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Abstract

Quantum counterparts of certain classical systems exhibit
chaotic spectral statistics of their energy levels; eigenvalues of
infinite random matrices model irregular spectra.

Eigenvalue spacings for the Gaussian orthogonal ensemble
(GOE) of infinite random real symmetric matrices admit a
gamma distribution approximation, as do the hermitian unitary
(GUE) and quaternionic symplectic (GSE) cases.

Then chaotic and non chaotic cases fit in the information
geometric framework of the manifold of gamma distributions,
which has been the subject of recent work on neighbourhoods
of randomness for general stochastic systems.



Regular and Irregular Spectra
Quantum chaology, Berry [8]: semiclassical but non-classical
behaviour of systems whose classical motion exhibits chaos,
illustrated by the statistics of energy levels.

Regular spectrum of bound system with n ≥ 2 degrees of
freedom and n constants of motion: energy levels labelled by n
quantum numbers, but quantum numbers of nearby energy
levels may be very different.

For irregular spectrum, quantum number labelling fails; use
energy level spacing distributions for comparisons among
different spectra [9]. Regular systems are negative exponential,
that is Poisson random.

Energy spacing levels of complex nuclei and atoms with n large
modelled by the spacings of eigenvalues of random matrices,
Porter [22], well fitted by Wigner distribution [28].



Eigenvalues of (Gaussian) Random Matrices

GOE: A random real symmetric n × n matrix belongs to
the Gaussian orthogonal ensemble (GOE) if the
diagonal and upper triangular elements are
independent random variables with Gaussian
distributions of zero mean and standard deviation
1 for the diagonal and 1√

2
for the upper triangular

elements.
GUE: The corresponding random hermitian complex

case belongs to the Gaussian unitary ensemble.
GSE: The corresponding random hermitian case with

real quaternionic elements belongs to the
Gaussian symplectic ensemble.



Distributions of Random Matrices

The matrices in these GOE, GUE and GSE ensembles are
respectively invariant under the appropriate orthogonal, unitary
and symmetric transformation groups, and moreover in each
case the joint density function of all independent elements is
controlled by the trace of the matrices and is of form [16]

p(X ) = An e−
1
2 TrX 2

(1)

where An is a normalizing factor.



Approximating Eigenvalue Spacing Distributions

Wigner [26, 27, 28] Approximation for GOE unit mean

w(s) =
π

2
s e−

πs2
4 For eigenvalue spacing s > 0.

Gamma Distribution Approximation
The family of gamma probability density functions, κ, ν > 0,

p(s; ν, κ) = νκ
sκ−1 e−sν

Γ(κ)
. (Exponential, ie Poisson case : κ = 1).

Important uniqueness property:

Theorem (Hwang and Hu [17])
For independent positive random variables with a common
probability density function f , having independence of the
sample mean and the sample coefficient of variation is
equivalent to f being the gamma distribution.
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Figure: The bounds on eigenvalue spacings cdf for GOE random
matrices (dashed), the Wigner surmise (thin solid) and unit mean
gamma fit to true GOE from Mehta [19] (thick solid).
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Figure: Unit mean gamma pdf fit (thick solid) to true GOE (points),
Wigner (thin solid) and bounds (dashed) for spacings between
eigenvalues.



Gamma Distribution Properties
Contains exponential distribution as a special case.
Contains uniform distribution of logarithm.
Approximates GOE, also GUE, GSE, away from origin.

Non-chaotic case has Poisson random energy spacings
The sum of n iid exponentials (ie n Poisson random cases)
follows a gamma distribution and the sum of n iid gammas
follows a gamma distribution. Product of gamma distributions
approximated by a gamma distribution.

Tractable Information Geometry
The gamma family has a well-understood and tractable
information geometry [3, 4, 14], defining a Riemannian
2-manifold using the information metric, with arc length function

d`2 =
κ

ν2 dν2 − 2
ν

dνdκ+
d2 log(Γ)

dκ2 dκ2.



ν

κ

Affine Embedding in R3 of Gamma Manifold



Generalized Gamma Distribution Approximation [Caër [12]]

g(s;β, ω) = a(β, ω) sβ e−b(β,ω)sω for β, ω > 0
a(β, ω) = ω[Γ((2+β)/ω)]β+1

[Γ((1+β)/ω)]β+2 and b(β, ω) =
[

Γ((2+β)/ω)
Γ((1+β)/ω)

]ω
.

Best fit parameters for generalized gamma:

Ensemble β ω Variance
Exponential 0 1 1

GOE 1 1.886 0.2856
GUE 2 1.973 0.1868
GSE 4 2.007 0.1100

Unfortunately, unlike for gamma distributions, the
information geometry is intractable for generalized gamma
distributions.
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Figure: Unit mean gamma pdfs (dashed) and generalized gamma
(solid) fits to true variances for left to right the GOE , GUE and GSE
cases. Both coincide in the exponential case, e−s, shown dotted.
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Figure: The unit mean gamma distribution best fits to GOE, GUE and
GSE cases, as points on the 2-manifold of gamma distributions.
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Figure: Probability plot with unit mean for the spacings between the
first 2,001,052 zeros of the Riemann zeta function (large points), true
GUE distribution (medium points) and gamma fit to the true GUE
(small points).



Important uniqueness property of gamma distributions:

Theorem (Hwang and Hu [17])
For independent positive random variables with a common
probability density function f , having independence of the
sample mean and the sample coefficient of variation is
equivalent to f being the gamma distribution.

So, having the ratio of sample standard deviation to
sample mean independent of sample mean indicates a
gamma process.

This is approximately true in a surprisingly wide range of real
statistical processes. In particular, quite often sample standard
deviation is approximately proportional to sample mean over
ranges of practical interest.

We can see in the following tables that even the normalized
(to unit mean) spacings of zeros of the Riemann zeta
function have coefficient of variation quite stable under
variations of location and size of samples.



Block Mean Variance CV κ

1 1.232360 0.276512 0.426697 5.49239
2 1.072330 0.189859 0.406338 6.05654
3 1.025210 0.174313 0.407240 6.02974
4 0.996739 0.165026 0.407563 6.02019
5 0.976537 0.158777 0.408042 6.00607
6 0.960995 0.154008 0.408367 5.99651
7 0.948424 0.150136 0.408544 5.99131
8 0.937914 0.147043 0.408845 5.98250
9 0.928896 0.144285 0.408926 5.98014

10 0.921034 0.142097 0.409276 5.96991

Table: Effect of location on sample coefficient of variation CV:
Statistical data for spacings in the first ten consecutive blocks of
200,000 zeros of the Riemann zeta function normalized with unit
grand mean from the tabulation of Odlyzko [21].



m Mean Variance CV κ

1 1.23236 0.276511 0.426696 5.49242
2 1.15234 0.239586 0.424765 5.54246
3 1.10997 0.221420 0.423934 5.56421
4 1.08166 0.209725 0.423384 5.57869
5 1.06064 0.201303 0.423018 5.58833
6 1.04403 0.194799 0.422748 5.59548
7 1.03037 0.189538 0.422527 5.60133
8 1.01881 0.185161 0.422357 5.60584
9 1.00882 0.181418 0.422207 5.60983

10 1.00004 0.178180 0.422094 5.61282

Table: Effect of size on sample coefficient of variation CV:
Statistical data for spacings in ten blocks of increasing size
200,000m, m = 1,2, . . . ,10, for the first 2,000,000 zeros of the
Riemann zeta function, normalized with unit grand mean, from the
tabulation of Odlyzko [21].



Further Remarks on Information Geometry

We have given a large number of results on the information
geometry of spaces of gamma and log-gamma distributions,
also bivariate versions including Gaussians, with many
applications; see the book Arwini and Dodson [4].

Characterization of Perturbations
These results include explicit information geometric
representations with distance measures, of neighbourhoods for
each of these important states for statistical processes:

I (Poisson) randomness,
I independence,
I uniformity.

Such results are significant theoretically because they are
very general, and significant practically because they are
topological and so therefore stable under perturbations.



Log-gamma (log N = −s) probability density functions
κ = 1: Uniform distribution on [0,1], complementary to the
exponential case for gamma distribution.
κ >> 1: Approximate truncated Gaussians.
κ < 1: Clustering.
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Tubular neighbourhood of independent Poisson random
processes in Freund manifold of bivariate exponentials.
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Tubular neighbourhood of independent (σ12 = 0) identical
Gaussians
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