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Abstract

We consider relative equilibria in symmetric Hamiltonian systems, and thesispence or bi-
furcation as the momentum is varied. In particular, we extend a class®alt mbout persistence
of relative equilibria from values of the momentum map that are regutath&coadjoint action,
to arbitrary values, provided that either (i) the relative equilibrium is at allegtremum of the
reduced Hamiltonian, or (ii) the action on the phase space is (locally) Tteefirst case uses just
point-set topology, while in the second we rely on the local normal fom(ffee) symplectic group
actions, and then apply the splitting lemma. We also consider the Lyapurinlitgtaf extremal
relative equilibria. The group of symmetries is assumed to be compact.

Introduction

A relative equilibrium in a symmetric dynamical system israup orbit that is invariant under the
dynamics. Another way of viewing a relative equilibrium & donsider the dynamics induced on
the orbit space of the phase space, and then a relativeleuiti is just an equilibrium point of this
induced dynamics. For finite groups, relative equilibria prst (group orbits of) equilibria; in this
paper we are therefore only interested in continuous synset

In a symmetric Hamiltonian system there is the added strectia momentum map, whose level
sets are invariant under the dynamics (“conservation of emaom”). The ‘persistence question’ we
address is whether, given a relative equilibrium on dhkevel set of the momentum map, we can
deduce the existence of relative equilibria on nearby lsgtd.

There is a well-known observation due to Arnold, that if thisra non-degenerate relative equilib-
rium for a given value of the momentum map, whecesatisfies a certain condition of regularity, then
on each level set of the momentum map close taxthevel set, there is a unique non-degenerate rela-
tive equilibrium in a neighbourhood of the given one (thatigk equilibriumpersist3. The regularity
hypothesis is that be a regular point for the coadjoint action of the Lie groupe ion-degeneracy of
the relative equilibrium requires firstly that the pointstloé relative equilibrium have trivial isotropy
(or more generally that the orbit space be smooth) and sécadindt the reduced Hamiltoniat, have
a non-degenerate critical point at the relative equiliriurhe proof is a straightforward application
of the implicit function theorem on the smooth orbit spacke Bbservation continues by pointing out
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2 J. Montaldi

that if the quadratic part of the reduced Hamiltonkdnis positive definite, then the relative equilib-
rium is Lyapunov stable (even to perturbations changingribenentum value) [2, 9]. This approach
to proving stability of a relative equilibrium is called tEBmergy-Casimir method, in contrast with the
closely related Energy-Momentum method developed by Marsohd co-workers. For more details
and further references, see Marsden'’s lecture notes [11].

An example in [9] (Exercise 15.10 of Chapter IV) shows thagéneral the regularity od is
necessary. The group in that example is the group of affimsfivamations of the real line, which
is not compact. In this paper we consider the case where theyds compact, and show that one
may draw the same conclusions of persistence and stabitiy without the regularity hypotheses,
provided the relative equilibrium extremaj that is, the reduced Hamiltoni&fy has a local extremum
at the relative equilibrium (Theorem 1.2). We also give aamagle in 81 to show that persistence may
fail for non-extremal relative equilibria.

George Patrick [18] has shown that in a neighbourhood ofadivel equilibrium where the action
is locally free and the velocit§ is regular, the set of relative equilibria forms a smoothmsahifold of
phase space (of dimension dBn+- rankG), which implies the persistence result in this case whether
or not the relative equilibrium is extremal, and whether atranis regular ing* (see Remark 3.3(e)).

The remainder of the paper is dedicated to a better undelispof the case where the group acts
freely (or locally freely — see Remark 3.6), but the vatuef the momentum map is not regular for
the coadjoint action. Of particular interest is the caserelige velocity of the relative equilibrium is
aregular element of the Lie algebra, since the results are partigutégan. We now briefly describe
these later results.

Throughout this paper, we suppose tds a compact Lie group acting on a symplectic manifold
(P, w) in such a way that there exists an equivariant momentumdnap— g*. We will also suppose
thatH : P — R is a smoothG-invariant function (the Hamiltonian).

Let t be a Cartan subalgebrag{the Lie algebra of a maximal torus &), andt* its dual. Recall
that any element of is conjugate to an element &fthat is, every adjoint orbit iy intersectd. Let
W be the Weyl group o6, which acts both ort and ont*. Forp € t*, letw(p) be the cardinality of
the W-orbit int* containingj.

The second principal result of the paper (Theorem 3.1) iddliewing. Suppose thap € P/G
is a non-degenerate relative equilibrium with momentuitfor a given invariant Hamiltonian), and
p has trivial isotropy, so that the group acts freely in a ne@lirhood ofp = G.p. Then for allP,
with p sufficiently close tax, there are at least(p) /w(a) relative equilibria orf,, nearp, provided
they are all non-degenerate. If moreover, the velocity efréative equilibrium (defined modulo the
adjoint action) is regular ig, we say that the relative equilibriumrsgular, and in that case, there are
preciselyw(p) /w(a) relative equilibria orPy, nearp, which are all non-degenerate, see Theorem 3.2.
One can also make a similar (though numerically weaker)losiun if the action is only locally free,
see Remark 3.6. Atthe end of the paper we consider brieflyidieeealues of the relative equilibria on
P. near a regular relative equilibrium &, showing that generically they are all imaginary provided
the relative equilibrium oy is strongly stable.

As an example, consider the case where the grog0i8). A relative equilibrium with trivial
isotropy is regular if and only if it is not an orbit of equitib. If a = 0 for such a regular relative
equilibrium, then foru # 0 (but sufficiently small) there are precisely 2 () relative equilibria
on B, near the given one (see Example 3.4). On the other hand irigidebiody problem, the zero
momentum set contains (is) a relative equilibrium withigivsotropy, where the velocity is zero. For
a fixed non-zero value of the momentum, there are 6 relatiudilega, corresponding to rotation in
each direction about each of the principal axes of inertimhSon-regular relative equilibria are dealt
with in more detail in a later paper [14].



Persistence and Stability of Relative Equilibria 3

In [20], Roberts and Sousa-Dias describe a complementgmpaph to the question of bifurca-
tions of relative equilibria.

Notation and context

Throughout, we assume th@tis a compact Lie group. Its Lie algebra is denogednd the dual of
its Lie algebra byy*.

P is a finite dimensional symplectic manifold with sympledtiem w. The Lie groupG acts onP
symplectically, and fop € P we write p = G.p for the orbit throughp, considered either as a subset
of P or as an element of the orbit spa£G. The tangent space to the orpitit p is denotedy.p. The
isotropy group for the poinp is denotedsp, and its Lie algebra by,

For & € g, the associated vector field ¢his denotedXs, and given a Hamiltonian functioH :

P — R, the associated vector field is denodgl

There are natural actions & on g andg* — the adjoint and coadjoint actions respectively. For
ne g* we write Oy for the coadjoint orbit through andg.p for its tangent space at

We assume that the symplectic action is such that thereseatistquivariant momentum map,

d:P—g"
The equivariance is with respect to the given actiorP@nd the coadjoint action agi':

®(g.p) = Ad, 1 P(p).

For details about when such a momentum map exists the refaoigidsconsult [7] or [9]. Recall that
the momentum map is defined by the differential condition,

(d®p(v), &) = 0(Xe,v), VE € g, E ToP.

Note that if a (non-equivariant) momentum méy P — g* exists, then the mag? : P — g*
defined by

®9(p) = Ad; 1 ®(g .p),

is also a momentum map for the given action. As the gi@lp compact we can averag® over the
group to obtain an equivariant momentum map.

The coadjoint action og* has a quotient which is a smooth manifold with boundary anders
(it can be naturally identified with a Weyl chambertit). Since® is assumed to be equivariant, the
image of an orbiG.pin P is an orbitOy in g*, wherea = ®(p). Thus® passes down to a mapof
the orbit spaces, called tloebit momentum mapn such a way that the following diagram commutes:

P 2 g
! !
P/ Y g/G

The components of the m@pare Casimirs for the natural Poisson structure on the gphite.
The Meyer-Marsden-Weinstein reduced spaces [13, 12] direedeto be
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The equivalence of the two definitions as sets is obviouslewds analytic spaces (with their rings
of functions) it is less obvious; it follows from the slicesttrem, and so requires the compactness of
the group. The second definition has the advantage thatizeedhe reduced spaces as subspaces of
the orbit spac®/G, and in particulat~1(0,)/G = ¢ ~1(0y). Thus we can take the definition of the
reduced spaces to be

Pui=0"1(0y).

Note that ifv € O, thenOy = O, andP, =PR,.

If H: P — R is an invariant Hamiltonian function, it passes down to acfiomnH : P/G — R,
whose restriction to the reduced sp#&és denoted,.. If B, is smooth, a relative equilibium, € B,
is non-degeneraté dZHH(pp) is a non-degenerate quadratic form; itegular if the velocity & of the
relative equilibrium is a regular element gf (The velocity is defined by (p) = X (p) for some
point p of the relative equilibrium; this velocity is well-definedaaiulo the adjoint action, since by
equivariance (g.p) = Xady(¢)(9-p)-)

For simplicity, we assume throughout that the Hamiltorttatis such that the associated vector
field Xy is complete.

1 Persistence of extremal relative equilibria

A relative equilibrium of a symmetric Hamiltonian systemaiggroup orbit that is invariant under
the dynamics. It is thus a point of the orbit sp&és that is invariant under the dynamics induced
thereon — that is, an equilibrium point &YG. Any reduced spadg, has the structure of a stratified
symplectic space [21], and relative equilibria occur anfmbn the strata where the restriction of the
HamiltonianH to that stratum has a critical point. In this section we atergsted in the situation
wherep is a local extremum ol on Py. Since the restriction to the symplectic stratum contanin
p will also have a local extremum gt such a point is clearly a relative equilibrium. We show that
extremal relative equilibria are Lyapunov stable, and thay persist to nearby reduced space$(to
for u= a).

Definition A relative equilibriump € Py is said to beextremalif Hy has a local extremum gt
Note that if p is an extremal relative equilibrium witHy (p) = h, thenp is an isolated point of
Ha ' (h).

Example 1.1 We give a simple example illustrating the notion of extremedditive equilibrium, and
showing why in general it is a necessary condition for botisigeence and stability.

Consider the phase spaPe= R3 x R3, with coordinatesy, pi (i = 1,2,3), and canonical sym-
plectic structurev = doyAd p1 + dopad pp + dggAd ps. We take as grouO(3) acting diagonally by
rotations:

R O
Ri— (o R) e Sp(REx R3),
whereR € SO(3). Note that the isotropy subgroup for the origir§6(3), while for any other point it
is eitherSO(2) if qandp are parallel, and trivial otherwise. The invariants of gision are functions
of the following 3 fundamental invariants,

A = |pP
B = |qf
C = Qgp = 01p1+02p2+03ps.
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The orbit space can be embedded as the sub$t given by the condition&, B > 0 andC? < AB, a
solid cone. The momentum map is the angular momentum,

®(q1, 92,93, P1, P2, P3) = AP

The orbit momentum ma¢ : P/G — g*/G is given by
®(A,B,C) = AB—C2.

The reduced spad® is the half-coneAB = C2, A > 0, which has two strata: the origin and the rest.
The other reduced spacBgare each one sheet of a two-sheeted hyperboloid (see Fig. 1).
Consider the Hamiltonian functiodd = A— B. The origin is a relative equilibrium which is not
extremal, and it is easy to see from the figure that it is thg o#lhtive equilibrium — indeed, every
solution except for the origin is unbounded. On the otherdh#iwe takeH = A+ B, thenHg =
(A+ B)’P0 has a strict minimum at the origin, so that in this case thgimiis an extremal relative
equilibrium and here we get a single relative equilibriumeaich reduced space; Theorem 1.2 below
predicts at least one on each reduced space. Had the actonfte®, Theorem 3.1 would have
predicted 2 relative equilibria on each reduced spacegdhreWeyl group oB80(3) is Z /2Z. O

Figure 1: The reduced spaces are each one sheet of a 2-shgeéeloloid

Supposep € Py is a relative equilibrium; it is well-known (e.g. Appendixd® [2], or Chapter
IV, Section 8 of [9]) that if, (i) the action o is simple(i.e. the orbit space has the structure of a
differentiable manifold), (ii)a is a regular point of the coadjoint action Gf (iii) Py is non-singular
at p, and (iv)d®Hq (p) is definite, then the group orb®.p in P is (relatively) Lyapunov stable for the
dynamics associated td. Moreover, on nearby reduced spaces there is also a retafiviébrium.
The proof is a straightforward application of the impliainttion theorem.

The purpose of this section is to prove essentially the samatrwhile dropping the regularity
conditions, but adding a hypothesis on the compactnesgagfrtiup. In particular, we show thatpfis
isolated inHgy 1 (h) (whereh = Hq (p)) then the corresponding group orbitRis relatively Lyapunov
stable. The proof uses only elementary point-set topology.
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With the same hypothesis we also prove a persistence rebuaitjing that on each reduced space
near the given one, there is at least one relative equitiriu

Given a HamiltoniarH, there is an associated flow
0:PXxR—-P;
it is of courseG-equivariant. This flow of? descends to a flow on the orbit space
G:P/GxR—P/G.

SinceG is compactP/G is naturally a Poisson space, and the flow can be defined lgine¢erms of
the “quotient HamiltonianH : P/G — R and the Poisson structure.

A relative equilibrium is an equilibrium point of the flomon P/G. Recall that a compact invariant
setSc P (orin P/G) is Lyapunov stablé for any neighbourhood) of S, there exists a neighbourhood
V of Sin P (respectively inP/G) with 6(V x R) C U. There is usually a distinction made between
Lyapunov stability andelative Lyapunov stabilityn P, where the neighbourhoods are required to be
G-invariant. However, iSis G-invariant, withG compact, then these notions are equivalent, because
any neighbourhood d contains a-invariant neighbourhood. For a dynamical interpretatibthe
stability of relative equilibria see [17, 18].

Theorem 1.2 Supposé € Py C P/G is an extremal relative equilibrium. Then
() pis Lyapunov stable in fG. Consequently @ = 1 (P) is Lyapunov stable in P;

(i) for all u close toa in the image undeé of a neighbourhood of, there is a relative equilibrium
on R, close top.

Remarks 1.3 (a) If pis not a strict local extremum, but belongs to a compacgsef,; on whichHg
takes its extremal value (in which case every poin&d a relative equilibrium), theip may not be
Lyapunov stable, but one shows in exactly the same mannegikaMoreover, part (ii) also holds,
after replacingp by S

(b) In the conclusion of (ii), the relative equilibrium is twecessarily isolated. If it is isolated it is
Lyapunov stable by (i). In general, the compact set of netagiquilibria will be Lyapunov stable by
(a). Such a situation occurs in the symmetric rigid body fmoh that hasSO(3) x SO(2) symmetry.

If we just quotient bySO(3) (as for the non-symmetric rigid body) then on each reducedesfor
non-zero momentum, there is a circle of relative equilibria

(c) Note that the proof of (ii) also implies that extremalatéle equilibria persist under small pertur-
bations of the Hamiltonian.

(d) In fact compactness of the group is not really needed dofr (), since the crucial point (see the
Lemma below) is only that the quotient topology on the orpaceg* /G is Hausdorff, a condition
which fails for the example of Libermann and Marle referreébove, but which is verified trivially
for any Abelian group.

(e) Part (i) can also be seen as a result about stability afsBoiHamilton equilibria, in the sense of
Weinstein [22]. In his paper, Weinstein points out that cglreuld be taken in deducing Lyapunov
stability of Poisson-Hamilton equilibria from knowledgétbe second variation of the Hamiltonian
on the symplectic leaf containing the equilibrium. The Boisspaces that arise as the orbit space of
a symplectic action of a compact group form a restrictedsglasd the lesson from this paper is that
even for this restricted class it is certainly not sufficientonsider the restriction of the Hamiltonian
to the symplectic leaf: one must consider the entire redspaae, so in particular one must also
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consider those symplectic leaves containing the givenmiteeir closure. However, for more general
Poisson spaces even this is not sufficient, as the planaupsndxample of Weinstein on p.8 of [22]
shows.

The proof of the theorem is just point-set topology. The fiastt relies on the following lemma.
Recall that a precompact set is a set with compact closudea @necompact neighbourhood is open.

Lemma 1.4 Let f: X — Y be a continuous map, with X locally compact and Y HausdS8tfppose
y€Y issuchthat S f~1(y) is compact. Then for any precompact neighbourhood U of & txists
a neighbourhood V of y such that¥(V) andoU are disjoint.

PrROOF First note that sinc¥ is locally compactSdoes indeed have a precompact neighbourhood:
each point ofShas a precompact neighbourhood, so extracting a finite sabae obtain the desired
precompact neighbourhood 8&f Let s be a fundamental system of closed neighbourhoogsof
(thatis,NgVg = {y}), and letZg = f*l(VB), which is closed. TheB= NZg, and sincesNoU = 0, we
haveoU C uZi3 (the complements of thgg). Now, 0U is compact, so we can extract a finite subcover
oU C Zl/31 u...UZ[gn. Then

n
vy
i=1

is a neighbourhood of with the required property. O

PrROOF (of theorem) (i) We apply the lemma with= (¢,H) andX = P/G, where¢ is the orbit
momentum map. Led be a precompact neighbourhood®# f~1(y,h), and letv be a neighbour-
hood of (i, h) satisfyingf~1(V)NnaoU = 0. Thenf~1(V)NU is a flow-invariant neighbourhood &
as required, sincé (V) is flow-invariant, and flow preserves connected components.

(i) Suppose thap is a local minimum oHy (the case of a local maximum is analogous). Ket
be a compact neighbourhood pf small enough that o NPy, we haveﬁ_l(O) =P, and such that
K is the closure of its interior. For eaghe ¢ (K), putK, = KNP,

For eachu we have that,(K,) is compact; le, € K, be a point that realizes the minimum of
H|Ku:

Hy(B) =inf{H() | x & Ky}.
Note that ifp,, € K° (interior of K) we are done, for thep,, is a local minimum.

It remains to show that ift is sufficiently close tax, thenp, € K°. If this were not so, then by
compactness df, the familyp, would have a convergent subsequenceu(as0) with p, — q € Kq,
with q # p. But thenH (p, ) — H(q) > H(P), which is absurd. O

2 Local Model

In this section, we describe a model for the symplectic actibG on P in a neighbourhood of the
orbit G.p. This is essentially due to Guillemin and Sternberg [7] aratl®1[10], see also [21]. We
give what we feel to be a simpler presentation, using thedstahslice theorem together with the
equivariant Darboux-Weinstein theorem [7], rather thanifiotropic embedding theorem.

For the ordinary (non-symplectic) case, a local model fer dlotion of a compact Lie group is
provided by the slice theorem. L&, := Tp,P/g.p. As the isotropy grouf, is compact, and the
group orbit isGp-invariant, it follows that we can (and do) identify a neighishood of 0 inS, with a
Gp-invariant submanifold oP throughp, transverse to the group orbit.
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The slice theorem [4] states that there is an equivariafealiiorphism
G XGp Sp L> R

where theG-action on the model spa&x g, S, is given byg.[h,s| = [gh, . The diffeomorphism is
simply given bylh,s| — h-s. The image of this diffeomorphism is an invariant neighthmad of the
orbitG.pin P.

Note that when considering only free actions in the nextigecthis local model is even simpler:
GxS,—P.

In the symplectic case, we need to include the symplectio favhich refines the decomposition
ToP = g.p® TpSp, and in addition it is useful to have an expression for the @M map in the
local model.

We define four vector spaces as follows (for details see [L5]]d:

W, = kerd®,ng.p=gqy.p
Xp = 9.p/Wp

Herea = ®(p). (In [1] itis assumed that = 0, soX, = 0.) Since the group is compact, these spaces
can be identified witl,-invariant submanifolds d?. There are natural isomorphisms,

=
IR

9a/9p
9/8q
(9a/8p)" -

The spaceX, andY, are symplectic, whil&\, is isotropic and dually paired with, by the symplectic
form, whence the isomorphism fdp above. The symplectic form oy, is isomorphic to the Kostant-
Kirillov symplectic form ong/g,. (Note that a5y, is compact, there is &p-equivariant almost-
complex structurdy, on T,P, compatible with the symplectic form; if we choogg = J(W,) thenZ,
is also isotropic.)

The spacé}, is called thesymplectic slicat p:

N X
- b
1R

_ kerd®,

P gep

it plays the role in symplectic geometry of the ordinary slideing a symplectic space withGp-
action, it has its own momentum map,

CDYp ZYpHgE.

SinceG is compact, there is @-invariant scalar product ogi“. Following [21], we can use this to
define a splittingg, = g, © m, and correspondingly

*

Ha :gz@m*-

The subspacer” can be identified naturally with the annihilator @f in gg. (Note thatm is not in
general a Lie subalgebra gf.)
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Proposition 2.1 (Local Model) Let pe P be such that(p) = a. Then there is a neighbourhood of
G.p, and a G-equivariant isomorphism of symplectic manifolds

Gxg, (Mm" xYp) —P.
The momentum map for the G-action on the model space is giyen b
®([g.v.V]) = Ad% 1 (v Dy, (V).
Note thatv € m* and®y, (v) € gy, so that under the identification above® ®y,(v)) € g*.

PROOF The equivariant Darboux-Weinstein theorem [7] states ifhlato symplectic spaces are
G-equivariantly diffeomorphic, and such that the diffeoptism identifies the symplectic structures
at each point of a pair o&-invariant submanifolds, then the diffeomorphism can b&engvia an
equivariant homotopy) into &-symplectomorphism between neighbourhoods of the two snbm
ifolds. This is precisely the situation we have here: théedihorphism is given by the classical
slice theorem, and the two submanifolds are the group o®jisandG x g, {0}. The slice theorem
identifies the symplectic forms at corresponding pointshef tiwo orbits, since they have identical
W, X,Y, Z-decompositions. O

Corollary 2.2 Letp= G.p € P/G. In a neighbourhood op, the orbit space is isomorphic as a
Poisson space to,
(m* xYp)/Gp — P/G,
(for some Poisson structure on this model orbit space) amddibit momentum map : (m* x
Yp)/Gp — ¢*/G becomes
O([v,V]) = G.(ve Py, (v)).

(In this paper, we do not make explicit use of the Poissorcsira on(m* x Yy)/Gp.)

In 84, we will need to identify the differential of an invanieHamiltonian function with an element
of g,/gp; thisis done as follows. Note thathf is aG-invariant Hamiltonian of, then the differential
dH, at p annihilatesh, © X,. Furthermore, ifp is a relative equilibrium o, thendH, annihilates
Wy @ Yp as well. ThusdH, is naturally an element of; = g, /g, independent of the choice of
representative faZp.

Proposition 2.3 Let pe P be a relative equilibrium for the Hamiltonian system H, aughpose that
X1 (p) = Xe(p) (sog is well-defined modulg). Then, viewing diglas an element of 7= (g,,/g,)
as described above, we have

de = [E} € gu/gp-
PROOF  The isomorphisnZ; = (g,,/g,) is defined via the symplectic form:

(€] € gu/8p — [2— 0(Xe(P),2)] € Z;,
SinceXy (p) = X (p), it follows that forz € Zp, dHp(2) = W(XH (P),2) = wW(X(p),2) as required. O

Reduction toa = 0.
It turns out that there is no essential difference betwetrdations of relative equilibria occurring
near®(p) = 0 and nead(p) = a # O, provided one replaces by Gy. We now show how one
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reduces from the case # O to the case = 0, and in the remainder of the paper we will assume
a=0.

Following [7] (841), letS, be aGq-invariant slice to the coadjoint orbiy at o = ®(p) € g*.
Note thatS, can be identified with a neighbourhood of zergjp sinceTy Oq = ga¢ C g*. Thus there
is a natural projection of a neighbourhoodmin g* on t0&;.

By equivariance, the image dfp, contains the tangent space to the coadjoint orbit, sod®hat
transverse t&. ThenQ = Qq = ®~ (&) is (nearp) a symplectic submanifold ¢t with ToQ®Xp=
ToP — see [7] (Theorem 26.7). Moreove), is Gy-invariant, and th&-momentum magPq is just
the restriction ta@Q of ®, composed with the natural projection ol&pC gj:

[0
Q — g

By the local model folGy actions, we have
Qqu — Gq XGp S,

whereS,; is a slice to theGy.p in Qq, which is also a slice t&.p in P. By the local model for
symplecticGy actions, we have moreover

QU ;) Gq pr (m* XYp)

ConsequentlyP — G x g, Qq, see [4] (Chapter I1). It follows tha®/G andQy /Gy are isomorphic,
as are the corresponding reduced spaces.
Sincea is in the centre ofyg, it follows that®, := ®g — a is also a momentum map for ti&,
action onQ, with @, (p) = 0. In this fashion, we can reduce the general case to onedwjh = 0.
There is one useful formula to check, namely thgt; Gy ) = w(p) /w(a), wherew(l; Gy) is the
cardinality of the orbit ofx under the Weyl grouVy, of Gg.

Proposition 2.4 Let pe & =2 gi. Then wi; Gy) = w(p) /w(a).

PrROOF Let T be a maximal torus o6y. Then it is also a maximal torus @, since everyGq
contains a maximal torus @. It follows that the normalizers df satisfy

N(T;Gq) C N(T;G).

If we quotient byT, we obtain
Wy CW.

Identify g, andgj by means of an invariant inner product g, and lety € g,. We can choose
T so thatu € t. The result now follows by the slice theorem applied to the/Mgeoup action:

W.u=W xwy, Wy .1

From now on, we will assume = 0.
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3 Free actions

In this section, we improve on Theorem 1.2 in the case thagtbep acts freely of® (at least in a
neighbourhood op). As described at the end of the section above, we can supgtsaut loss of
generality thatb(p) = 0. The momentum mag is then a submersion, and the orbit spB¢& is a
smooth manifold, which contains the Meyer-Marsden-Weiinsteduced spacé} = qu(ou). Note
that for free actiong, = 0, so that Corollary 2.2 gives the local model for a free actie

g xY 5 P/G, (3.1)
(we now suppress thg-subscript orY) and the orbit momentum map is
d(Ly)=Oueg’/G. 3.2)
The reduced spaces are thus, in a neighbourhbotip € P/G,
Pi=0OuxY.
And in particularPy =Y. Consequently, itJ
Py = Oy x Po. (3.3)

One therefore has a family of Hamiltonian systems paramegtrbyy € g* (or more precisly
by Oy € g*/G), and in this family, the phase space can change not onlyjislagy, but even its
dimension. This fact is at the heart of the bifurcations tdtiee equilibria that occur for free actions.

Theorem 3.1 Suppose that the compact group G acts freely on P and thatg& relative equilibrium
in P, with ®(p) = 0. Suppose moreover that in the reduced spact® relative equilibrium is non-
degenerate. Then there is a G-invariant neighbourhood U gf, @nd an invariant neighbourhood V
of 0in g*, such that for each g V, there are at Ieas% dim(0y) + 1 relative equilibria in B, and at
least W) if they are all non-degenerate.

Let p lie on a relative equilibrium where the group acts freelgttis, a point of trivial isotropy.
Being a relative equilibrium, we have that there is a (unjdue g satisfying,

Xe(p) = Xu(p).

This € is said to be the velocity of the relative equilibrium; it isfthed modulo the adjoint action. If,

in addition to the action being freé,is a regular element af, we say that the relative equilibrium is
regular (some authors use this adjective differently). Dynamycdhis corresponds to the trajectory
throughp being dense in a maximal torus of the group orbit.

Theorem 3.2 If in addition to the above hypotheses, the relative equilih p= G.p € Py is regular,

then there are precisely () relative equilibria in R, all of which are non-degenerate. Moreoveipif
is formally stable in B (i.e. PHo (D) is definite) then precisely one of these is formally stabtedpt
in the cased~1(0) = G.p where there are two).

The first of these theorems is proved in this section, andebersl is proved near the end of §4.
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Remarks 3.3 (a) Recall that a regular element of a Lie algebra is an eléemmtained in only one
Cartan subalgebra. The set of elementg tifat are not regular is of codimension at least 3 [5, p.190],
and so this is a reasonable genericity hypothesis. In [L4domsider in greater detail the case where
the velocity of the relative equilibrium is not regular.

(b) If in either theoremd?Ho(p) is positive definite, then the relative equilibrium 8p with least
energy will be (formally) stable.

(c) For classical mechanical systems, whtfip,q) = K(p) +V(q), the momentum map is given by
(P(p,q),&) = <p,X5(q)>. Since the kinetic enerdy is positive definite, it follows that the only rela-
tive equilibria ond~1(0) have zero velocity, so are not regular. Consequently, ssatal mechanical
systems, Theorem 3.2 will not apply directly, but only viapusition 2.4, whence it follows that if
®(p) = a # 0, then in a neighbourhood @ there arew(p) /w(a) relative equilibria orP,. See the
example below (where/(a) = 1).

(d) The estimat% dim(Oy) + 1 for the number of relative equilibria in Theorem 3.1 is adowound
for the Ljusternik-Shnirelman category of the coadjoirttibiO, arising from its cup-length (see the
end of this section).

(e) Under the same hypotheses as Theorem 3.2, Patrick [&@jssimat the set of relative equilibria
forms a smooth submanifold of phase space of dimensiorGdimankG. Clearly, G acts freely on
this manifold, so its image iR/G is a submanifold of dimension rack

Example 3.4 In his thesis [16], Patrick gives an example of a regulartiredaequilibrium. It consists
of two identical axisymmetric rigid bodies, coupled by aratiball and socket joint. The symmetry
group isG = SO(3) x S' x S, the configuration space 8 = SO(3) x SO(3) and the phase space
its cotangent bundl® = T*Q. Fora = (0,1, 2) € g* = s0(3)* x R x R, with py # +pp, Patrick
describes a relative equilibrium consisting of the two lesdin a ‘V’-shape, with the ‘V’ rotating
about an axis in the plane of the *V’ in one direction, and thie bodies rotating about their axes (the
arms of the ‘V’) in the opposite sense, so that the total aargubmentum is zero (see also [18, Figure
2]). The momentum value is not regular, indeed, = g, but the velocity is a regular element @f
Patrick shows that this relative equilibrium is (formalstable.

Consider nows = (v, W, ) € g*, with v small. According to Theorem 3.2 there are two relative
equilibria onR, (close to the given one), one of which is stable, and the asheat (or at Ieask;leu is
not definite there). These correspond to spinning the “\teflaand slower about its axis (respectively),
by an amount depending dw|, leaving the spins of each body unchanged. Moreover, itastie
with less energy which is stable; that is, the one that spavees. These conclusions are indeed borne
out by Patrick’s work. a

LetH : P — R be a smoottG-invariant Hamiltonian. Therd defines a smooth functioH :
P/G — R, whose restriction to the reduced sp&ave denote byH,. We consideH as a function
on Py x g*, andHy, its restriction to the symplectic spaég x O, (via the isomorphism of Corollary
2.2).

A point p € P lies on a relative equilibrium Ky (p) € g.p, or equivalently ifdHy (p) = 0, where
®(p) = a, andp is the group orbit containing. The non-degeneracy of the relative equilibrium
corresponds to the quadratic fodfHy being non-degenerate.

Proposition 3.5 If p € P/G is a non-degenerate relative equilibrium with momen@tien there is
a diffeomorphisny of a neighbourhood gb in P/G =Y x g* of the form

Y% W) = (Ya(Ys W), B,

such that _
Hoy(y, 1) = Q(y) +h(p).
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Here Q is the non-degenerate quadratic fOI’m:(%dZHO(T)), and h is a smooth function gyf.
PrROOF This is just the splitting lemma, see for example [19]. O

Note that the fact thatsatisfiesy(y, 1) = (yi(y, 1), ) means that the diffeomorphism preserves the
“cylinders” B, =Y x 0,. Consequently, fov € O,

Hu(y;v) = Q(Y) +hu(v),

whereh, is the restriction oh to Oy. With these coordinates, theld, has a critical point aty, p) iff
y = 0 andhy, has a critical point g, with moreover

ind(H,) = ind(Q) +ind(hy,),

where ind is the Morse index of a critical point. Thus the tieéaequilibria neaip are just the critical
points ofh, asp varies nean. It should perhaps be pointed out tlyawill not preserve the Poisson
structure, otherwise the dynamics would decouple!

We have thus reduced the problem of finding relative equdlibearp € P/G to a problem of
finding critical points of a functiorh on each nearby coadjoint orbit, and are now in a position to
prove Theorem 3.1.

PrROOF (of Theorem 3.1) We have shown that relative equilibria witbmentumy are just the
critical points of a functiorn, : O, — R.

Given any smooth function on a compact manifldthe Ljusternik-Shnirelman category @st)
of M provides a lower bound for the number of critical points & fhnction. A standard result [6]
states that the Ljusternik-Shnirelman category of a compeamifold is at least 1 greater than the
cup-length of the manifold (in general this is a rather westingate), and for any simply connected
compact symplectic manifold (such as a coadjoint orbit)

cup-lengthiM) = dim(M) /2.

This follows sincew is a nowhere vanishing multiple of the volume form (where @ith= 2n, and
wis the symplectic form), and hence by Stokes’ theofeif = [w"] £ 0 in the top cohomology group
of the manifold.

It is well-known (by Morse-theoretic arguments) that anyosth function on0O, with only non-
degenerate critical points has at leagft) critical points [3]. Moreover, if the relative equilibriuon
Po is formally stable, then a corresponding extremurh,ofmax or min corresponding to max or min
of Hp) gives rise to a formally stable equilibrium point 8p |

Remark 3.6 If the action islocally freerather than free, so th&,, is finite, andg, = 0, then ifSis
the slice atp, we haveP/G = S/Gy,. In terms of the symplectic decomposition,

P/G=(g" x Py)/Gp.

If H:P/G— Ris aHamiltonian defined in a neighbourhoodmothen it can be lifted to & invariant
function on the slicgy* x Py. If the restriction of this invariant function & is non-degenerate, then
the same reduction procedure can be applied as above, tim @@, invariant functionh on g*.
Again, one is interested in the critical points of the resion of thish to the coadjoint orbits iry*.
However, the difference now, is that distinct critical psimight not correspond to distinct relative
equilibria. It would be necessary to know h@jy acts on the set of critical points: two critical points
being in the sam&y-orbit if and only if they correspond to the same relativeiligium. These ideas
are elaborated in [14].
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4 Critical points of linear functions on coadjoint orbits

As usual G is a compact Lie groupy its Lie algebra, ang* the dual of the Lie algebra. The gro@®
acts naturally org andg* by its adjoint and coadjoint actions respectively. Siicis compact, there
is an invariant metric oy, and consequently these two actions are isomorphic. WeteléydV the
Weyl group ofG, which acts on the Lie algebttaof any maximal torus, and on its duéll The orbit
of a pointp € t* is denoted byV (), and the number of points in that orbit ).

Let§ € g andp € g*. Theng defines a linear function og which restricts to a function,

We are interested in the critical points of such functions.

Proposition 4.1 If we identifyg* with g via a G-invariant inner product, then the singular locus of
the functiorg, is given by

Proor  The functiong, is the Hamiltonian function for the vector field— ac v on O,. Critical
points of&, thus correspond to zeros of the vector fieldadand this vector field has a zero\atf
and only if§ € g,,.

The remainder is clear: if we write for the image ing of p € g* under the identification, then
€ € g, ifandonly if L€ gg (iff [€, [ =0). O

Recall that € g is regular if it is contained in a unique Cartan subalgetrané considers a fixed
Cartan subalgebriof g, the regular elements are those points not contained inexi@fl hyperplane
for the Weyl group action. The set of non-regular (or singuidements ofy is a set of codimension
at least 3, see [5].

Proposition 4.2 Let & be a regular element of, and pe g*. Then the functiorg, : Oy — R has
precisely wu) critical points, all of which are non-degenerate.

PROOF Let t be the unique Cartan subalgebragircontainingg; that is,t = g;. We have that
2 (&) = tN Oy, and by standard results on Weyl groups, this is precisey\ayl group orbitV.pL.

The fact that these critical points are non-degenerateviglifrom the fact that critical points of
momentum maps for linear actions are homogeneous qua@iratippropriate local coordinates), so
a critical point is non-degenerate if and only if it is an &teld critical point. The linear action here is
that of T(&) on g*, whereT (§) is the maximal torus generated by O

There is a well-known setting for visualizing the criticaipts of these linear functions on coad-
joint orbits, which is as follows. As in the preceding protef t be the unique Cartan subalgebra
containingg, which is the Lie algebra of the maximal torlis= T(§). The function (projection)

& g* — R can be factored via the projectiort g* — t*, followed byEt* :t* — R. The restriction

to Oy of the projectiorrtis in fact the momentum map for thie action onOy. A few examples are
shown in Figure 2.
The image of a coadjoint orbit under the projectionttds a convex polytope (a result due to
Kostant [8], see also [3]). The maqPO has rank 0 at each vertex (they correspond to the fixed points
(s
for the action ofT’), and these are the only points of rank 0. Consequeh)thy, E|O will also have rank
H

0 at these points; that is they will be critical points. Thesgices correspond to points of intersection



Persistence and Stability of Relative Equilibria 15

S 4

SU(3) SU_) SO(4)
M regular W singular u regular
Su@4) SuU(4)
M regular u singular

Figure 2: Projections of some coadjoint orbitstosee text

Ount" (see Proposition 4.1), and so form a Weyl group orbit. Heheecbnvex polytope is also
invariant under the Weyl group.

The & < t that are regular are precisely those that are not orthogoray of the faces in the
convex polytope, and it follows that the compositﬁmqou has no other critical points. (A singular

& € twould have infinitely many critical points o, and the argument below showing that for regular
&, the higher order terms in=  + - - - can be removed, would no longer hold.)

In Figure 2, the first two diagrams are f@&= SU(3), whereW = S; (the symmetric group on
3 letters). If we takql to be generic (i.e. regular), then the polytope is a ‘senuilst hexagon,
and din(0,) = 6; while if we takep in one of the lines of reflexion, the polytope degenerates to
an equilateral triangle and dif@y) = 4 (of course, ifu= 0, thenO, = 0 and the polytope further
degenerates to a point). Each of the vertices correspondsctiical point of any generic linear
function ont = R?. The third diagram is fo = SO(4) and also foiG = SO(3) x SO(3) (these have
the same Weyl groufpV = Z, x Z5). The two line diagrams are f@ = SU(4), with W = &, which
has order 24 (and acts di = R® as the standard symmetry group of the tetrahedron). A tipica
polyhedron for regulap is shown on the left (here dif®,) = 12), while a particular degeneratiop (
is fixed by one of the reflexions in the tetrahedral group,ngj\a truncated tetrahedron) is shown on
the right (here diri0,) = 10). The other degenerations are an octahedron (with@im= 8) and a
tetrahedron (with dirf0,) = 6) according to the isotropy @f ForSO(7), which has rank 3, the Weyl
group is the group of symmetries of the cube. Regulgives rise to a polytope with 48 vertices (with
dim(0y,) = 18), and it is a nice exercise to visualize all the possiblgederations (five, excluding



16 J. Montaldi

p=0).
Now suppose that the functidn g* — R in which we are interested is not linear.

Proposition 4.3 If h : g* — R is a smooth function such that gl & € g is a regular element of,
then for all pe g* sufficiently small, there are () critical points of the restriction h= qo , all of
(1t

which are non-degenerate.

PROOF We use an argument involving blowing-gp at 0 to show that fop sufficiently small, the
critical points ofhy, are in 1-1 correspondence with critical points£gf The result then follows.
Let Sbe the unit sphere ig*, with respect to som&-invariant norm. Consider the blowing-up

RxS — g,
(r,8) — r6.

Write h(r,8) rather tharh(r0). Without loss of generality, we can assum®,0) = 0, since we are
only interested in critical points d¢f. Then,

h(r,8) =rh4(r,0),

for some smooth functioh;. Note that since coadjoint orbits lie in spheres, the @itmoints of the
restrictions oth andh; to coadjoint orbits coincide. By Taylor’s theorem we have

hi(r,8) = (&,0) +rR(r,8).

Now, if & € g is a regular element, then its restriction (as an elemer(igdf*) to any coadjoint
orbit has only non-degenerate critical points, and précisg) such critical points on the coadjoint
orbit throughp € S. Using the implicit function theorem and the compactnessaafdjoint orbits,
we conclude that for sufficiently small,h; has preciselyv(p) critical points on the coadjoint orbit
throughrp in rS, all of which are non-degenerate. O

ProoF(of Theorem 3.2) We now return to the setting of §3. Startiegfan invariant Hamiltonian
H: P — R, we used the local model (3.1) and the splitting lemma (Psiiom 3.5) to reduce the
problem of finding relative equilibria ¢fl (near a given one) to finding critical points of the restdng

to the coadjoint orbits of a function: g* — R. By Proposition 2.3, we have thdH, = dhy =&,
whereXz (p) = Xn (p) is the velocity atp of the relative equilibrium. By hypothesis, we assume that
& € g is regular, so that we can apply Proposition 4.3, to obtagretlistence result.

For the stability, suppose thefHo(p) is positive definite, then of the nearby relative equilibria
only those for whicthy, has a local minimum are formally stable. Bjt(for & regular) has a unique
minimum [3], and by the blow-up argument of Propsotion 48 same holds fon,, so we are done.
(If @71(0) = G.p, thenRy is a point, so both the maximum and the minimunhgfwill be formally
stable, as happens for the rigid body.) O

We conclude by briefly considering the eigenvalues of therbéting relative equilibria. Recall
that an equilibrium point of a linear Hamiltonian system Lz on the symplectic spadéis strongly
stable (also callegarametrically stableif every nearby linear system is spectrally stable (hay onl
imaginary eigenvalues).
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Suppose that the linearizatibg of the regular relative equilibriurp € Py is strongly stable. Then
for pclose to 0, thav(p) relative equilibria orP, will have eigenvalues close to thoselgf, together
with new eigenvalues corresponding to &action onOy.

By hypothesis, the former are all imaginary (even afteryréstion top). For geometric reasons,
the latter are also imaginary. Indeed, the action of a regléaneng c g on 0, is the restriction of the
infinitesimal coadjoint action op*, and this action, like the adjoint action to which it is isaipiaic,
is such that all the non-zero eigenvalues are imaginary @tohct; they can be obtained from the
infinitesimal roots of the Lie group, see for example Chapeof [5]. Denote by R the set of
these infinitesimal roots, which we can view as lying’inwheret is the unique Cartan subalgebra
containing. The eigenvalues of adre then

R(&) :={i{r&) [re R},

wherei = \/—1. Note that 07 ® (€), since the zero eigenspace is precisely the maximal tons co
taining&, which is orthogonal to the tangent spacejpat a critical point o€, (by Proposition 4.1).
Since¢ is regular, it also follows that all the eigenvalues of ade simple. Consequently, the equilib-
ria of the vector fieldadg on Oy are strongly stable. It follows that the equilibrialgfare also strongly
stable.

One would therefore expect the relative equilibriaRyrto be strongly stable. However, it may
happen that an eigenvaluelgf coincides with an eigenvalue of gdt would then appear likely that in
the perturbation tq # O there could be a “Hamiltonian-Hopf” (or “complex instatyit) bifurcation.
Itis reasonable to suppose that such coincidence of eiigs/betweeh and ag is non-generic, of
codimension 1.
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