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Recovering Riemannian metrics in
monotone families from boundary

data

Romina Gaburro∗and William R.B. Lionheart †

Abstract.We discuss the inverse problem of determining the anisotropic conduc-
tivity of a body described by a compact, orientable, Riemannian manifold M with
boundary ∂M , when measurements of electric voltages and currents are taken on
all of ∂M . Specifically we consider a one parameter family of conductivity tensors,
extending results obtained in [AG] where the simpler Euclidean case is considered.
Our problem is equivalent to the geometric one of determining a Riemannian metric
in monotone one parameter family of metrics from its Dirichlet to Neumann map on
∂M .

1 Introduction.

In electrical impedance tomography (EIT) one seeks to recover the in-
terior electrical conductivity of an object from measurements of electro-
static potential and current density at the boundary of the object. In
an anisotropic medium Ω, where Ω ⊂ R

n is a domain, with conductiv-
ity tensor the symmetric, positive definite matrix σ = σ(x), x ∈ Ω, the
electrostatic potential u in the medium satisfies

div(σ∇u) = 0, in Ω. (1.1)

Complete information about the relationship between applied surface
current density and surface voltage is represented by the Dirichlet-to-
Neumann map Λσ, associated with σ, defined by

Λσ : u|∂Ω 7→ σ∇u · u|∂Ω,
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2 RECOVERING RIEMANNIAN METRICS

for any solution u to (1.1). In other words the operator Λσ maps the
Dirichlet data u|∂Ω (the boundary voltage) into the corresponding Neu-
mann data (the boundary current density).
The inverse problem consists in determining σ from the knowledge of Λσ.
It is well known that an isotropic (scalar) conductivity is uniquely de-
termined by the boundary data (see [A], [KV1], [KV2], [SU]), while an
anisotropic conductivity tensor is not uniquely determined by the bound-
ary data (see [A], [AG], [L], [LU], [LaU], [N], [S]).
The physical problem of recovering the conductivity of a body by mea-
surements of electric voltage and current density on its surface is closely
related to the geometric problem of determining a Riemannian metric
from its Dirichlet-to-Neumann map for harmonic functions (see [LU],
[L]). For an orientable manifold M of dimension n > 2 the electric field
is the 1-form du ∈ Ω1(M) while the current density corresponds to an
(n−1)-form and the conductivity tensor σ ∈ Ω1(M)⊗(Ωn−1(M))∗, which
can be viewed as a linear map taking electric field to current density
(Ohm’s law). The electrical power dissipation is then du∧σdu ∈ Ωn(M)
and must be a non-vanishing n-form that is symmetric: α∧σβ = β ∧σα
for all α, β ∈ Ω1(M). In dimension n > 2, the conductivity σ uniquely
determines a Riemannian metric g such that

σ = ∗g, (1.2)

where ∗g is the Hodge star operator mapping 1-forms on M into (n− 1)-
forms (see [G1], [L], [LU]). The Dirichlet-to-Neumann map associated
to σ is therefore defined as the operator Λσ mapping functions u|∂M ∈
H1/2(∂M) into (n − 1)-forms Λσ(u|∂M) ∈ H−1/2 (Ωn−1(∂M))

Λσ(u|∂M) = i∗(σdu), (1.3)

for any u, solution to

∆g u = 0, in M, (1.4)

where i : ∂M → M is the inclusion mapping, i∗ is the pull-back of i and
∆g = − ∗g d ∗g d is the Laplace Beltrami operator on functions. (1.4) in
coordinates becomes

n
∑

i j = 1

(det g)−
1
2

∂

∂xi

{

(det g)
1
2 gi j ∂u

∂xj

}

= 0, in M.

For the case n = 2 the situation is different as the two-dimensional
conductivity determines a conformal structure of metrics under scalar
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field, i.e. there exists a metric g such that σ = γ∗g, for a positive function
γ.

In the case of a non-orientable manifold the current density −σdu
must be considered as a twisted (n − 1)-form, that is it takes its values
in the (non-trivial) orientation line bundle. We omit the non-orientable
case from this paper for the sake of clarity.

The problem of recovering the Riemannian metric by boundary data
in the inverse conductivity problem has been studied in the past and
in recent years. Kurylev gave a fruitful insight on the study of inverse
problems on Riemannian manifolds in [K], where the problem of recon-
structing the coefficients of an elliptic operator from its boundary spectral
data is presented. We also refer to [KKL], where the authors investigated
whether the so-called boundary distance representation of a Riemannian
manifold determines the Riemannian manifold. See also [LSU]. Lassas
and Uhlmann [LaU] recovered a connected compact real-analytic Rie-
mannian manifold (M, g) with boundary by making use of the Green’s
function of ∆g. See also [LaTU].

In [AG] the case where the anisotropic conductivity tensor σ is a
priori known to be of type σ(x) = σ(x, a(x)), is considered, where the
one parameter matrix valued functions t −→ σ(x, t) is a priori known
to satisfies the so-called monotonicity assumption

Dt σ(·, t) ≥ Const.I > 0. (1.5)

The aim of this paper is to consider the more general case of a Rie-
mannian manifold (M, g0) of dimension n ≥ 3, where a one parameter
family of metrics of type

t −→ gt(x) := g(x, t),

is prescribed on M , for any t ∈ [λ−1, λ], with λ > 0 constant and such
that g(x, 0) = g0(x). Denoting by ∗ t the Hodge star operator associated
to the metric gt, we assume that the following monotonicity condition is
satisfied

∗ 0 ((Dt∗ t) θ ∧ θ) ≥ Const. ∗ 0 (∗ 0 θ ∧ θ) , for any θ ∈ Ω1(M).
(1.6)

The results obtained in [AG] are given in terms of the Euclidean
metric (g0)ij = δij, here we allow g0 to be a general Riemannian metric
and condition (1.6) is given in terms of it. The case of a manifold with
a flat metric g0 will be still more general than the one treated in [AG].
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Results of stability and uniqueness at the boundary and then global
uniqueness in the interior are proven in the present paper.

The paper is organized as follows. Section 2 contains the statements
of the main results (Theorems 2.3, 2.4, 2.5 and Corollary 2.6). In Section
3 we prove results of the existence of singular solutions on a Riemannian
manifold. In Section 4 we give the proofs of the main results. For sake of
brevity we only give the proof of Theorem 2.3, 2.4 as proofs of Theorem
2.5, and Corollary 2.6 follow the same line of proof of Theorems 2.3, 2.4
and the arguments used in [A], [AG].

2 Main results.

Let (N, g0) be a C∞ open, bounded Riemannian manifold of dimension
d ≥ 3.

DEFINITION 2.1. For any x0 ∈ N , v ∈ Tx0N , we denote by ρv, x0(s)
the geodesic of length s, starting at x0 with direction v.

DEFINITION 2.2. For any x0 ∈ N , we denote by BN, r(x
0) the geodesic

ball

BN, r(x
0) =

{

x ∈ N | d(x, x0) < r
}

,

where d(·, ·) is the geodesic distance on N induced by g0.

Let M ⊂ N be a compact submanifold of N , of dimension 3 ≤ n ≤ d,
with Lipschitz boundary ∂M ; the definition of Lipschitz boundary we
will be using is the one formulated below.

DEFINITION 2.3. Given positive numbers L, r, h satisfying h ≥ Lr,
we say that a compact manifold M ⊂ N has Lipschitz boundary if, for
every x0 ∈ ∂M , there exists a chart (U, {xi}

n
i=1) around x0 in N and an

(n-1)-dimensional submanifold M ⊂ U , with xn = 0, such that x0 ∈ M
and such that ∂M∩Cr, h is the graph of a Lipschitz function f : M −→ R

which satisfies

|f(x ′) − f(y ′)| ≤ L d (x ′, y ′) ,

for any x ′, y ′ ∈ M∩ Cr, h, where ν̃ = − ∂
∂xn

on ∂M ∩ U and

Cr, h =
{

x = ρν̃, y(s)| y ∈ BM, r(x
0), −h < s < h

}

is the geodesic cylinder in N of base BM, r(x
0) and height h. Moreover

M ∩ Cr, h =
{

x ∈ Cr, h| y ∈ BM, r(x
0), −h < s < 0

}

.
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Let us denote by µg0 the volume form associated to the metric g0 and by
∇ the Levi-Civita connection on (N, g0); the class H of metrics gt(x) :=
g(x, t) admissible for our problem is given by the following definition. In
the sequel we will make use of both notations gt(x) and g(x, t), depending
on the contest.

DEFINITION 2.4. Given p > n, λ, E, E , F > 0, and denoting by
T 2

0 (M) the bundle of covariant tensors of type (2, 0) on M, we say that
the metric g(·, ·) ∈ H if it satisfies the following conditions

gt ∈ W 1, p
(

M × [λ−1, λ], T 2
0 (M)

)

; (2.1)

Dtgt ∈ W 1, p
(

M × [λ−1, λ], T 2
0 (M)

)

; (2.2)

Ess supt∈[λ−1, λ]

(

‖ gt(·) ‖Lp(M, µg0 ) + ‖ ∇Xgt(·) ‖Lp(M, µg0 )

+ ‖Dtgt(·)‖Lp(M, µg0 ) +‖Dt∇Xgt(·)‖Lp(M, µg0 )

)

≤ E ,

for any smooth vector field X∈C∞(TM), with ‖X‖L∞(M, µg0 )=1.(2.3)

λ−1 |ξ|2 ≤ gij(x)ξiξj ≤ λ |ξ|2, for almost every x ∈ Ω,

for every t ∈ [λ−1, λ], ξ ∈ R
n.(2.4)

∗0

((

Dt∗g(x, t)

)

θ ∧ θ
)

≥ E−1 ∗0 (∗0 θ ∧ θ) , for almost every x ∈ Ω,

for every t ∈ [λ−1, λ],

for every ξ ∈ R
n. (2.5)

(2.4) and (2.5) are a condition of uniform ellipticity and a condition
of monotonicity with respect to the variable t (see [AG]).

Remark 2.1. The volume form associated to the metric g0 is specified
in (2.3), but, since M is compact, all the Lp-norms related to different
volume forms are equivalent, therefore a different choice of the volume
form will maintain Ess sup appearing in (2.3) bounded, although constant
E will depend on the volume form. For sake of brevity we will denote
any Lp norm by omitting to specify the volume form µg0 for now on, by
meaning that these norms are calculated in terms of µg0.
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Remark 2.2. Conditions (2.1)-(2.3), combined together with the Sobolev
imbedding theorems for p > n on manifolds with Lipschitz boundary (see
[GT, chapter 7, p. 158]), lead to

g−1
t ∈ W 1, p

(

M × [λ−1, λ], T 2
0 (M)

)

; (2.6)

Dtg
−1
t ∈ W 1, p

(

M × [λ−1, λ], T 2
0 (M)

)

. (2.7)

Furthermore

Ess supt∈[λ−1, λ]

(

‖ g−1
t (·) ‖Lp(M) + ‖ ∇Xg−1

t (·) ‖Lp(M)

+ ‖Dtg
−1
t (·)‖Lp(M) +‖Dt∇Xg−1

t (·)‖Lp(M)

)

≤ F(E , n),

for any smooth vector field X ∈ C∞(TM), with ‖X‖L∞(M)= 1, (2.8)

where F(E , n) > 0 is a constant depending on E , n only. Moreover, if

we define Gt(x) := |gt(x)|
1
2 g−1

t (x), then

Gt ∈ W 1, p
(

M × [λ−1, λ], T 2
0 (M)

)

; (2.9)

DtGt ∈ W 1, p
(

M × [λ−1, λ], T 2
0 (M)

)

; (2.10)

Ess supt∈[λ−1, λ]

(

‖ Gt(·) ‖Lp(M) + ‖ ∇XGt(·) ‖Lp(M, µg0 )

+ ‖DtGt(·)‖Lp(M) +‖Dt∇XGt(·)‖Lp(M)

)

≤ C(E , F),

for any smooth vector field X ∈ C∞(TM), with ‖X‖L∞(M)= 1,(2.11)

where C(E , F) > 0 is a constant depending on E , F only.

We shall denote by ‖ · ‖? the norm of bounded linear operators be-

tween H
1
2 (∂M) and H−1/2 (Ωn−1(∂M)).

The first result is a stability result of the metrics at the boundary.

THEOREM 2.3. (Lipschitz stability at the boundary). Let (N, g0) be
a C∞ open, bounded n-dimensional Riemannian manifold. Given p >
n, let M ⊂ N be a compact submanifold of N of dimension n ≥ 3,
with Lipschitz boundary ∂M . Suppose a and b are two functions on M
satisfying
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λ−1 ≤ a(x), b(x) ≤ λ, for each x ∈ M, (2.12)

‖ a ‖W 1, p(M), ‖ b ‖W 1, p(M)≤ E (2.13)

and g(x, t) ∈ H. Then we obtain

‖ g(x, a(x)) − g(x, b(x)) ‖L∞(∂M)≤ C ‖ Λg(x, a) − Λg(x, b) ‖?, (2.14)

where C is a positive constant depending only on n, p, L, r, h, diam(M),
λ, E and E.

THEOREM 2.4. (Hölder stability of derivatives at the boundary).
Given p, n, M , (N, g0) as in Theorem 2.3, let a, b satisfy (2.12), (2.13)
and g ∈ H. Suppose there exist a point y ∈ ∂M and a neighborhood U of
y in M , a positive integer k and some α, 0 < α < 1 such that

g(x, t) ∈ Ck,α(Ū × [λ−1, λ], T 2, 0(M)), (2.15)

(a − b) ∈ Ck, α(Ū). (2.16)

Then, for any neighborhood W of y in M such that W ⊂ U and any
smooth vector field Z ∈ C∞(TM), with ‖ Z ‖L∞(M)= 1, we have

‖ ∇k
Z

(

g(x, a) − g(x, b)
)

‖L∞(∂M∩W̄ )≤ C ‖ Λg(x, a) − Λg(x, b) ‖
δkα
? , (2.17)

where ∇k
Z is the kth covariant derivative with respect to the vector field

Z and δk =
∏k

j=0
α

α+j
. Here C > 0 is a constant which depends only on

n, p, L, r, h, diam(M), dist(W ∩ ∂M, M \ U), λ, E, E, α and k.

The following uniqueness result can be obtained under a slightly
weaker assumption.

THEOREM 2.5. (Uniqueness at the boundary). Let p, n, M , (N, g0),
a, b, g as in Theorem 2.3. Suppose there exist a point y ∈ ∂M , a
neighborhood U of y in M̄ and a positive integer k such that

a − b ∈ Ck(Ū). (2.18)

If

Λg(x, a) = Λg(x, b),
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then

Dj(a − b) = 0 on ∂M ∩ Ū , for any j ≤ k. (2.19)

If in addition

g(x, t) ∈ Ck
(

Ū × [λ−1, λ], T 2, 0(M)
)

, (2.20)

then, for any neighborhood W such that W̄ ⊂ U and any smooth vector
field Z ∈ C∞(TM), we have

∇j
Z

(

g(x, a)
)

= ∇j
Z

(

g(x, b)
)

, for any j ≤ k. (2.21)

The following corollary is a well-known consequence of the previous
theorem in the Euclidean case (see [A], [AG]) and can be easily adapted
to the case of a Riemannian manifold.

COROLLARY 2.6. (Uniqueness in the interior). Let n, M , (N, g0)
be as in Theorem 2.3. Let a, b be two functions satisfying (2.12) and
(2.13) with p = ∞. Let g(x, t) ∈ H and in addition g ∈ W 1, ∞(M ×
[λ−1, λ, T 2

0 (M)]). Suppose that M can be partitioned into a finite number
of Lipschitz submanifolds, {Aj}

N
j=1, such that

a − b is analytic on Āj, for any j = 1 . . . n.

If Λg(x, a) = Λg(x, b), then

g(x, a) = g(x, b) on M. (2.22)

3 Singular solutions.

Let (N, g0) be the C∞ orientable Riemannian manifold of dimension
n ≥ 3, introduced in Section 2 and let g be a metric on N satisfying

‖ gij ‖W 1, p(N)≤ E, i, j = 1, . . . ,n, (3.1)

where p > n and E is a positive constants. Let us consider the Laplace
Beltrami operator on functions, associated to g, ∆g = −∗g d ∗g d, which
in coordinates is

∆g = −
n
∑

i j = 1

|g|−
1
2

∂

∂xi

{

|g|
1
2 gi j ∂

∂xj

}

, on N, (3.2)
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where |g| denotes the determinant of gij. Clearly, for any chart on N ,
there exists a positive constant λ such that ∆g satisfies the ellipticity
condition

λ−1 |ξ|2 ≤ gij(x)ξiξj ≤ λ |ξ|2, (3.3)

for all x in the domain of the chart and all ξ ∈ R
n. Here we denote the

Euclidean norm on R
n simply by | · |. Let us also consider the geodesic

ball

BN, r(x̄) =
{

x ∈ N | d(x, x̄) < r
}

,

where d is the geodesic distance induced by g0 and x̄ ∈ N . We will
simply denote BN, r by Br when it will be clear from the contest what is

the manifold N we are referring to. Let us denote G = |g|
1
2 g−1, where

g is the matrix {gij}
n
i, j=1 and g−1 is its inverse {gij}n

i, j=1. The following
theorem provides the construction of singular solutions obtained in [A],
[AG], on a geodesic ball of a Riemannian manifold.

THEOREM 3.1. (Singular solutions on manifolds). If ∆g is the Laplace
Beltrami operator satisfying (3.1)-(3.3), for any m = 0, 1, 2, . . . there
exists u ∈ W 2, p

loc (Br \ {x̄}) ∩ W 1, 2(N) solution to

∆gu = 0, in N, (3.4)

such that there exist coordinates (xi)n
i=1 on N with

u(x) = |J(x − x̄)|2−n−m Sm

(

J(x − x̄)

|x − x̄|

)

+ w(x), in Br\{x̄}, (3.5)

where Sm is a spherical harmonic of degree m, J =
√

G−1(x̄) and w
satisfies

| w(x)| + | x | |Dw(x)| ≤ C | x | 2−n−m+α, in Br \ {x̄}, (3.6)

(
∫

s<|x|<2s

|D2w|p
)

1
p

≤ C s−n−m+α+n
p , for every s, 0 < s < r/2.

(3.7)
Here α is any number such that 0 < α < 1 − n

p
, and C is a constant

depending only on α, n, p, r, λ, and E. Furthermore
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‖ du ‖g0 ≤ C d(x, x̄)1−n−m, for every x ∈ Br(x̄) \ {x̄} (3.8)

‖ du ‖g0 >
1

2
d(x, x̄)1−n−m, for every x ∈ Br0(x̄) \ {x̄}, (3.9)

where r0 is a positive constant which depends only on λ, E, p, m and the
diameter of N , diam(N).

Proof of Theorem 3.1 By [AG, Theorem 3.4] and by choosing normal
coordinates on Br(x̄) we can construct um solution to

∆gum = 0, in x ∈ Br(x̄) \ {x̄} (3.10)

and um satisfies (3.5)-(3.7). By expressing g0 in normal coordinates we
obtain

(g0)ij(x) = δij + O
(

d(x, x̄)2
)

, (3.11)

for any x ∈ Br(x̄), where the geodesic distance d induced by g0 satisfies
d(x, x̄) = |x − x̄| on Br. Therefore

‖ du ‖2
g0

= gij
0

∂u

∂xi

∂u

∂xj

=
(

δij + O
(

d(x, x̄)2
)ij
) ∂u

∂xi

∂u

∂xj

≤ |Du|2 + O
(

d(x, x̄)2
)

|Du|2

≤ C|Du|2 (3.12)

≤ C d(x, x̄)2−2(n+m), (3.13)

where C > 0 is a constant depending on n, diam(N) and Du is the
gradient of u in R

n. By combining (3.11) with [AG, Lemma 3.5],

‖ du ‖2
g0

>
1

4
d(x, x̄)2−2(n−m), on Br(x̄) (3.14)

and this concludes the proof. �
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4 Proofs of main results.

We will only give the proofs of Theorems 2.3, 2.4 as proofs of Theorem
2.5, and Corollary 2.6 follow the same line of these proofs and arguments
in [A] and [AG].

Since the boundary ∂M is Lipschitz, the normal unit vector field
might not be defined on ∂M . Therefore, we consider the vector field ν̃
introduced in Definition 2.3, instead. ν̃ is locally defined near ∂M , it is
C∞ smooth and it is not tangential to ∂M . With the same arguments
used in [AG, Section 3] we can state the following

LEMMA 4.1. For any x0 ∈ ∂M , let Cr, h be the cylinder introduced
in Definition 2.3, such that x0 ∈ Cr, h, then the point

zσ = ρx0, ν̃(σ)

satisfies

C τ ≤ d(zτ , ∂M) ≤ τ, for any τ, 0 ≤ τ ≤ τ 0, (4.1)

where τ 0 and C depend only on L, r, h.

Proof. The proof follows by rephrasing arguments of [AG, Lemma 3.3]
and by substituting the Euclidean distance with the geodesic one. �

LEMMA 4.2. If g ∈ H and a is a function satisfying conditions (2.12),
(2.13), we have

|g(·, a(·))|
1
2 g−1(·, a(·)) ∈ W 1, p

(

M, T 2
0 (M)

)

. (4.2)

Proof. The proof is a straight forward consequence of [AG, Lemma
3.6] and conditions (2.9)-(2.11) of Remark 2.2. �

Proof of Theorem 2.3. We start by recalling the identity (see [A, (b),
p. 253], [G1, (6.35), p.99])

〈(Λg(x, a(x))−Λg(x, b(x)))u, v〉 = (−1)n−1

∫

M

(

∗g(x, a)−∗g(x, b)

)

du∧dv, (4.3)

which holds for any u, v solutions to the Laplace-Beltrami equations

∆g(x, a) u = ∆g(x, b) v = 0, in M. (4.4)
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With no loss of generality we suppose that (−1)n−1 = 1, the case when
(−1)n−1 = −1 can be treated in a very similar way. Let x0 ∈ ∂M be a
point such that

(a − b)(x0) = ‖ a − b ‖L∞(∂M) .

Let 0 < τ ≤
{

τ0,
r0

4

}

, where τ0 is the number fixed in (4.1) and r0 is the
number appearing in (3.9). We consider zτ = ρx0, ν̃(τ), where ν̃ is the
outer unit vector field at the boundary ∂M introduced in Definition 2.3
and ρx0, ν̃(τ) is the geodesic introduced in Definition 2.1. Any point in
the geodesic ball Bη(zτ ), with η = r0 and r0 small enough so that there
are no cut points in Bη(zτ ), is uniquely connected with the center zτ by
the unique shortest geodesic. By fixing m, let um, vm be the two singular
solutions of

∆g(x, a) um = ∆g(x, b) vm = 0, in Bη(zτ ) \ {zτ}.

obtained in Theorem 3.1. The manifold M can be enlarged by introduc-
ing

Mτ/2 :=
{

x ∈ N | d(x, ∂M) < τ/2)
}

.

M ⊂ Mτ/2 and zτ ∈ N \ Mτ/2, for any 0 < τ ≤
{

τ0,
r0

4

}

. Let χη/2 ∈
C∞(N) be the cut-off function defined by

χη/2 =

{

1 on Bη/2(zτ ),
0 on N \ Bη(zτ )

and consider

u = χη/2 um + w̃, (4.5)

where w̃ solve the problem

{

∆g(x, a)w̃ = −∆g(x, a)

(

χη/2 um

)

in Mτ/2,
w̃ = 0 on ∂Mτ/2.

Therefore

∆g(x, a) u = 0, in M

u = um + w̃ in Bη/2(zτ ) ∩ M

u = w̃ in M \ Bη(zτ ),

where
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‖ w̃ ‖W 1, 2(M)≤ C (4.6)

and C > 0 is a constant which depends on n, m, L, r and h only. The
same argument can be applied to the singular solution vm and by setting
m = 0, (4.3) leads to

〈(Λg(x, a(x)) − Λg(x, b(x))) u, v〉=

∫

M∩Bη(zτ )

(

∗g(x, a) − ∗g(x, b)

)

du∧dv

+

∫

M\Bη(zτ )

(

∗g(x, a) − ∗g(x, b)

)

du∧dv,(4.7)

where u and v are the solutions (4.5) of (4.4) for m = 0. By possibly
reducing η

u = u0 + w̃, v = v0 + w̃, in Bη(zτ ), (4.8)

where w̃ satisfies (4.6). (4.7) leads in any coordinate system to

‖ Λg(x, a(x)) − Λg(x, b(x)) ‖∗ ‖ u ‖
H

1
2 (∂M)

‖ v ‖
H

1
2 (∂M)

≥

∣

∣

∣

∣

∣

∫

M∩Bη(zτ )

(

|g(x, a)|
1
2 gij(x, a) − |g(x, b)|

1
2 gij(x, b)

) ∂u

∂xi

∂u

∂xj

dx

∣

∣

∣

∣

∣

− C1, (4.9)

where C1 is a positive constant depending on n, m, L, r, h and diam(M)
only. By choosing normal coordinates centered in zτ on Bη(zτ ) and by
combining (4.9) with (3.5), we obtain

∣

∣

∣

∣

∣

∣

∫

M∩Bη(zτ )

J2
b

(

|g(x, a)|
1
2 g−1(x, a) − |g(x, b)|

1
2 g−1(x, b)

)

J2
a (x − zτ ) · (x − zτ )

|Ja(x − zτ )|n |Jb(x − zτ )|n
dx

∣

∣

∣

∣

∣

∣

≤

∫

M∩Bη(zτ )

∣

∣

∣

∣

(

|g(x, a)|
1
2 gij(x, a) − |g(x, b)|

1
2 gij(x, b)

) ∂w̃

∂xi

∂w̃

∂xj

∣

∣

∣

∣

dx

+ C

∫

M∩Bη(zτ )

|x − zτ |
2−2n+αdx

+ C1 + ‖ Λg(x, a(x)) − Λg(x, b(x)) ‖∗ ‖ u ‖
H

1
2 (∂M)

‖ v ‖
H

1
2 (∂M)

.

By recalling that |g(x, a)|
1
2 g−1(x, a) is Hölder continuous (see Lemma

4.2 and [AG]),
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∫

M∩Bη(zτ )

J2
b

(

|g(x0, a)|
1
2 g−1(x0, a) − |g(x0, b)|

1
2 g−1(x0, b)

)

J2
a (x − zτ ) · (x − zτ )

|Ja(x − zτ )|n |Jb(x − zτ )|n
dx

≤ C

{
∫

M∩Bη(zτ )

|x − zτ |
2−2n+αdx

+

∫

M∩Bη(zτ )

|x − zτ |
2−2n |x − x0|βdx

}

+ C1 + C2 + ‖ Λg(x, a(x)) − Λg(x, b(x)) ‖∗ ‖ u ‖
H

1
2 (∂M)

‖ v ‖
H

1
2 (∂M)

.

By recalling that J2
a = g(zτ , a)

|g(zτ , a)|
1
2

and similarly J2
b = g(zτ , b)

|g(zτ , b)|
1
2
, we get (see

[AG])

J2
b

(

|g(x0, a)|
1
2 g−1(x0, a) − |g(x0, b)|

1
2 g−1(x0, b)

)

J2
a

≥

(

g(x0, b)

|g(x0, b)|
1
2

−
g(x0, a)

|g(x0, a)|
1
2

)

(x − zτ ) · (x − zτ )

− Cτβ(a − b)(x0) |x − zτ |
2. (4.10)

The function t −→ g(x0, t)

|g(x0, t)|
1
2

is absolutely continuous (see [Mo, Lemma

3.1.1]) and by combining it with (2.5),

(

gij(x
0, b)

|g(x0, b)|
1
2

−
gij(x

0, a)

|g(x0, a)|
1
2

)

(x − zτ )
i(x − zτ )

j

=

∫ b(x0)

a(x0)

(

Dt
g(x0, t)

|g(x0, t)|
1
2

)

(x − zτ )
i(x − zτ )

jdt

=

∫ b(x0)

a(x0)

−|g(x0, t)|−1gil(x
0, t)Dt

(

glk(x0, t)|g(x0, t)|
1
2

)

·

·gkj(x
0, t)(x − zτ )

i(x − zτ )
j dt

=

∫ a(x0)

b(x0)

|g(x0, t)|−1Dt

(

glk(x0, t)|g(x0, t)|
1
2

)

·

·
(

gik(x
0, t)(x − zτ )

k
)(

gjl(x
0, t)(x − zτ )

l
)

dt

=

∫ a(x0)

b(x0)

|g(x0, t)|−1Dt

(

∗g(x0, t)

)

θ ∧ θdt

≥ E−1E−1

∫ a(x0)

b(x0)

‖ θ ‖2
g0

dt, (4.11)
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where θ = θ(x0, zτ , x, t) and θ = θi(x
0, zτ , x, t) dxi ∈ Ω1(M). If we

recall that in normal coordinates we have

‖ θ ‖2
g0

= |θ|2 +
(

d(x, zτ )
2
)

ij
θiθj

>
1

2
|θ|2 (4.12)

and we combine together (4.11), (4.12) with (2.4), we obtain

(

gij(x
0, b)

|g(x0, b)|
1
2

−
gij(x

0, a)

|g(x0, a)|
1
2

)

(x − zτ )
i(x − zτ )

j

≥
1

2
E−1λ−2E−3(a − b)(x0)|x − zτ |

2. (4.13)

Hence, we have

J2
b

(

|g(x0, a)|
1
2 g−1(x0, a) − |g(x0, b)|

1
2 g−1(x0, b)

)

J2
a

≥

(

1

2
E−1λ−2E−3 − Cτβ

)

(a − b)(x0) |x − zτ |
2

and, choosing

τ ≤

(

1

4C
E−1λ−2E−2

)
1
β

,

we obtain

J2
b

(

|g(x0, a)|
1
2 g−1(x0, a) − |g(x0, b)|

1
2 g−1(x0, b)

)

J2
a

≥ C(a − b)(x0) |x − zτ |
2.

Therefore

‖ a − b ‖L∞(∂M)

∫

M∩Bη(zτ )

|x − zτ |
2−2n dx

≤ C

{
∫

M∩Bη(zτ )

|x − zτ |
2−2n+α dx

+

∫

M∩Bη(zτ )

|x − zτ |
2−2n |x − x0|β dx

+ C1 + C2 + ‖ Λg(x, a(x)) − Λg(x, b(x)) ‖∗ ‖ u ‖
H

1
2 (∂M)

‖ v ‖
H

1
2 (∂M)

}
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and by estimating the above integrals and the H
1
2 (∂M) norms of u and

v (see [A], [AG]) we finally obtain

‖ a − b ‖L∞(∂M) τ 2−n ≤ C
{

τ 2−n+α + τ 2−n+β + C1 + C2

+ ‖ Λg(x, a) − Λg(x, b) ‖ τn−2
}

.

If we let τ → 0 we obtain the following inequality

‖ a − b ‖L∞(∂M)≤ C ‖ Λg(x, a) − Λg(x, b) ‖? . (4.14)

Recalling that, for almost every x ∈ Ω, the function

t −→ g(x, t)

is absolutely continuous on [λ−1, λ] we may write

|g(x, a(x)) − g(x, b(x))| =

∣

∣

∣

∣

∣

∫ a(x)

b(x)

Dtg(x, t) dt

∣

∣

∣

∣

∣

≤

∫ a(x)

b(x)

Sup t, x| Dtg(x, t) | dt

≤ C | (a(x) − b(x)) |,

for every x ∈ M . Taking the L∞-norm on both sides, we obtain

‖ g(x, a) − g(x, b) ‖L ∞(∂M)≤ C ‖ a − b ‖L ∞(∂M) . (4.15)

By combining (4.14) and (4.15) we conclude the proof. �

Proof of Theorem 2.4. Let ν̃ be the vector field introduced in Defini-
tion 2.3 and let us define some coordinate system on a neighborhood of
the boundary ∂M .

DEFINITION 4.1. For any point x in a neighborhood of ∂M we con-
sider the unique point y ∈ ∂M such that x = ρy, ν̃(s) for some s. If
{x̃i}n−1

i=1 is a coordinate system around x on ∂M , we define

xi = x̃i, for i = 1, . . . , n − 1,

xn = s.
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{xi}n
i=1 is a coordinate system around x on M and we call it boundary

quasi-normal coordinate system (in accordance to the well-known bound-
ary normal coordinates for the case where ν̃ is the C∞ smooth normal
unit vector field at the boundary ∂M).

By following the same line of [AG, proof of Theorem 2.2] and argu-
ments of the proof of Theorem 2.3, we obtain

‖
∂j

∂ν̃j
(a − b) ‖L∞(∂M∩W̄ )≤ C ‖ Λg(x, a) − Λg(x, b) ‖

δj
? for any j ≤ k,

(4.16)
in boundary quasi-normal coordinates, where δj =

∏j
i=0

α
α+i

. By recalling
the interpolation inequality

‖ Df ‖L∞(∂M∩W̄ ) ≤ C
{

‖
∂

∂ν̃
f ‖L∞(∂M)

+ ‖ f ‖
α

1−α

L∞(∂M∩W̄ )
‖ f ‖

1
1+α

C1+α(W̄ )

}

, (4.17)

for any f ∈ C1, α(M) (see [A, Lemma 3.2], [AG, estimate (3.38)]) and
combining it with (4.16), we obtain

‖ Dk(a − b) ‖L∞(∂M∩W̄ )≤ C ‖ Λg(x, a) − Λg(x, b) ‖
δk
? , (4.18)

where Dk denotes the gradient in boundary quasi-normal coordinates. If
we observe that

Dβg(x, a(x)) =
∑

γ+δ≤β

Pγ δ

(

a(x), . . . ,D|δ|a(x)
)

· Dγ
xD

|δ|
t g(x, a(x)),

where β is any multiindex and Pγ δ is a polynomial in the variables p =
(pη), |η| ≤ |δ|, in any coordinate system (see [AG, equality (3.40)]), we
obtain

‖ Dk
(

g(x, a) − g(x, b)
)

‖L∞(∂M∩W̄ )≤ C ‖ a − b ‖α
Ck(∂M∩W̄ ) . (4.19)

(4.19) and (4.18) leads to

‖ Dk
(

g(x, a) − g(x, b)
)

‖L∞(∂M∩W̄ )≤ C ‖ Λg(x, a) − Λg(x, b) ‖
δk
? . (4.20)
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Let Z be a smooth vector field on M , with ‖ Z ‖L∞(M)= 1 and let {X i}n
i=1

be a local basis of vector fields on W̄ such that

∇Z X i = 0 for any i = 1, . . . , n, . (4.21)

With this choice of basis we have

∇Z

(

g(x, a)
)

= Z
(

gij(x, a)
)

X i(x) ⊗ Xj(x)

= Zk ∂

∂xk

(

gij(x, a)
)

X i(x) ⊗ Xj(x)

and similarly for g(x, b), where Z = Zi ∂
∂xi , {x

i}n
i=1 are boundary quasi-

normal coordinates on W̄ and the Einstein convention on indices sum-
mation has been applied. Therefore

∇Z

(

g(x, a) − g(x, b)
)

= Zk ∂

∂xk

(

g(x, a) − g(x, b)
)

. (4.22)

(4.22) together with (4.20) leads to (2.17), which concludes the proof. �

5 Conclusions.

In this study we improve the results obtained in [AG] in the following
aspects.

i) We give a geometric formulation of the inverse conductivity problem
considered in [AG], in dimension n > 2, where it is well known that the
conductivity σ of a manifold uniquely determines a metric g such that
σ = ∗g, where ∗g is the Hodge star operator mapping 1-forms into (n−1)-
forms (see [G1], [L], [LU]).
We prove results of uniqueness and stability at the boundary similar to
[AG, Theorems 2.1-2.3] and in the interior as in [AG, Theorem 2.4], in the
case where the body in question is a compact manifold with Lipschitz
boundary embedded in an open C∞ smooth Riemannian manifold N
(Theorems 2.3-2.5 and Corollary 2.6 respectively);

ii) the so-called monotonicity assumption of [AG, p.255] is here stated
in terms of the Riemannian metric g0 on N . The case of a manifold with
a flat metric g0 will be still more general than the one treated in [AG].
The case when (g0)ij = δij is the Euclidean metric on R

n will lead to the
monotonicity assumption given in [AG].
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