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Abstract

A new Markovian method for the prediction of phylogenetic trees has been
developed earlier by the authors. Here, the method is illustrated and applied
using mitochondrial DNA data for vertebrate species (and technicalities of the
theory are avoided). Discussions include the sensitivity of the results to DNA
alignment techniques and the inclusion of polytomy in tree structures. Several
comparisons are made with tree structures in the literature which have been
predicted using statistical techniques.
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1 Introduction

Two recent publications of Bohl and Lancaster (2003, 2006) show that a mathe-
matical model of speciation can produce new and interesting results when applied
to a monophyletic group. This model is based on the idea of molecular drift of
nucleotides between DNA sites, and utilises a suitable Markov process. It provides
an alternative to the use of statistical methodologies for tree-building (maximum
likelihood, Bayesian analysis, parsimony, et al.). Some inherent dangers in the use
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of such methods are underlined by Graur and Martin (2004) and are completely
avoided here. It can be argued that the method proposed here is less subjective
than the several tree-searching statistical techniques currently available and, in the
hands of biologosts, could become a valuable tool.

Early use of a highly simplified Markovian model was made by Jukes and Cantor
(1969) and there have been several further developments since then some of which
are summarized by Yang (1994) and Li (1997, Chapter 3) (see also the two Bohl-
Lancaster papers). However, with few exceptions they focus on the more tractable
reversible processes. Here, there is no hypothesis with respect to reversibility. In
contrast, the data determines the nature of the process and the structure of the
underlying phylogenetic tree, including the determination of its root. Thus, for each
species pair, the model includes a “fully connected” matrix of transition probabilities
among the four nucleotides. Furthermore, the data leads directly to the topology
of the branches and the root of the tree (cf. Huelsenbeck et al. (2002), and the
discussion of Durbin et al. (1998), p.68).

Features of this implementation of the Markov model include:

• A smoothing technique for the raw DNA data analysed in terms of nucleotide
distributions and designed to minimise the effects of data errors.

• Implementation of an unrestricted Markov model making no assumptions with
respect to reversibility.

• Predictions of relative divergence times bring a new quantitative feature into
phylogeny.

• A high degree of internal consistency in predicted phylogenetic trees.

• The root of the tree is determined by the data.

It is our objective to give a non-technical account of some illustrative investiga-
tions using the Bohl-Lancaster algorithms, and the reader is referred to the earlier
papers for technical details. In particular, we demonstrate the usefulness of the
theory when applied to mitochondrial DNA data of 48 vertebrate species (listed in
Appendix A); where a common alignment process has been applied resulting in a
common sequence length of about 2000 base genome pairs. This is minimal by cur-
rent standards, but it makes a convenient source on which to test the new method-
ology. We also consider the effects of re-alignment in smaller subsets of species for
comparison with predictions made with longer sequence lengths. It should be em-
phasised that the necessary algorithms and software are now available and can, of
course, be implemented on data sets for any species or sequence lengths.

It is not appropriate to venture into the theory here, but some remarks on “re-
versibility” are in order - based on the discussion of Bohl and Lancaster (2003).
Given the fundamental matrix P (t) of transition probabilities mentioned above, a
second process with transition matrix Π(t) is determined entirely by P (t); this is
the “reverse” process. The first process is reversible or irreversible according as
Π(t) = P (t), or Π(t) 6= P (t). However, there is no physical evidence suggesting
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Figure 1: The basic 3-tree

that, in modelling the drift of nucleotides, equality holds. Hence our insistence on
the irreversible model, and on careful estimation of P (t)1 .

The comparison of just three species is the basic tool employed. Initially, it is
assumed that, of any three species admitted to the analysis, there is a well-defined
outlier and, for the corresponding tree with two nodes, there is a well-defined relative

divergence time. For example, in Fig. 1 the three species are denoted by A, B, C,
and C is the outlier. A figure like 1(a) would be appropriate when considering three
species in isolation. However, if more than three taxa are included in the analysis,
the same triple may be configured as in 1(b) or 1(c). Higher order nodes can also
play an important role, but discussion of this possibility is deferred until Sections 8
and 9.

For a binary tree of n species there are 1
6
(n!)/(n − 3)! possible triples, and for

each triple, an outlier and a relative divergence time are predicted by the model.
Using DNA data for the 48 species of Appendix A there are 17,296 triples. The
Bohl/Lancaster method has been applied to each of these triples and the results are
tabulated at the website

http://www.math.ucalgary.ca/˜lancaste/dtimes

It will be seen that the results do not clearly determine a unique tree for all of
the 48 species. However, the present method can be utilised to examine interesting
subsets of species chosen from the 48. In Sections 8 and 9 a more comprehensive
approach is taken to the construction of trees.

The results at the website are tabulated as 17,296 rows of numbers, each row
having seven entries. The first three denote the three species in question, the fourth
and fifth are, respectively, the predicted outlier (denoted by 1,2, or 3) and relative
divergence time. The sixth and seventh are denoted (here) by “cr1” and “cr2” and
record the two so called confidence ratios. This format will also be used in this paper
(see Appendix B, for example).

Further illustrations of the method are given with smaller subsets of species ad-
mitting re-alignment of the DNA sequences. This results in longer common sequence
lengths and, after recalculation of divergence matrices, provides different estimates
of divergence times. We note also that, with increasing length of DNA sequences,
the divergence matrices become increasingly diagonally dominant. Re-alignments
have been made here using the “ClustalW” software. “ClustalX” was used in the

1The transition matrix P (t) is not estimated directly: it is deduced from experimental mea-
surements of the “divergence matrix”.
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initial data set - which was also used by Brinkmann et al. (2004) (see interesting
comments on alignment in Grant et al. (2003)).

Although it is difficult to generate an unambiguous tree for the full set of 48
vertebrates, some larger trees generated from this data (without realignments) are
presented and discussed in Section 9.

Some questions of current interest in phylogenetics play no role in this work.
Because the Markov model used here is “homogeneous in time”, it is neutral with
respect to calibration of time scales with geological events, morphology, and the
possibility of differing “rates of evolution” at different epochs or on different portions
of a given tree. The results discussed here are not a complete biological analysis;
they are the authors’ attempts to illustrate the potential and limitations of the
underlying Markov model in phylogeny.

2 The confidence ratios

We wish to avoid technicalities as far as possible, but it is necessary to spend some
time on the meaning of the confidence ratios. When examining a triple of species,
say A, B, and C, it is necessary to compute three matrices of relative nucleotide
frequencies (of size 4 × 4) one associated with each pair. Denote these matrices by
NBC , NCA, NAB . If the data fits the Markov model precisely two of these matrices
will be identical. For example, if C is the outlying species and there is no error,
then NBC = NCA. The confidence ratios measure to what extent this occurs with
the observed matrices. Thus, if matrix “sizes” are measured in terms of norms, say

nA = ‖NCA − NAB‖s, nB = ‖NBC − NAB‖s, nC = ‖NCA − NBC‖s,

then (with C the outlier), nC should be considerably less than the least of nA and
nB (ideally, it would be zero). So the first measure of confidence is

cr1 =
nC

min(nA, nB)
.

So 0 ≤ cr1< 1 and, ideally, cr1=0 but, in experimental practice it never is. In fact,
if all the numbers cr1 generated by all the triples of a given tree are less than 1/3,
say, the results are interpreted as being highly significant.

The second confidence ratio (with C the outlier) is cr2 and is defined to be the
smaller of the two ratios nA/nB, nB/nA. Ideally, cr2 is close to one. In practice this
ratio is in the range 0.8 to 1.0. As Appendix B shows, it is not so sensitive as cr1
and we seldom appeal to cr2 in the discussion of results.

It turns out, of course, that the Markov model is capable of limited resolution of
events in time. So what is to be expected if we compare three species which emerged
from the same ancestral species in a “short” period of time - relative to the power
of resolution of the model? In a period of “rapid diversification” of species? It is
not hard to see that we should anticipate that the numbers nA, nB, nC are not well
separated, and this implies that cr1 will be close to one. Thus, a value for cr1 close
to one (when coupled with a predicited divergence time close to one) does not mean
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a complete loss of confidence in the results, although the corresponding prediction of

an outlier will not be reliable. When this phenomenon is observed in the computed
results, it may indicate rapid diversification of species and is an invitation to deeper
investigation. This is the kind of situation examined in more detail in Sections 4-9
below.

3 First experiments; well-separated trees

By definition, a well-separated tree has acceptable confidence ratios (i.e. cr1 is
considerably less than one) for all possible triples of species represented. It turns
out that, for n larger than six, a well-separated tree is hard to find in this data set.
One reason for this seems to be that, at least with this data, and with larger groups,
there will generally be at least one pair of nodes which are relatively close in time.
As suggested above, times close to one are generally linked with a value of cr1 close
to one; which is seen as a “poor” confidence ratio leading to an unreliable prediction
of an outlier. Such situations suggest a closer examination of, say, three poorly
resolved species after re-alignment.2 In this section we consider some well-separated
trees and, subsequently, will analyse some topical cases involving nodes in “close”
proximity.

The first example appears in Figure 2a and includes six species, namely three
mammals (1,2,4) and three ray-finned fish (36,37,38). The data for the twenty triples
of this example (extracted from the website) appears in Appendix B. To illustrate,
the second and third rows of the table indicate that in each of these two triples,
the fish is the outlier and the predicted divergence times of 0.4696 and 0.4695 are
remarkably close. Values of the confidence ratio, cr1, of 0.1413 and 0.1389 give some
confidence in these predictions.

Scanning the whole of this table, it is seen that the largest confidence ratio, cr1,
among the twenty triples is 0.2926, so this is attached to the whole tree. The two
triples, for the mammals 1,2,4, and the fish, 36,37,38 are well-defined with good
confidence ratios cr1 0.19 and 0.24, respectively. Figure 2a then represents the
results obtained from the twenty triples chosen from the six species and, among
these triples, the largest value of cr1 is a modest 0.29; so this qualifies as a “well-
separated” tree.

An important property of well-separated trees is as follows: For a tree of more
than three species, the time associated with a particular node can be determined
using more than one triple. It is found that for a well-separated tree, the divergence
times representing the same node agree with each other to a high degree of precision.
In effect, different experiments lead to the same conclusion.

To illustrate this phenomenon, consider Figure 2a and, in particular, the node
associated with the time t = 0.67. There are six estimates of this time from the
triples (1,4,36), (1,4,37), (1,4,38), (2,4,36), (2,4,37), and (2,4,38). The six times
listed in Appendix B vary between 0.642 and 0.686 and their average appears on

2Indeed, it may suggest that the whole exercise be repeated after separately aligning the data
for each triple of species.
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Figure 2: (a) A well-separated 6-tree. (b) The same tree with species 44.

Figure 2a as t = 0.67.
Similarly, the node at time t = 0.47 is associated with (1,2,36), (1,2,37) and

(1,2,38), and the predicted divergence times of these three triples are 0.4696, 0.4695,
and 0.4613, respectively. Furthermore, the predicted time for the (1,2,4) triple may
be multipled by the predicted times for the (1,4,36), (1,4,37), and (1,4,38) triples
giving three additional predicted divergence times for the (1,2,36) node: 0.4770,
0.4746, and 0.4631, respectively. Again, the noted value t = 0.47 is an average of
six estimates.

Typically, on examination of a set of well-separated species, similar results will
be obtained. However, it is found that for our mtDNA data set for 48 species, well-
separated trees with n > 7 are rare. For example, if we add a beardfish (44) to
the tree of Figure 2a, the divergence time predicted for the (1,38,44) triple is 0.5312
and confidence ratio cr1 deteriorates from 0.29 to 0.40. This deterioration generally
appears as one continues to add species to an otherwise well-separated tree. Indeed,
the overall (displayed) value of cr1 = 0.91 arises at the “difficult” triple (36,38,44).
The divergence time (at 0.8760) is consistent with the rest of the tree, but this
induces the poor confidence ratio, cr1 = 0.91. If this item is disregarded, the overall
confidence ratio cr1 for Figure 2b is 0.53 (attained at the triple (37,38,44)). Thus,
unreliable results for one triple do not invalidate the whole tree.

A less dramatic effect is produced by adding another mammal to Figure 2a (the
rabbit, species 3, instead of the beardfish, 44). In this case, there is a relative
divergence time of 0.8840 for the node (1,2,3), suggesting almost confluent nodes.
Nevertheless, the parameter cr1 for this node (and hence the 7-tree) is a more
favourable 0.4953 (and all other additional triples have cr1 less than the ratio 0.2926
of the original 6-tree).

It is natural to suppose that a tree consisting of species chosen one-by-one from
groups which are morphologically very different will lead to a well-separated tree.
To examine this possibility consider first four species, a mammal (represented by
the rabbit, 3), a marsupial (represented by the opossum, 5), a turtle (represented
by the eastern painted turtle, 7), and a bird (represented by the ostrich, 10). The
tree is shown as Figure 3 and has a disappointing confidence ratio, cr1= 0.67; it
does not really qualify as “well-separated”.

On the other hand a representative of a fifth group, species 39, a fish, can be
added to make a 5-tree with no further deterioration of the over-all confidence ratio,
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Figure 3: Species from four different groups.

cr1= 0.67, and the fish is the outlier for the 5-tree (i.e. a new “root” is created).
One interpretation of such results is that the power of resolution of the model

decreases as the times become more remote.

4 Phylogenetic relationships of birds

As a first case study we take up an investigation of Bohl and Lancaster (2005) con-
cerning the ordinal relationships of birds (see also Meyer and Zardoya (2003)). Our
data set includes just three birds: species 10 (ostrich), 11 (rook), and 12 (peregrine
falcon). The results for the triple (10,11,12) (see table below) show that the rela-
tionship of these species is not immediately apparent; the Markov model fails to
resolve their ordinal relationships. It is predicted that the ostrich is the outlier, but
the time ratio greater than one is not physically sensible, and merely tells us that
the model is not able to resolve this issue at first glance.

Our next move is to consider trees of 4 species where the fourth species will serve
as an outlier to the three birds. For example, consider the quadruple (10,11,12,21),
three bird species and a coelecanth:

outlier time ratio cr1 cr2
10 11 12 1 1.0961 0.8924 0.8474
10 11 21 3 0.5155 0.5885 0.7662
10 12 21 3 0.4980 0.4525 0.7611
11 12 21 3 0.5358 0.4378 0.9414

Obviously, the data for the triple (10,11,12) is not to be interpreted literally. A
divergence time greater than one (with an associated poor confidence ratio) simply
indicates relatively rapid diversification between the three species. As noted in
Section 7 of Bohl and Lancaster (2005), the presence of the fourth species (21-the
coelecanth) suggests that, in the (10,11,12) triple, it is indeed 11 that is the outlier
(i.e. the 10,12 bifurcation occurred more recently) . But the confidence ratio of this
4-tree is still 0.59, which is not entirely satisfactory, and by searching for another
species as the outlier, it may be possible to improve this.
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Figure 4: 3 birds and the porthole fish:
(a) From the data for 48 species. (b) With re-aligned data.

Indeed, it is found that if the Pacific porthole fish (39) is used as the outlier, the
next table is obtained (see also Fig 4a). The prediction that, of the triple (10,11,12),
11 is the outlier is maintained, but with an improved confidence ratio of 0.41.

outlier time ratio cr1 cr2
10 11 12 1 1.0961 0.8924 0.8474
10 11 39 3 0.5227 0.4124 0.8762
10 12 39 3 0.5171 0.2809 0.9637
11 12 39 3 0.5612 0.3396 0.9616

Clearly, the search for an optimal outlier can be made systematically, but we do
not go into detail. However, it is emphasised that the identification of the rook (11)
as the outlier of the three birds, rook, ostrich, and paregrine falcon, is confirmed
with several outliers, thus superseding the prediction made on examination of the
(10, 11, 12) triple in isolation. Although the confidence level of the 4-tree of Figure
4a is dominated by that of the (10,11,12) triple we can, nevertheless, associate a
confidence level of 0.41 with that tree.

In any case, it is clear that, based on the data set for 48 species, the predictions
are delicately balanced. Given the desirability of maximizing the amount of common
DNA material employed (as emphasized by Ruvolo (1997)), a re-alignment of the
genome sequences for the four species of Figure 4a was performed, resulting in an
increase from approximately 2000 to 6000 base-pairs. The results are as follows, and
make an interesting contrast with those of the preceding table.

outlier time ratio cr1 cr2
10 11 12 3 0.9145 0.4196 0.8470
10 11 39 3 0.5141 0.0633 0.9979
10 12 39 3 0.5431 0.1241 0.9944
11 12 39 3 0.5555 0.1456 0.9970

They are summarised in Figure 4b - which must be seen as more reliable than 4a.
Observe that the confidence ratios are much more favourable, and the resolution of
the 10,11,12 triple is relatively clear. Surprisingly, our earlier conclusion that the
rook is the outlier of the three birds is contradicted and the peregrine falcon is (more
reliably) predicted to be the outlier of the ostrich - rook- falcon triple.

8



The triple of bird species investigated here form a twig on larger phylogenetic
trees developed by Brinkman et al. (2004). There, several different statistical
methodologies and data sets are used and results summarised in their Figures 2,
3,and 4. None are consistent with Figure 4b above. In their Figure 2 the rook (11)
is the outlier, as in our Figure 4a. In their Figures 3 and 4 the ostrich (10) is the
outlier.

5 Tetrapods and reptiles

Stimulated by a discussion of Meyer and Zardoya (2003), this section concerns the
evolutionary positions of reptiles and the tetrapods. First, consider three groups
of tetrapods: placentals, marsupials, and monotremes, which are represented by
species 1 (cat), 5 (opossum), and 6 (platypus), respectively. The website entry for
this triple is:

outlier time ratio cr1 cr2
1 5 6 1 0.9715 0.5193 0.9581

(cf. Fig. 5b). Given that nodes in close-proximity often result in poor confidence
ratios, the prospect of ratios less than 0.52 is promising, although the proximity of
the two nodes gives pause for thought. Given the value 0.52 for cr1, an error of
four or five percent in the predicted relative time would not be surprising, and could
produce a change in the predicted outlier.

Indeed, a different conclusion can be drawn if one adds the outlying reptile
species (13) (the American alligator) to the triple:

outlier time ratio cr1 cr2
5 6 13 3 0.6418 0.3835 0.8769
1 5 13 3 0.6203 0.3862 0.9722
1 6 13 3 0.6832 0.4507 0.8720

If we assume that the first triple is correct (i.e., the monotremes and marsupials
diverged from a common ancestor at rel. time = 0.64), the second and third triples
give results which are in conflict with the first (1,5,6) findings. The second indicates
that placentals diverged before the monotreme-marsupial split, whereas the third
indicates that such a divergence took place afterwards (this interpretation appears
as Fig.5a). Given that the confidence ratios are quite good for both possibilities,
either of the two tree structures seems to be plausible.

Comparisons with the other placentals (using 2,3 instead of 1) yield similar
results (in conflict with the (1,5,6) triple). For example:

outlier time ratio cr1 cr2
2 5 13 3 0.6294 0.3763 0.9070
2 6 13 3 0.6866 0.3722 0.9491
3 5 13 3 0.6199 0.3105 0.9403
3 6 13 3 0.6838 0.2721 0.9091
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Figure 5: Mammals and a reptile: (a) A misleading tree. (b) Best interpretation.

Since the reptile is the common factor in these calculations, we conclude that
there is something amiss with this species data (other reptiles should be investigated
in a similar way).

However, the precedence of the three tetrapod subclasses can be investigated
further by using other species as an outlier - the techique outlined in the preceding
section. Since it is clear that the reptile species is an outlier for the three groups of
tetrapods, we may scan the dataset of all possible triples in order to find additional
outliers for the triple (1,5,6).

The following species produced reliable results (confidence ratios all less than
0.35) when added to the 1-5-6 tree: rook (11), peregrine falcon (12), Japanese
sardine (34), rainbow trout (35), Atlantic salmon (36), Lake Chud whitefish (37),
ayu fish (38), and Pacific porthole fish (39). (Numerical data appear in Appendix
B.)

In all but one case, the placental is the outlier for the placental-marsupial-
platypus triple, which supports the initial data for the (1,5,6) triple - and helps
to justify our mistrust of the data for reptile species, 13. It is worth noting that, if
we include all possible triples involving species 5 and 6, similar results are obtained
(albeit with larger confidence ratios, but usually less than 0.5).

Our best interpretation of the results is summarized in Fig. 5b and supports the
Marsupionta hypotheses of Figure 8B of Meyer and Zardoya (2003), namely, that
“marsupials are closely related to monotremes, and both groups are equidistant to
placentals”.

As a further check on this conclusion, the DNA data for the four species 5,6,1 of
Figure 5 together with 39 (the porthole fish) was re-aligned to get longer sequences
of base-pairs. The results are:

outlier time ratio cr1 cr2
1 5 6 1 0.9715 0.6758 0.9991
1 5 39 3 0.7016 0.3413 0.9997
1 6 39 3 0.7277 0.3229 0.9974
5 6 39 3 0.6759 0.2609 0.9839

This serves to confirm the main conclusion obtained from Figure 5b: the placen-
tal is the outlier of the placental, marsupial, montreme triple. It is also noteworthy
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Figure 6: Tetrapods and fish: (a) A misleading tree. (b) Re-aligned data.

that, in spite of the increased sequence lengths, the confidence ratio for the 1,5,6
triple deteriorates, while the other three values of cr1 are improved.

6 Tetrapods and fish

Here we consider the ordinal relationships of the major fish groups vis-á-vis the
tetrapods. This investigation was stimulated by work of Brinkman et al. (2004).
The first choices of representatives for these groups are:

No. Species Group
1 cat tetrapods

19 African lungfish lungfish
21 Sulawesi coelecanth coelecanth
44 beardfish ray-finned fish

Our objectives here include comparisons between the original data set for 48
species (based on 2000 genome base pairs) and results obtained by applying our
techniques to realigned genome sequences for these four species alone; admitting
6000 genome base pairs.

The following results are drawn from the website data base for 48 species:

outlier time ratio cr1 cr2
1 19 21 3 1.1091 0.7614 0.9987
1 19 44 3 1.1146 0.9588 0.8874
1 21 44 1 0.7934 0.6236 0.9199
19 21 44 1 0.8129 0.5019 0.9571

Although the distribution of outliers makes an admissible 4-tree, the high first con-
fidence ratios and relative times larger than one suggest that the tree is not well-
defined. A possible tree structure (in which we rely on the last two rows of the table
above) is sketched in Figure 6a and it will be seen that, in fact, this structure is
almost certainly misleading.

First we ask whether the structure sketched is maintained when we combine the
triple 1, 19, 21 with another ray-finned fish, namely, the white sturgeon, 24, the
butterfly fish, 27, or the common carp, 31. We do not go into detail but simply
report that these three new quadruples support the sketch of Figure 6a, but even
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with improved confidence ratios. The value cr1=0.96 of the table above is even
improved to 0.76, 0.79, or 0.80, respectively. However, in each case two relative
divergence times greater than one are predicted.

In this case, when the DNA sequences for the original quadruple 1,19,21,44 are
re-aligned (to obtain approximately 4000 base pairs), divergence matrices are re-
computed, and the “matlab” program of Bohl and Lancaster, 2005, re-applied, the
following revised table is produced:

outlier time ratio cr1 cr2
1 19 21 3 0.3515 0.1852 0.9890
1 19 44 1 0.7996 0.5798 0.7344
1 21 44 2 0.3214 0.3983 0.9802
19 21 44 2 0.2731 0.3716 0.9803

These results determine a unique 4-tree (all ambiguities of the preceding data
set are removed). Furthermore, completely different divergence times are produced
- and with acceptable confidence ratios. This tree appears as Figure 6b and, with
a confidence ratio of 0.58, must be seen as more reliable than Figure 6a. These
conclusions were reinforced by performing re-alignment of the four species in ques-
tion several times, and observing no significant change in the results displayed in
Figure 6b. Figure 1 of the paper Brinkman et al (2004) displays three different
4-trees for similar species and they assert that the correct topology “remains to be
unambiguously determined”. In predicting the coelecanth as the outlier, Figure 6b
differs from all three and may resolve this particular issue.

The lessons to be learned from these examples seem to be that predicted di-
vergence times greater than one should be treated with great caution (but see also
Section 8), and that broadly based data sets (with abbreviated common sequence
length) are not reliable when comparing closely related species.

As a final case-study we use the same four taxa to investigate the effects of the
“gap cost penalty” (or GCP) of the Clustal software. It is found that the topology
of Figure 6b is not sensitive to the GCP. However there is a significant change in
the predicted relative divergence times. The effects on the confidence ratios and the
divergence times are summarised in the next table. Here, the “default” GCP is that
determined by the software. The authors’ understanding of this example suggests
that the lowest GCP used here is the most reliable, although this is not strongly
reflected in the confidence ratios. The GCP is determined by two parameters (“gap
extend” and “gap open”) and the last two rows of the table determine the “low”,
“default”, and “high” GCP’s in terms of these parameters.

GCP low default high

19,1,21 rel.dgce.time 0.53 0.38 00.35

cr1 0.58 0.61 0.62
cr2 0.76 0.72 0.73

gap extend 3 5 8
gap open 8 10 15
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Figure 7: Mammals: (a) Data from the bank of 48 species. (b) Re-aligned data for
4 species.

7 Mammalian species and re-alignment

In this section we focus on some mammalian species and, first, investigate the effect
of re-alignment of the four mammals from the 48-species set. Secondly, an indepen-
dent study is made of the ape species: human, chimpanzee, and gorilla, together
with the cat as an outlier.

The results for the species 1 (cat), 2(cow), 3(rabbit) and 4(wallaroo) from the
48-species set are:

outlier time ratio cr1 cr2
1 2 3 3 0.8840 0.4953 0.8467
1 2 4 3 0.6951 0.1862 0.9627
1 3 4 3 0.7728 0.5254 0.9540
2 3 4 3 0.8373 0.5133 0.9083

After re-aligning the four species (to obtain about 16,000 base pairs) we obtain:

outlier time ratio cr1 cr2
1 2 3 3 0.6850 0.1847 0.9515
1 2 4 3 0.8529 0.2499 0.9625
1 3 4 2 0.7968 0.4742 0.9196
2 3 4 2 0.8170 0.4849 0.9909

The two predicted 4-trees are compared in Figure 7. The tree for the re-aligned
species has marginally improved confidence ratios but, surprisingly, there is an un-
expected change in the predicted outlier (from wallaroo to rabbit). Interestingly,
although the Markov model suggests that greater faith be placed in Figure 4(b), the
ordinal relationships of Figure 4(a) are consistent with Figure 1 of Arnason et al.
(2002).

As a second test of the Markov method for vertebrate species, mtDNA data were
aligned for human (a), chimpanzee (b), gorilla (c) and, as an interesting but not too
remote outlier, the cat (1). This admitted about 16,500 base pairs in the alignment.
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Figure 8: Ordering of the ape species.

outlier time ratio cr1 cr2
a b c 3 0.8308 0.4844 0.7925
a b 1 3 0.2988 0.0477 0.9982
a c 1 3 0.3535 0.0227 0.9860
b c 1 3 0.3614 0.0510 0.9869

The favourable confidence ratios are remarkable, and the resulting tree of Figure
8 matches the generally accepted phylogeny for this quadruple. See Figure 1 of
Arnason et al. (2002), for example. Here, the relative divergence time for the
human, chimp, gorilla triple is predicted to be 0.30/0.36 from the graph, and is
confirmed by the entry 0.83 of the first row in the table above. This is at the
upper end of the range 0.62-0.86 suggested by Gagneux and Varki (2001). This
example improves our confidence in the policy of using maximal sequence lengths
when ordering closely related sets of species.

Given the wealth of paleontological data for hominids, a plausible calibration of
the time scale is possible in this case.

8 Polytomy

The possibility arises that the separation of three or more taxa from the same branch
of a tree is so close in time that the Markov model and the data are not able to
resolve the separate binary divergences. This would be the case if both confidence
ratios for the same triple are close to one. In such a case it may be helpful to admit
a ternary (or higher) node on the tree. In effect this is just an acknowledgement
that the Markov model together with the data do not have the power of resolution
to form more refined multiple binary divergences.

Searching the results for 48 vertebrates at the website, several triples are found
to be candidates for this line of thought. In particular, consider 15 (rubber eel), 16
(African clawed frog), and 45 (Atlantic cod). The tabulated entry is the first row of
the next table, and we observe that the relative divergence time is predicted as 0.90
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Figure 9: A ternary node

with confidence ratios 1.00 and 0.94; both close to one. This suggests that a ternary
node might best represent these taxa in a tree. Several quadruples of taxa were
then examined always including this triple with a view to finding plausible 4-trees
including the triple node. Such a tree is obtained with the addition of species 43
(sandfish). Here are the results:

outlier time ratio cr1 cr2
15 16 45 1 0.90 1.00 0.94
15 16 43 3 1.03 0.87 0.98
15 43 45 1 0.50 0.11 0.98
16 43 45 1 0.58 0.16 0.97

The ternary node is consistent with the results for both triples (15, 16, 45) and
(15, 16, 43). Assuming this polytomy, the predicted relative divergence times for the
triples (15, 16, 45) and (15, 16, 43) should agree. They are in fact 0.50 and 0.58 (and
their average is indicated in Figure 9).

By adding the species 21 (coelecanth), this example can be developed further
to admit a plausible quaternary node in a 5-tree. We do not tabulate the results
here, but all of the six additional triples are consistent with the topology including
a quaternary node for 15, 16, 21, and 43/45. The most significant discrepancy is
another forecast for the binary node of Figure 9. The triple (21, 43, 45) predicts a
relative divergence time of 0.64 (in contrast to the two preceding predictions of 0.50
and 0.58).

In contrast to this, we check the divergence times for all the triples (n, 43, 45)
where 1 ≤ n ≤ 12. In this way the divergence of 43 (sandfish) and 45 (cod) can
be checked against all the mammals, marsupials, turtles, and birds of this data set.
There is a remarkable consistency: these twelve predictions vary between 0.48 and
0.54, and the confidence ratios are uniformly good (as with the last two rows of the
preceding table).

Another good example appears subsequently among the ray-finned fish. The
4-tree for the species 35,36,37,44 of Figure 16b contains a well-defined ternary node
for the first three species.
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Figure 10: The skeleton tree: mammal, marsupial,turtle,bird,reptile,skate.

9 Trees for the vertebrates

Although the full data set for the 48 vertebrate species does not produce a unique
well-defined tree, it is possible to obtain reasonably consistent trees for some large
sub-groups. In these constructions the implementation of polytomy as described
in the preceding section is essential. Close examination of the data reveals that
several problems arise with three of the species groups of Appendix A, and these
are the birds (10-12), the reptiles/amphibians (13-17), and the lungfish (18-20).
Consequently, the first two are omitted from the detailed analysis (but do make an
appearance in the initial skeleton tree of Figure 11). In view of the significance of
the lungfish in the emergence of terrestrial species (see Brinkman et al., 2004) they
are included in Figure 13. Examination of these species requires more refined data,
possibly as conducted in Section 4.

We begin with what might be described as a “skeleton” tree (Figure 10) con-
taining one species from each of the groups under consideration. The subsequent
trees can be seen as providing more detail on the structure of “branches” of the
tree. Recall that the original feature of these trees is the specification of explicit
relative divergence times. Careful examination of the numerical results can reveal
some inconsistencies in these larger trees, but the topologies and relative divergence
times recorded are supported by the greater part of the relevant results. Note first
of all that Figure 10 has a ternary node at the root. Indeed, it will be seen there
seems to be a limit in time beyond which the model cannot resolve the speciation.
This may be a result of using mtDNA. It seems that the root nodes of all of the
following trees coincide - but we see this simply as the inability of this model and
this data to resolve the tree more precisely. The selected species here are a mammal
(1), marsupial (6), turtle (9), bird (ostrich) (10), reptile (salamander) (17), and fish
(skate) (48) (see also Figure 3). This figure simply demonstrates that the speciation
of the “groups”, as we understand them, ocurred in the very distant past (as judged
by our model). Our model is more informative in more recent times as speciation
of the lineages develops.

Note that in all of the Figures 10-13, the root of the tree is at the same time
so that listed relative divergence times are directly comparable. The time associ-
ated with the root of the tree of Figure 14 (and Figure 16b) has been adjusted
to be consisitent with the other figures. Note also that the recorded times are, in
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Figure 11: Mammals, marsupials and turtles

general, associated with more than one triple, and the time listed is an average
of those recorded in the tabulated data. But these times are recorded only when
there is plausible agreement between the several time measurements generated for
a particular node. Figure 11 is the tree for the species 1-9, including the mammals,
marsupials, and turtles. Notice that it was necessary to include only one multiple
(ternary) node in this figure. Figure 5 can be seen as an attempt to resolve the
ternary node used here. With the possible exception of this ternary node, the ordi-
nal relationships for the species 1-6 are consistent with those predicted by Arnason
et al. (2002). But the anomaly of the tree with re-aligned data (Figure 7) remains.

Figure 12 is a tentative tree structure including the three lungfish (species 18-
20), the coelecanth (21, 22), and three other fish. Possibly the most sensitive part
of this tree concerns the node marked t = 0.90. The numerical results scatter in
such a way that this node could reasonably be labelled anything from 0.80 to 1.00 -
which can significantly affect the origin of the lungfish and coelecanth viv-a-vis the
other taxa. (Indeed, in Figure 13, this time is set at 1.00.) However, the early origin
of the lungfish, coelecanth and skate (48) lineage is confirmed.

Figure 13 contains a tree for the species 21-36 including the coelecanth, freshwa-
ter fish (23-25), bonytongues (26,27), eels (28,29), carp (30-34) and samples of the
ray-finned fish (35,36,45) (see Appendix A for our definitions of these terms). The
tree is sketched with a quaternary node at the root. However, the branch supporting
23-29 may bifurcate from the root-45 branch at a more recent time, thus reducing
the order of the root node (cf. Figure 2 of Arnason et al. (2004)).

Figure 14 is a relatively well-defined tree for the ray-finned fish (36-45), sharks
(46, 47) and skate (48) (and contains a quaternary node). Careful comparison of
these predictions with those of Arnason et al. (2002 and 2004) is interesting.

Comparison of these results with Figure 3 of Brinkmann et al. (2004) is also
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Figure 12: Lungfish, coelecanth and other fish.
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Figure 13: Fish species: first set.
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Figure 14: Fish species: second set.

interesting, and not entirely consistent3. Note also that the results obtained here
with the irreversible Markovian model and those obtaimed with statistical techniques
by the Brinkmann group are obtained with the same data. If nothing else, the
comparison and the analysis above show the need for improved data.

Another interesting source of comparisons is a set of phylogenetic trees for “an-
cient fish” drawn up by Inoue et al. (2003) and described by Miya et al. (2003)
as “decisively resolved”. In that comprehensive study of numerous fish species, two
trees are presented for the same set of species, one obtained using “maximum par-
simony” (MP) methods (their Figure 2) and the other using “maximum likelihood”
(ML) methods (their Figure 3). It is particularly interesting for this discussion be-
cause twelve of the species studied by the Inoue group are contained in our data set
of 48 species.

Figure 15 provides the tree (with our conventions) deduced in that paper for
the twelve species in question. The topologies are the same with both the MP and
ML analyses. Relative divergence times are not available by these techniques, so
the vertical scale can indicate only the predicted ordering of nodes. Comparable
trees obtained by the present Markovian analysis appear in Figures 16a and 16b -
presented in two parts for the reader’s convenience. We note also that, in Figure
16a, the time t = 0.91 is the average of 0.7451, 0.9900, and 0.9970, and cannot be
regarded as reliable.

The most notable feature of this comparison is the general agreement on topolo-
gies predicted by the three techniques. There is one notable exception, however, in
the location of species 35 (rainbow trout) whose predicted ancestry differs substan-
tially in Figures 15 and 16b.

3The reader is reminded that definitive lineagies are not expected here; the importance of
this work lies in the introduction of a new methodolgy which provides the additional feature of
estimated relative divergence times
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Figure 15: Topological structure of Inoue et al..
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Figure 16: Species studied by Inoue et al. (cf. Fig. 15).
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10 Conclusions

An irreversible Markov process (used to model the phenomenon of drift of nucleotides
in the evolution of species) has been developed and implemented elsewhere by two
of the present authors. Here, the usefulness of this model has been illustrated in
a number of ways - and avoiding technicalities as far as possible. The implications
of the existing theory have been illustrated in the context of some topical problems
of phylogeny, and useful insights are obtained. These include preliminary studies
of the ordinal relationships of birds (Section 4), three groups of tetrapods (Section
5), three groups of fish (Section 6), groups of mammals (Section 7), and the feasi-
bility of including polytomy in the predicted trees (Section 8). Section 9 contains a
comprehensive application of the techniques developed here to the mtDNA data set
developed by Brinkman et al (2004) - notwithstanding some apparent weaknesses
in that data discussed in Sections 4-6. Some direct comparisons are also made with
tree structures proposed recently by Inoue et al. (2003).

In all cases, a remarkable feature is the ability of the model to predict internally
consistent relative divergence times.

The results suggest that there are limitations due to the use of mitochondrial

DNA data. Also, the effects of subjective variations in the alignment processes
require further investigation. In particular, there is potential for improved results
and further analysis in the following directions:

• Careful study of the effects of sequence length.

• Performing re-alignment for every triple of species. (This would require ex-
tension of the existing software.)

• Applying the present technique to protein rather than nucleotide data (also
computationally intensive, but requiring no new ideas).

• A mathematical analysis of the sensitivity of predicted divergence times to the
data.

• Abandoning homogeneous time dependence in the Markov model and devel-
oping more sophisticated time dependence with the objective of resolving high
order polytomy phenomena of the distant past - as suggested by the model
studied in this paper.
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Appendix A. The 48 species

(GenBank Accession Number, http://www.ncbi.nlm.nih.gov)

1. Felis catus (cat) (U20753) 25. Amia calva (bowfin) (AB042952)
2. Bos taurus (cow) (V00654) 26. Osteoglossum bicirrhosum (arawana) (AB043025)
3. Oryctolagus cuniculus (rabbit) (AJ001588) 27. Pantodon buchholzi (butterfly fish) (AB043068)
4. Macropus robustus (wallaroo) (Y10524) 28. Conger myriaster (conger eel) (AB038381)
5. Didelphis virginiana (opossum) (Z29573) 29. Anguilla japonica (Japanese eel) (AB038556)
6. Ornithorhynchus anatinus (platypus) (X83427) 30. Carassius auratus (goldfish) (AB006953)
7. Chrysemys picta (eastern painted turtle) (AF069423) 31. Cyprinus carpio (common carp) (X61010)
8. Chelonia mydas (green sea turtle) (AB12104) 32. Danio rerio (zebrafish) (AC024175)
9. Pelomedusa subrufa (African helmeted turtle) (AF039066) 33. Crossostoma lacustre (tasseled-mouth loach) (M91245)
10. Struthio camelus (ostrich) (Y12025) 34. Sardinops melanostictus (Japanese sardine) (NC 002616)
11. Corvus frugilegus (rook) (Y18522) 35. Oncorhynchus mykiss (rainbow trout) (L29771)
12. Falco peregrinus (peregrine falcon) (AF090338) 36. Salmo salar (Atlantic salmon) (U12143)
13. Alligator mississippiensis (American alligator) (Y13113) 37. Coregonus lavaretus (Lake chud whitefish) (AB034824)
14. Eumeces egregius (mole skink) (AB016606) 38. Plecoglossus altivelis (ayu fish) (AB047553)
15. Typhlonectes natans (rubber eel) (AF154051) 39. Diplophos taenia (Pacific porthole fish) (NC 002647)
16. Xenopus laevis (African clawed frog) (Y10943) 40. Aulopus japonicus (Japanese thread-sail fish) (NC 0002674)
17. Mertensiella luschani (Lycian salamander) (AF154053) 41. Trachurus japonicus (Japanese jack mackerel) (NC 002813)
18. Lepidosiren paradoxa (S.American lungfish) (AF302934) 42. Paralichthys olivaceus (Japanese flounder) (AB028664)
19. Protopterus dolloi (African lungfish) (L42813) 43. Arctoscopus japonicus (sailfin sandfish) (AP003090)
20. Neoceratodus forsteri (Queensland lungfish) (NC 003127) 44. Polymixia japonica (beardfish) (NC 002648)
21. Latimeria menadoensis (Sulawesi coelacanth) (AF176901) 45. Gadus morhua (Atlantic cod) (X99772)
22. Latimeria chalumnae (African coelacanth) (U82228) 46. Squalus acanthia (spiny dogfish) (Y18134)
23. Polypterus ornatipinnis (ornate bichir) (U62532) 47. Mustelus manazo (shark) (AB015962)
24. Acipenser transmontanus (white sturgeon) (AB042837) 48. Raja radiata (starry skate) (AF106038)

SPECIES BY GROUPS:

1-4 mammals 23-25 old freshwater fish
5-6 marsupials 26-27 bonytongues
7-9 turtles 28-29 eels
10-12 birds 30-34 carp
13-17 reptiles/amphibians 35-45 salmon-like
18-20 lungfish 46-47 shark
21-22 coelacanth 48 skate
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12 Appendix B

DATA FOR FIGURE 2a:

outlier time ratio cr1 cr2
1 2 4 3 0.6951 0.1862 0.9627
1 2 36 3 0.4696 0.1413 0.9812
1 2 37 3 0.4695 0.1389 0.9794
1 2 38 3 0.4613 0.1741 0.9210
1 4 36 3 0.6863 0.2926 0.9845
1 4 37 3 0.6828 0.2470 0.9869
1 4 38 3 0.6663 0.2036 0.9589
1 36 37 1 0.0988 0.0972 0.9988
1 36 38 1 0.4150 0.1676 0.9824
1 37 38 1 0.4056 0.1337 0.9813
2 4 36 3 0.6670 0.2307 0.9387
2 4 37 3 0.6618 0.1920 0.9276
2 4 38 3 0.6416 0.1639 0.9393
2 36 37 1 0.0943 0.0878 0.9783
2 36 38 1 0.4009 0.1689 0.9267
2 37 38 1 0.3908 0.0700 0.9548
4 36 37 1 0.0969 0.0922 0.9915
4 36 38 1 0.4050 0.2328 0.9389
4 37 38 1 0.3934 0.1099 0.9749
36 37 38 3 0.2514 0.2430 0.9622

DATA FOR THE TETRAPOD/REPTILE CASE:

outlier time ratio cr1 cr2
5 6 11 3 0.6957 0.2145 0.9591
1 5 11 3 0.6999 0.3819 0.9636
1 6 11 3 0.7537 0.3502 0.9218
5 6 12 3 0.7126 0.2298 0.9557
1 5 12 3 0.7059 0.3719 0.9682
1 6 12 3 0.7530 0.3725 0.9914
5 6 34 3 0.6534 0.2205 0.9660
1 5 34 3 0.6793 0.3614 0.9513
1 6 34 3 0.7087 0.3333 0.9314
5 6 35 3 0.6649 0.2497 0.9421
1 5 35 3 0.6811 0.3072 0.9805
1 6 35 3 0.7116 0.2761 0.9266
5 6 36 3 0.6728 0.2550 0.9331
1 5 36 3 0.6946 0.3366 0.9729
1 6 36 3 0.7234 0.3232 0.9179
5 6 37 3 0.6809 0.2211 0.9245
1 5 37 3 0.7003 0.3059 0.9875
1 6 37 3 0.7270 0.2771 0.9254
5 6 38 3 0.6586 0.2132 0.9493
1 5 38 3 0.6759 0.3098 0.9603
1 6 38 3 0.7200 0.2854 0.9098
5 6 39 3 0.6460 0.1657 0.9536
1 6 39 3 0.6955 0.2361 0.9406
1 5 39 3 0.6689 0.2666 0.9774
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