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A condition on nonuniqueness in optical tomography is stated. The main result applies to steady-state (dc)
diffusion-based optical tomography, wherein we demonstrate that simultaneous unique recovery of diffusion
and absorption coefficients cannot be achieved. A specific example of two images that give identical dc
data is presented. If the refractive index is considered an unknown, then nonuniqueness also occurs in
frequency-domain and time-domain optical tomography, if the underlying model of the diffusion approximation
is employed.  1998 Optical Society of America

OCIS codes: 170.0170, 110.0110.

Optical tomography is the method of using light
in a narrow-wavelength band in the near infrared
(,700 ,1000 nm) to transilluminate tissue and using
the resulting measurements of intensity on the tissue
boundary to reconstruct a map of the optical properties
within the tissue. Recent surveys of optical tomog-
raphy can be found in Refs. 1 and 2. Since there are
several optical properties on which the data depend,
the image reconstruction process can be regarded as an
inverse problem in the recovery of multiple coefficients
from boundary data. The data-acquisition method
can use steady-state, time-resolved, or intensity-
modulated measurements, each of which has been used
to generate reconstructed images.3 – 5

The predominant reconstruction method is based
on recovering the coefficients of a partial differential
equation that is either elliptic (in the steady-state
and the intensity-modulated cases) or parabolic (in the
time-resolved case). A central issue in problems of
this type is uniqueness, i.e., the ability to demonstrate
that only one solution exists that is consistent with
the data.6,7 Whereas some standard results can be
applied in optical tomography, little research has
specifically addressed the particular problems in this
application. A result showing the nonuniqueness of
the inverse source problem was recently presented,8

but the extension to the inverse parameter problem
depended on a Born approximation and a finite number
of sources. The similarity of absorption and scattering
perturbation was shown for a single source, also by use
of a Born approximation.9 In this Letter we present a
simple proof that for steady-state measurements there
exists an infinite set of optical parameters that give
rise to identical data. This result is independent of
the specific location of source and measurement points
and applies in the theoretical limit of complete data.
The proof is based on fundamental properties of the
underlying partial differential equation and does not
depend on a linearization of the inverse problem.

We assume here that the light-propagation model is
the diffusion approximation to the radiative transfer
equation, which in the frequency domain is

2= ? k=F̂svd 1

µ
ma 1

ivn
c

∂
F̂svd ­ q̂0svd , (1)

where F̂ is the isotropic photon density, q̂0 is an
isotropic source distribution, c is the speed of light in
vacuum, n is the refractive index, and the diffusion
coefficient k is given by k ­ f3sma 1 ms

0dg21, where ma
and ms

0 are the absorption and the reduced scattering
coefficient, respectively. We consider the problem in a
domain V, with boundary ≠V. We assume that V ­
V1 < V0, with ≠V0 strictly contained in the interior of
V as shown in Fig. 1. The important aspect of this
decomposition is that we argue that q0 is always zero
within V0. This argument is equivalent to making
the standard assumption that the source is localized to
within a distance z0 of the boundary (usually taken as
z0 ­ 1yms

0) so that irrespective of the source’s location
on the boundary its isotropic representation is wholly
contained within V1. The boundary measurement
Gsbd at b [ ≠V is related to Fsrd by

Gsbd ­ 2cksbdb' ? =Fsbd , (2)

where b' is the outer normal of ≠V at b.
We can consider the model to be characterized

by the three spatially varying functions n, ma, and
k. These functions are strictly positive everywhere,
and in addition, n $ 1; in practice upper and lower
bounds will also exist for each of these functions.

Fig. 1. Definition of V0 and V1. V0 is a region with
every point at least a distance z0 from the domain boundary
≠V. All isotropic sources are wholly contained within V1.

0146-9592/98/110882-03$15.00/0  1998 Optical Society of America



June 1, 1998 / Vol. 23, No. 11 / OPTICS LETTERS 883

A simplification in these types of problem6 is to make
the change of variables g2 ­ k and C ­ gF. Writing
Eq. (1) as

2g2=2F̂ 2 2g= ? g=F̂ 1 maF̂ 1
ivn

c
F̂ ­ q̂0 (3)

and using =2C ­ g=2F 1 2=F ? =g 1 F=2g leads to
the Helmholtz-type equation

2=2Ĉsvd 1 ĥsvdĈsvd ­
q̂0svd

g
, (4)

where ĥsvd ­ h0 1 ivj, with

h0 ­

µ
=2g

g

∂
1

ma

g2
, j ­

n
cg2

. (5)

If it were the case that the source q̂0 in Eq. (4) were of
Neumann type10 and we had complete knowledge of all
pairs of Dirichlet and Neumann data on the boundary,
then one could extend the result found by Sylvester
and Uhlmann6 to the complex case (Ref. 11, theorem
5.2.2) to prove that ĥ is uniquely determined. For
the case of an interior source, as is generally assumed
in diffusion-based optical tomography, to the best of
our knowledge the equivalent uniqueness result is still
an open question. In either case, in the practical
situation when we have a finite number of sources and
detectors we can seek to recover only a finite number of
parameters in an infinite dimensional solution space;
one hopes that this number would increase with the
number of independent measurements. However, as
in any ill-posed problem, the number of parameters
that one can recover at a given accuracy is limited
by the accuracy as well as the number of independent
measurements.

Suppose that we have two ordered sets of functions
sk, ma, nd and sk̃, m̃a, ñd with the equivalent canonical
parameters ĥ and ˜̂h. We can state two conditions:

Condition 1: ˜̂h ­ ĥ everywhere in V,
Condition 2: k̃ ­ k everywhere in V1.

If these conditions are met, then it follows immediately
that both sets will give rise to the same solution C and
thus to the same measured data G.

Consider the dc case sv ­ 0d. Suppose that we add
a function a to k and b to ma:

k̃ ­ k 1 a, m̃a ­ ma 1 b . (6)

Condition 1 is now just h̃0 ­ h0. If condition 2 also
holds, then the identical data will be measured if∑

=2sk 1 ad1/2

sk 1 ad1/2

∏
1

ma 1 b

sk 1 ad
­

µ
=2k1/2

k1/2

∂
1

ma

k
. (7)

Thus for any a satisfying a ­ 0 in V1, we can find b

from

b ­ sk 1 ad
Ωµ

=2k1/2

k1/2

∂
1

ma

k
2

∑
=2sk 1 ad1/2

sk 1 ad1/2

∏æ
2 ma.

(8)

In the case when v fi 0 we consider also that a
function n is added to n:

ñ ­ n 1 n . (9)

Then, in addition to Eq. (7) we require that ñ ­ sk̃ykdn,
leading to the condition

n ­ saykdn . (10)

Thus in general we may state that nonuniqueness
can occur in the frequency-domain case if the refractive
index is allowed to vary. Although in reality the
bounds on k, ma, and n rule out some possibilities, the
above result proves that an infinite set of functions
exists that give rise to the same data. Only if n is
known in V and v fi 0 and ĥ can be found uniquely
can we state that k and ma can be determined uniquely
from

k ­
vn

cI fĥg
, ma ­ k

∑
Rfĥg 2

µ
=2k1/2

k1/2

∂∏
. (11)

We give a simple example of equivalent solutions
for the dc case. If ma and k are constant and a is a
Gaussian, a ­ Ak expf2sx2 1 y2dy2a2g, then, putting
r2 ­ x2 1 y2, we have

b ­
1

4a4

"
A 1 exp

µ
r2

2a2

∂# (
4a2Ask 1 a2md

µ
1 1

a

k

∂

2

"
A 1 2 exp

µ
r2

2a2

∂#
ar2

)
. (12)

We used these functions as the coefficients in a
finite-element implementation of the diffusion equa-
tion11 for the particular case k ­ 0.164609 mm, ma ­
0.025 mm21, and ms

0 ­ 2 mm21, with the Gaussian
standard deviation a ­ 3.57 mm. Constant n ­ 1.4
was assumed, and the domain V was a mesh approxi-
mation to a circle of diameter 50 mm with 13,207 nodes
and 26,040 elements. Figure 2 shows the mesh to-
gether with cross sections showing the functions k̃,
m̃a, and m̃s

0, with the peak of k̃ located at (6.25,
6.25). Note that m̃a is not a Gaussian but has nega-
tive sidelobes. Strictly, the support of a is infinite and
does not satisfy condition 2; however, in this example
z0 ­ 0.5 mm, and the boundary of V0 is suff iciently far
away that k̃ and k are practically identical in V1.

Steady-state dc intensity data were generated
for the homogeneous case sma, kd, the ma-only case
sm̃a, kd, the k-only case sma, k̃d, and the null-space
case sm̃a, k̃d. The source was placed on the boundary
at position (25.0, 0) (u ­ 0 in Fig. 2), and the data
were sampled at 380 angular locations around the
boundary. Figure 3 shows the relative difference
sGinhom 2 GhomdyGhom for the three inhomogeneous
cases. In the ma-only case the increased absorption
leads to a reduction in intensity, whereas for the
k-only case the intensity is increased. The relative
changes are of the same order as the data itself, but
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Fig. 2. Mesh used for the example data, together with
cross sections showing the functions in k, ma, and ms

0 that
give rise to the same boundary data as constant values.

Fig. 3. Relative difference of the intensity data Gm̃a, k 2
Gma, kyGma ,k (ma only), Gma, k̃ 2 Gma, kyGma, k (k only), and
Gm̃a, k̃ 2 Gma, kyGma, k (null space), for a source at u ­ 0.

note that they are not equal and opposite, because the
additive effect of the ma and the k inhomogeneities is
not linear. The null-space case cancels out the change
in intensity almost exactly, to within an order of less
than 0.05%. There is an inherent inaccuracy in these
calculations in that the smooth functions a and b

are represented by piecewise linear approximations.
Nevertheless the order of 0.05% error that results
from round-off error in the subtraction of two similar
numbers at machine precision is within the level of
the previously reported numerical accuracy of the
finite-element method impementation.12 We repeated
the calculations with the source at different angular
positions on the boundary, with similar results in
all cases.

We can also consider the time-domain problem for
which the governing equation is

2= ? k=Fstd 1 maFstd 1
n
c

≠Fstd
≠t

­ q0std , (13)

which has the canonical form

2=2Cstd 1 h0Cstd 1 j
≠Cstd

≠t
­

q0std
g

. (14)

Using the same notation for C̃, h̃0, and j̃, imposing
the same relationships on a, b, and n given in Eqs. (7)
and (10), and subtracting, we get

2=2fC̃std 2 Cstdg 1 h0fC̃std 2 Cstdg1

j
≠fC̃std 2 Cstdg

≠t
­ 0 . (15)

Equation (15) can be satisfied only by C̃std ­ Cstd,
leading once again to nonuniqueness if n is assumed
to be unknown.

We have shown that if the diffusion equation is as-
sumed as the model of light propagation in optical
tomography, then in the general case when three
parameters n, ma, and k are unknown there exists
no unique solution to the inverse problem. For the
steady-data (dc) case an infinite set of functions can
be found that are consistent with the data. One can-
not improve this result by taking more sources and
detectors. If n is assumed to be known, then unique-
ness can be demonstrated in the limit of continu-
ous measurement and source distributions, provided
that either time-resolved or intensity-modulated mea-
surements are employed. It is quite likely, however,
that there exist functions that, although distinguish-
able, have only small differences in the data that they
produce.

The implication for the inverse problem is that the
functions derived lie in the null space of the forward
problem and therefore make the inverse problem ex-
cessively ill posed. Note that the statement presented
here is about the nonlinear problem (forward and in-
verse) and does not depend on a particular discretiza-
tion or linearization. In practice, in inverse problems
one solves a regularized problem wherein a combina-
tion of a likelihood term and a term representing some
constraints on the solution is optimized. Under these
circumstances functions such as those in Fig. 2 will
have different energies and may well be distinguish-
able. Nevertheless, the presence of the fundamental
nonuniqueness may pose a difficulty.

The authors acknowledge the support of the Well-
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