11, 15, 16]. Recently, through an integrated study combining

a field observation and mathematical modeling, along with coauthors, I have attempted

[e.g., 17–19] to explore the role of toxin-producing phytoplankton (TPP) in determining the

dynamics and maintaining diversity of the overall phytoplankton and zooplankton species

in the Bay of Bengal. These studies have suggested that the toxic chemicals liberated by

TPP act as a potential allelopathic agent (see also a review by Cembella [20]) affecting

the growth, as well as the competitive ability of other toxin-sensitive phytoplankton. At a

species-level interaction, these allelopathic effects can ensure a stable coexistence of those

nonallelopathic phytoplankton that would otherwise exhibit competitive exclusion [18]. The

resultant effects of toxin-allelopathy in species-level interaction thus promote the survival of

the weak species belonging to the group of nontoxic phytoplankton (NTP), thereby favoring

the diversity of the entire phytoplankton group [18, 19]. Moreover, driven by the fluctuation

of the toxin-inhibition effect on zooplankton, the dynamics of a large number of nontoxic

and toxic phytoplankton along with grazer zooplankton, when considered as separate

groups, switch between oscillations and stability, leading to a planktonic nonequilibria

in a homogenous environment [17]. Thus, in a homogeneous aquatic environment, TPP

generates a twin-interactive effect, namely, toxin-allelopathy due to toxic species on the

competing NTP and the inhibitory effects of toxic chemicals on grazer zooplankton, which

is potentially responsible for prolonging the coexistence and maintaining biodiversity of

phytoplankton and zooplankton species [e.g., 17–19].

Nevertheless, these results have been drawn from the analysis of mathematical models

applicable to situations where the species are supposed to experience spatial homogeneity.

However, in natural waters, the species of phytoplankton and zooplankton are distributed

over a considerably large spatial regime and are prone to spatial movements due to several

physical and biological reasons. Species interaction in space and time is a well-known

mechanism for the emergence of spatial structure [21, 22]. Applicability of mathematical

models to homogeneous nonspatial situations has restricted the scope of the previous models

[17, 18] to explore the effect of TPP when the phytoplankton and zooplankton species

undergo spatial movements.

The objective of this article is to investigate the effects of spatial interaction on

plankton populations in the presence of toxic species. More specifically, the study aims

to explore the influence of TPP on the emergence of phytoplankton and zooplankton

species over space and time in the subsurface of natural waters. To do this, I proceed

in the following two steps: Firstly, I concentrate only on species-level interaction among

nontoxic and toxic phytoplankton. Starting from a situation where TPP promotes stable

coexistence of NTP in a homogeneous environment, I incorporate the effect of spatial

movement and explore the emergence of phytoplankton species in space and time. To a

two-nontoxic–one-toxic phytoplankton model that has been originally considered by Roy

and Chattopadhyay [18], I incorporate a spatial effect in the form of a one-dimensional
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(horizontal) diffusion. The spatiotemporal distribution of the competing species in the

presence of toxic phytoplankton is investigated. In the second step, I consider the spatial

interaction among NTP, TPP, and zooplankton at the group level. A spatial effect is

incorporated, again in the form of a one-dimensional diffusion, to a model originally

developed by Roy et al. [17] to describe the interactions at the group level among NTP,

TPP, and zooplankton. I explore the emergence of the overall plankton population in space

and time as a combination of these three functional groups.

The organization of the paper is as follows. In Section 2, the spatial model of two-

nontoxic–one-toxic phytoplankton is analyzed and simulated. In Section 3, the model of

NTP–TPP–zooplankton groups is analyzed and simulated. In Section 4, the overall results

are discussed in the context of the space–time emergence of phytoplankton and zooplankton

species in natural environments.

2 A Reaction-diffusion Model of Two NTP Species and A TPP Species

For describing the spatial interaction among two NTP (say, species 1 with biomass P1 and

species 2 with biomass P2) and one TPP (say, species 3 with biomass PT), I formulate a

mathematical model in the form of a set of reaction-diffusion equations under the following

assumptions:

(a) The NTP species (species 1 and 2) compete following the Lotka–Volterra competition

model, where species 1 is a stronger competitor than species 2.

(b) Because the TPP species release toxic chemicals, the NTP species can hardly impose

any competitive effect on them. Thus, the competitive interaction between a nontoxic

and a toxic phytoplankton is negligible [23].

(c) Allelopathic interactions between a NTP and a TPP are described by a nonlinear

function suggested by Solé et al. [23].

(d) The spatial movement of the species on the water surface is described by a horizontal

diffusion term.

Under these assumptions, the reaction-diffusion model can be written as follows:

∂ P1

∂t
= P1

(
r1 − α1 P1 − β12 P2 − γ1 P1 PT

2
) + D1

∂2 P1

∂x2
, (1)

∂ P2

∂t
= P2

(
r2 − α2 P2 − β21 P1 − γ2 P2 PT

2
) + D2

∂2 P2

∂x2
, (2)

∂ PT

∂t
= PT (r3 − α3 PT − β13 P1 − β23 P2) + DT

∂2 PT

∂x2
, (3)

where P1(t, x), P2(t, x), and PT(t, x), respectively, represent the biomass of the two nontoxic

and the toxic phytoplankton at any time t and location x. The meanings of the model

parameters and the numerical values considered are given in Table 1. The restrictions on

time and space are give by 0 ≤ t ≤ ∞ and −∞ ≤ x ≤ ∞, with the following boundary

condition inside a boundary (0, L):

∂ P1(0, t)
∂t

= ∂ P1(L, t)
∂t

= ∂ P2(0, t)
∂t

= ∂ P2(L, t)
∂t

= ∂ PT(0, t)
∂t

= ∂ PT(L, t)
∂t

= 0. (4)
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Table 1 Description and numerical values of parameters of model 1 and model 2 with references

Model Parameters Units Numerical values Reference

Model 1: Specific growth rates of day
−1

0.6, 0.6, 0.66 Roy and

P1 & P2— P1, P2 & PT (r1, r2, r3) Chattopadhyay [18]

biomass of Intraspecific competition cell
−1

day
−1

0.01, 0.04, 0.06 [18]

two NTP coefficients (α1, α2, α3)

species, PT— Interspecific competition cell
−1

day
−1

0.02, 0.03, [18]

biomass of coefficients (β12, β21, 0.005, 0.002

TPP species β13, β23)

(cell/lit) Intensities of allelopathy cell
−3

day
−1

0.00034, 0.00006 [18]

(γ1, γ2)

Diffusion coefficients – Current study

(D1, D2, DT)

Model 2: Specific growth rate of day
−1

0.4632, 0.4425 Roy et al. [17]

PN & PT— NTP, TPP (r1, r2)

biomass of Interspecific competition – 0.002, 0.001 [17]

NTP and coefficients (α1, α2)

TPP groups, Phytoplankton carrying cell lit
−1

505 [17]

Z—biomass of capacity (K)

zooplankton Maximum rates of day
−1

0.6625, 0.435 [17]

(cell/lit) predation (w1, w2)

Half-saturation constants cell lit
−1

45, 30 [17]

(m1, m2)

Maximum NTP conversion day
−1

0.516 [17]

rate (ξ1)

Maximum rate of toxin day
−1

0.198 [17]

inhibition (ξ2)

Zooplankton mortality (c) day
−1

0.109 [17]

Diffusion coefficients – – Current study

(DN, DT , DZ)

The model is analyzed under the following initial conditions:

P1(0, x) > 0, P2(0, x) > 0, PT(0, x) > 0,∀ x. (5)

Analysis of the nonspatial form of the above model (in the absence of diffusion) has

been reported in Roy and Chattopadhyay [18], and it has been shown that the model system

(1–3) in the absence of diffusion is locally asymptotically stable around the positive interior

equilibrium (P∗
1

, P∗
2

, P∗
T ). Now, the solution of the linearized form of the system (1–3) can

be written as follows.

⎛

⎝
P1

P2

PT

⎞

⎠ =
⎛

⎝
ρ1

ρ2

ρT

⎞

⎠ exp(λ t) cos(q x). (6)

Here, λ is the rate of time evolution and q is the wave number of the spatial perturbation.

Substituting the above solution in the linearized form of the system (1–3) around the positive

interior equilibrium (P∗
1

, P∗
2

, P∗
T ), the characteristic equation corresponding to the linearized

form of the system (1–3) is obtained as follows:

λ3 + R1 λ2 + R2 λ + R3 = 0, (7)
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where

R1 = Q1 + (D1 + D2 + DT) q2, (8)

R2 = Q2 + (D1 D2 + D2 DT + D1 DT) q4

−
(

m11 (D2 + DT) + m22 (D1 + DT) + m33 (D1 + D2)
)

q2, (9)

R3 = Q3 + D1 D2 DT q6 + (−D1 D2 m33 − D1 m22 DT − m11 D2 DT) q4

+ (D1 m22 m33 + m11 m22 DT + m11 D2 m33 − m21 m12 DT (10)

− D1 m23 m32 − m31 m13 D2) q2.

The quantities Q1, Q2, and Q3 are the coefficients of the characteristic equation in the

absence of diffusion (D1 = D2 = DT = 0), and the Ruth–Hurwitz criterion for the stability

of the interior equilibrium in the absence of diffusion implies that Q1 > 0, Q3 > 0, and

Q1 Q2 − Q3 > 0. The quantities mij (i, j= 1, 2, 3) are the elements of the community matrix

of the model system (1–3) in the absence of diffusion and are given as follows:

m11 = −P∗
1

(α1 + γ1 (P∗
T )2) < 0,

m12 = −β12 P∗
1

< 0,

m13 = −2γ1 P∗
1

P∗
T < 0,

m21 = −β21 P∗
2

< 0,

m22 = −P∗
2
(α2 + γ2 (P∗

T )2) < 0,

m23 = −2γ2 P∗
2

P∗
T < 0,

m31 = −β13 P∗
T < 0,

m32 = −β23 P∗
T < 0,

m33 = −P∗
T α3 < 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

Here, (P∗
1

, P∗
2

, P∗
T ) is the interior equilibrium of the system (1–3). From the equation of R3,

I define the following quantities:

H0 = D1 D2 DT, (12)

H1 = −D1 D2 m33 − D1 m22 DT − m11 D2 DT, (13)

H2 = D1 m22 m33 + m11 m22 DT + m11 D2 m33

−m21 m12 DT − D1 m23 m32 − m31 m13 D2. (14)

Some algebraic manipulations show that at least one root of the equation (7) has a positive

real part, and thus, diffusive instability (Turing) occurs if either (H2 < 0) or (H1 < 0 and

H2

1
> 3 H0 H2). If any of the above conditions are satisfied, the minimum value of the wave

number q for which Turing instability occurs is given by the following:

qmin =
√

(1/(3 H0))

(
−H1 +

√
H2

1
− 3 H0 H2

)
. (15)

However, for the model system (1–3) H2 > 0 and H1 > 0, and thus, no sufficient condition

exists for the emergence of Turing instability for this system.

It is well known that the traditional Turing pattern might be expected only under the

assumption that the diffusivities of the species are unequal [21]. However, because the

dispersals of the species in a planktonic system are due to turbulent mixing, an assumption
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of unequal diffusivity might be unlikely. Moreover, Turing instability results in stationary

and regular patterns, whereas, in a real-world plankton community, the spatial patterns

observed are nonstationary and irregular [7, 24]. Following these observations, it is fair

to investigate the dynamics of NTP–TPP species under equal diffusivity assumptions

(D1 = D2 = DT = D, say).

The behavior of a reaction-diffusion system is expected to depend on the choice of

initial conditions. A purely homogeneous initial condition may hardly generate any non-

Turing spatial pattern under equal diffusivity [7]. In such cases, the system maintains its

homogeneity over space and the densities of the variables approach attractors [25]. From a

biological or physical point of view, it is reasonable to assume that, instead of a purely

homogeneous distribution, the species are scattered nonuniformly over the space under

consideration [7, 25]. For the subsequent simulations of the model, the initial distribution

of the species over the space has been taken to be uniform. The scattered distribution of the

populations over the space has been initiated by a random sampling of the species biomass

around the equilibrium values of the corresponding nonspatial models. These samples were

used to initialize the biomass over the whole space grids. Further, the biomass distribution

of the species has been initially assigned constant equal values over the times step at the

two end points of the spatial grids.

The spatial model (1–3) simulated at different equal diffusivity conditions gives rise

to characteristically different spatiotemporal biomass pattern for the three phytoplankton

Fig. 1 Patchy pattern of biomass distribution over space and time of two NTP and a TPP obtained from the

model system (1–3). Parameters of the model are given in Table 1. Two characteristically different patches

are obtained for two different values of the equal diffusivity. The upper panels are simulation results for NTP

species 1, NTP species 2, and the TPP species for equal diffusivity D1 = D2 = DT = D = 1.25. The lower
panels are obtained for the same species for equal diffusivity D1 = D2 = DT = D = 0.005. The space grids

are of 0.2 unit and the time steps are of 0.005 unit
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Fig. 2 Spatial distribution of two NTP species (P1 and P2) and a TPP species (PT) described by

model system (1–3) at equal diffusivities (D1 = D2 = DT = D). Keeping the initial condition the same

corresponding to each value of D, the spatial distributions of P1, P2, and PT at time step 400 (time steps

are of 0.005 unit) are presented in left, middle, and right panels respectively. Each row represents the spatial

distributions at a given diffusivity: a D = 1.25, b D = 0.09, c D = 0.05, d D = 0.005

species. At a high diffusivity D = 1.25, the visible spatiotemporal patches of the individual

species of NTP and TPP emerge over the space–time plane (Fig. 1, upper panels). However,

the inhomogeneous patchy pattern of the biomass distribution of competing NTP along

with TPP changes with variations in diffusivity. The spatial patches shrink and become

characteristically irregular for a low diffusivity D = 0.005 (Fig. 1, lower panels). With a

gradual decrease in diffusivity, the biomass distribution of the species remains spatially

irregular (Fig. 2). For a given initial condition, the species exhibits a spatial distribution

almost regular and wavy at high diffusivity (D = 1.25), but highly irregular and fluctuating

at a sufficiently low diffusivity (D = 0.005) (Fig. 2). The coefficient of variation (which is

the ratio of standard deviation to mean) of the species biomass at any time point over space

also explains the variation of the species distribution for different diffusivity (Fig. 3). While

the initial distribution in these simulations was such that the biomass was random over the

spatial grid, a high strength of the diffusivity supports the formation of visible patches from

out of the random biomass distribution.

The dominance level of the two NTPs (P1 and P2) varies in space and time. For a

nonspatial interaction, P1 dominates P2 for the fixed parameter values considered, which

leads to a complete exclusion of P2 in the absence of the toxic species PT [18]. However,

due to spatial movements, the dominance level shows complexity over space and time

(Fig. 4). For high diffusivity (D = 1.25), the space–time plane is divided into a number of
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Fig. 3 The spatial distribution of the coefficient of variation (CV), which is the ratio of standard deviation

to mean of biomass over time for NTP species 1, NTP species 2, and the TPP species. Each row represents

the spatial distributions at a given diffusivity: a D = 1.25, b D = 0.09, c D = 0.05, d D = 0.005

regions such that either P1 or P2 dominates in each region (Fig. 4a–b). For low diffusivity

(D = 0.005), these regions shrink and form a large number of narrow stripe-like regions of

irregular area such that any of the species P1 or P2 dominates in each such stripe (Fig. 4c–d).

These results suggest that, in the presence of toxic species, the intensity of diffusion

determines the dominance level of the species over space and time coordinates.

As mentioned before, in a homogeneous medium, a system of competing phytoplankton

exhibits stable coexistence due to the presence of toxic phytoplankton [18]. Simulations

here suggest that, if the overall interaction takes place in space and time, which is natural for

real-world plankton populations, the species distribution is relatively complex. A variation

in the diffusivity, which the modulation in the inhomogeneous patch structure on the water

surface is responsible for, may be driven by several physical forces. The results show

that the biomass distribution in space and time of those phytoplankton systems consisting

of TPP and NTP strongly depends of the rate of their spatial movements, and a spatial

nonhomogeneous biomass emerges over certain space–time grids. In other words, the toxin-

allelopathy pulls towards dynamical stability, whereas the heterogeneity of the biomass

distribution over space is governed by the diffusion process caused by factors related to

physical forcing.

Now, when the overall plankton community is considered, the effects of the predator

zooplankton play a crucial role on the dynamics of the competing phytoplankton species.

In the following section, I investigate the role of diffusion on the interacting groups of

phytoplankton distinguished as nontoxic and toxic in the presence of common grazers,

zooplankton.
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Fig. 4 Level of dominance of two NTP species over space and time. All the figures are obtained at a common

initial condition; the upper panels (a and b) at equal diffusivity D = 1.25, and the lower panels (c and d) at

D = 0.005. The left panels (a and c) represent the levels of difference in the biomass of P1 and P2 (P1 − P2)

over space and time. The right panels (b and d) depict the space and time at which either P1 or P2 is dominant;

the white shades stand for P1 dominance and black shades stand for P2 dominance

3 A Reaction-diffusion Model of NTP, TPP, and Zooplankton Groups

I formulate a mathematical model describing the spatial interaction of three groups of

plankton (namely, NTP, TPP, and zooplankton) under the following assumptions:

(a) NTP and TPP population follow logistic growth in the absence of the grazer [26].

(b) Both groups of phytoplankton exhibit a Holling type-II functional response to the

grazer zooplankton.

(c) Toxic materials ingested on predation of TPP result in a significant inhibitory effect

on zooplankton growth. It has been shown that the inhibitory substances released by

TPP reduce the grazing pressure of zooplankton [e.g., 27]. Further, field studies have

shown that micro- and mesozooplankton populations are reduced during the blooms

of a chrysophyte Aureococcus anophagefferens [28]. Although this negative effect of

TPP on zooplankton is well known, the exact functional form describing the reduction
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of zooplankton grazing due to TPP biomass is still unknown. However, in Roy et al.

[17], the effect of TPP on zooplankton has been modelled mechanistically through a

negative Holling type II function, and the overall dynamics has been shown consistent

with a set of field observations. In the following, the effect of TPP on zooplankton in

a homogeneous media is described by the model proposed by Roy et al. [17].

(d) The spatial movement of the species on the water surface is described by a horizontal

diffusion term.

Under these assumptions, the mathematical model can be written as follows:

∂ PN

∂t
= PN

{
r1

(
1 − PN + α1 PT

K

)
− w1 Z

m1 + PN

}
+ DN

∂2 PN

∂x2
, (16)

∂ PT

∂t
= PT

{
r2

(
1 − PT + α2 PN

K

)
− w2 Z

m2 + PT

}
+ DT

∂2 PT

∂x2
, (17)

∂ Z
∂t

= Z
{

ξ1 PN

m1 + PN
− ξ2 PT

m2 + PT
− c

}
+ DZ

∂2 Z
∂x2

. (18)

Here, PN(t, x), PT(t, x), and Z(t, x) represent, respectively, the biomass at any time t and

location x of the NTP, TPP, and zooplankton groups. The parameters of the model are

described in Table 1. The restrictions on time and space are given by 0 ≤ t ≤ ∞ and

−∞ ≤ x ≤ ∞. Again, the following boundary condition is assumed inside a boundary

(0, L),

∂ PN(0, t)
∂t

= ∂ PN(L, t)
∂t

= ∂ PT(0, t)
∂t

= ∂ PT(L, t)
∂t

= ∂ Z(0, t)
∂t

= ∂ Z(L, t)
∂t

= 0. (19)

The model is analyzed under the following initial conditions:

PN(0, x) > 0, PT(0, x) > 0, Z(0, x) > 0,∀ x. (20)

Analysis of the nonspatial form of the above model, i.e., in the absence of diffusion,

has been reported in Roy et al. [17], and it has been shown that under the parameter

set considered in Table 1 the system is locally asymptotically stable around the interior

equilibrium (P∗
N, P∗

T , Z∗
). Following that study, for the model system (16–18), the elements

of the community matrix around the interior equilibrium (P∗
N, P∗

T , Z∗
) in the absence of

diffusion are obtained as follows:

m11 = P∗
N

(−r1/K + w1 Z∗/(m1 + P∗
N)2

)
< 0,

m12 = −α1 r1 P∗
N/K < 0,

m13 = −w1 P∗
N/(m1 + P∗

N) < 0,

m21 = −α2 r2 PT/K < 0,

m22 = PT
(−r2/K + w2 Z∗/(m2 + PT)2

)
< 0,

m23 = −w2 PT/(m2 + PT) < 0,

m31 = ξ1 m1 Z∗/(m1 + P∗
N)2 > 0,

m32 = −ξ2 m2 Z∗/(m2 + P∗
T )2 < 0,

m33 = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

Again, with the symbols having meanings defined previously in the case of model system

(1–3), for the model system (16–18), H1 > 0. Now, a set of sufficient conditions for
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H2 < 0, and thus, for diffusion-driven instability (Turing) around the interior equilibria

(P∗
N, P∗

T , Z∗), is the following:

P∗
N P∗

T
[−r1 + (w1 Z∗ K)/(m1 + P∗

N)2
] × [−r2 + (w2 Z∗ K)/(m2 + P∗

T )2
]

DZ

+ (
ξ1 w2

1
P∗

N Z∗ DT
)
/(m1 + P∗

N)3 < (α1 r1 α2 r2 P∗
N P∗

T )DZ/K2
(22)

+ (ξ2 w2

2
P∗

T Z∗ DN)/(m2 + P∗
T )3.

The model (16–18) is simulated using the parameter values considered in Table 1, which

were originally estimated by Roy et al. [17] using a set of field-collected samples. Suitable

choices of the diffusivities (DN, DT , and DZ) lead to the emergence of Turing patterns for the

biomass distribution of NTP, TPP, and zooplankton populations (Fig. 5). This result suggests

that, when the spatial movements of NTP, TPP, and zooplankton groups occur with unequal

diffusivities, an inhomogeneous spatial pattern (Turing) emerges.

As argued in the previous section, the spatial diffusivities of different species in a

planktonic system are very likely to be equal in magnitude. However, since the movement of

zooplankton is generally governed by their swimming activities, it is reasonable to assume
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Fig. 5 Turing instability corresponding to the model system (16–18). The parameters are fixed at the values

given in Table 1, and an appropriate arbitrary values for the diffusions coefficient are chosen (D1 = 5 × 10
4
,

D2 = 0.5 × 10
−7

, DZ = 1 × 10
−5

) that satisfy the sufficient condition for diffusive instability given in (20).

Turing pattern is shown for a NTP group (PN), b TPP group (PT), and c zooplankton group (Z)
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that their diffusion coefficiency is higher than that of phytoplankton. In other words, due

to swimming activity, DZ is likely to be higher than DN and DT by an order of magnitude.

The spatial emergence of the species biomass under these two conditions, namely, equal

diffusivity and higher zooplankton diffusivity, is, therefore, very likely to be different.

Under an equal diffusivity (DN = DT = DZ = D = 0.5, say) assumption, for the set of

parameters fixed as in Table 1, a spatially inhomogeneous distribution of NTP, TPP, and

zooplankton biomass emerges (Fig. 6, upper panels): all three groups of plankton species

coexist over time and space. However, when the diffusivity of zooplankton is considered

higher than that of phytoplankton by an order of magnitude (DN = 0.00125, DT = 0.00125,

DZ = 1.25), the pattern of biomass distributions of phytoplankton and zooplankton that

emerged over space and time is characteristically different, both from each other (Fig. 6,

lower panels) and from that which emerged under equal diffusivity (Fig. 6). Zooplankton,

which is a common grazer of NTP and TPP, benefits from predation of NTP but is affected

on ingestion of TPP [17]. The distribution of zooplankton biomass over space and time

is thus regulated by a combined effect of NTP and TPP presence. For equal diffusivity

(D = 0.5), zooplankton biomass forms visible patches distributed over space and time, and

the distribution of biomass NTP and TPP forms visible patches (Fig. 6). On the other hand,

for high diffusivity of zooplankton, although the biomass distribution of zooplankton forms

visible regular patches, the biomass distributions of NTP and TPP form irregular patterns

(Fig. 6).

The total phytoplankton biomass, in this case, is a combination of the biomass of NTP

and TPP groups, and the difference between these two groups determines the dominance of

Fig. 6 Patchy pattern of biomass distribution over space and time of the two phytoplankton groups (NTP,

TPP) and the zooplankton group obtained from the model system (16–18). Parameters of the model are given

in Table 1. The patches in the upper panels are obtained for equal diffusivity D1 = D2 = DT = D = 0.5. The

patches in the lower panels are obtained for high zooplankton diffusivity DN = DT = 0.00125, DZ = D =
1.25. The space grids are of 0.2 unit and the time steps are of 0.005 unit
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Fig. 7 Distribution of biomass level over space and time for a the total phytoplankton NTP+TPP, b the

difference of the NTP and TPP populations (NTP–TPP), and c the zooplankton population. Parameters of the

model are given in Table 1. The distributions are obtained for DN = DT = 0.00125, DZ = D = 1.25. The

biomass distributions in panels a, b, and c over time and space depict different patterns

either NTP or TPP. For high diffusivity of zooplankton, the total phytoplankton biomass, the

biomass difference between NTP and TPP, and the zooplankton biomass form inhomoge-

neous patches visibly distributed over space and time (Fig. 7a–c). However, the distributions

are characteristically different from each other. Over a time scale, the distribution of the

total phytoplankton emerges in a similar pattern (Fig. 7a), and the patches of zooplankton

distribution are also regular (Fig. 7c). On the other hand, the biomass-distribution pattern

of the difference between NTP and TPP changes over time steps (Fig. 7b). This distribution

shows that the densities of the toxic species and the nontoxic species over spatial locations

change over time, which leads to the emergence of toxic patches and nontoxic patches

(Fig. 7b). The presence of TPP at different densities in different patches determines the

distribution of zooplankton biomass (due to inhibitory effects), and the zooplankton in

turn regulate the distribution of NTP biomass (due to faster spatial movement) over space

and time. The overall distribution may be visibly patchy, or even spatially irregular. These

results demonstrate that, due to spatial interaction, the emergence of NTP and zooplankton

groups in the presence of the TPP group is possible in inhomogeneous biomass distributed

over space and time.

4 Discussion

Recent studies have highlighted the role of toxin-producing species of phytoplankton on

the dynamics of phytoplankton–zooplankton interactions [16, 19, 29–31]. Some previous
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reports [17–19] have suggested that the presence of TPP might provide a potential

mechanism for the maintenance of the coexistence and biodiversity of many phytoplankton

and zooplankton species in a homogeneous environment. Here, I demonstrate how a

nonhomogeneous biomass distribution of competing phytoplankton and grazer zooplankton

emerges over space and time in the presence of toxic species. The study demonstrates

that, in the absence of grazer zooplankton, through a spatial interaction among nontoxic

and toxic phytoplankton, a non-Turing spatial pattern emerges. The spatial structure of

inhomogeneous biomass distribution of NTP and TPP species on the water surface depends

on the diffusion coefficients. These patches are distributed over the space in such a manner

that the dominance level of each species has a distinct demarcation from that of the other.

In the presence of TPP, these spatial structures are obtained under parameter conditions that

lead to a competitive exclusion of weak species when TPP is absent. Spatial heterogeneity

generated due to spatial interaction among nontoxic and toxic phytoplankton thus ensures

the emergence of multiple species over space and time. On the other hand, spatial interaction

among the groups of NTP, TPP, and zooplankton under suitable conditions exhibits Turing

patterns and, under equal-diffusivity assumptions, generates non-Turing patterns. Similar to

species-level interaction, the inhomogeneous patch formations of total phytoplankton and

zooplankton groups are also dependent on the diffusion coefficients. The distribution of the

zooplankton species in space–time regulated by the biomass distribution of toxic species

determines in turn the biomass of the total phytoplankton. Thus, in the presence of the

TPP group, interaction among the phytoplankton and zooplankton groups exhibits spatial

heterogeneity, thereby maintaining the biodiversity.

In natural waters, the dynamics of phytoplankton and zooplankton is regulated by a

huge number of physical and biological factors. Generation of inhomogeneous patchy

distribution of plankton species on the water surface may really be a result of all such

factors, making it very difficult to incorporate each and every one in a model (see also,

Medvinsky et al. [7]). The present study has concentrated solely on direct interactions

among many phytoplankton species structured as NTP and TPP, along with the grazer

zooplankton. The mechanisms evolved for the space–time survival of these species are thus

regulated by interspecific spatial interaction. The role of TPP is significant in this context.

It has been established earlier that TPP acts as a stabilizing factor for phytoplankton–

phytoplankton and phytoplankton–zooplankton interaction [17, 18]. The present study

suggests that, on one hand, TPP species pull towards dynamic stability, and on the other

hand, spatial movement leads towards spatial instability, resulting in the emergence of

phytoplankton and zooplankton species in inhomogeneous biomass distributions over space

and time. Thus, the species of the TPP group present within the plankton community itself

can be viewed as a potential self-regulating candidate, which, combined with physical

movement of the plankton species and the structure of the biomass distribution, boosts the

emergence of the species in the subsurface water.

In a number of previous studies, self-organized patchiness and spatiotemporal chaos in

predator–prey systems (with apparent application to plankton dynamics) have been reported

[e.g., 7, 24, 32]. On one hand, the results of the present study potentially give an extension

of the conceptual results of those studies onto a three-species model plankton system. On

the other hand, this study extends onto a space–time frame the rather newly introduced

mechanism for promotion of plankton diversity due to the presence of TPP [see 6, 19]. To

further extrapolate the results of this study, a couple of complimentary extensions might be

worth investigating. Firstly, the spatial movement considered here is horizontal and, thus,

one-dimensional; however, the movements of the plankton species in the real world are
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three-dimensional. So, it might be of interest to verify the role of TPP species under three-

dimensional movement of the species. Finally, to avoid the model-specificity of the results,

a number of other interaction models (e.g., nutrient–phytoplankton–zooplankton models)

might be considered for the investigation of the effects of TPP under spatial interactions.
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