Yy
er

The Universit
of Manchest

MANCHESTER

1824

Combinatorics of simple polytopes and
differential equations

Buchstaber, Victor M.

2008

MIMS EPrint: 2008.54

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097


http://eprints.maths.manchester.ac.uk/

Combinatorics of simple polytopes

and differential equations.

Victor M Buchstaber

Steklov Institute, RAS, Moscow

(buchstab@mi.ras.ru)

School of Mathematics, University of Manchester

(Victor.Buchstaber@manchester.ac.uk)

Manchester

21 February 2008



Abstract

Simple polytopes play important role in applications
of algebraic geometry to physics. They are also main
objects in toric topology.

There is a commutative associative ring & generated
by simple polytopes. The ring &? possesses a natural
derivation d, which comes from the boundary operator.
We shall describe a ring homomorphism from the ring
2 to the ring of polynomials Z[¢, | transforming

the operator d to the partial derivative 0/0t.

This result opens way to a relation between polytopes
and differential equations. As it has turned out, certain
important series of polytopes (including some recently
discovered) lead to fundamental non-linear differential
equations in partial derivatives.



Definition. A polytope P" of dimension 7 is said to be
simple if every vertex of P is the intersection of exactly
n facets, i.e. faces of dimension n — 1.

Definition. Two polytopes P; and P of the same
dimension are said to be combinatorially equivalent
if there is a bijection between their sets of faces
that preserves the inclusion relation.

Definition. A combinatorial polytope is a class
of combinatorial equivalent geometrical polytopes.

The collection of all n-dimensional combinatorial simple
polytopes is denoted by &;,.



An Abelian group structure on & is induced
by the disjoint union of polytopes.

The zero element of the group £, is the empty set.

The weak direct sum

n=0
yields a graded commutative associative ring.
The product P/’ P)" of homogeneous elements P* and
PJ" is given by the direct product P[" x P}
The unit element is a single point.

Remarks:

1. The direct product P{" x Pj" of simple polytopes

P[" and PJ" is a simple polytope as well.

2. Each face of a simple polytope is again a simple
polytope.



Let P € &, be a simple polytope. Denote by
dP" € &2, _ the disjoint union of all its facets.

Lemma. We have a linear operator of degree —1

d: P — P,

such that

d(P{' Py") = (dP{"Py" + P{(dP5").
Examples:

dA" = (n+ A",

di" = n(dDi" ! = 2ni" 1

where A" is the standard rn-simplex and /" =[x - - -

is the standard n-cube.
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Face-polynomial.

Consider the linear map

F: P —7[t o,

which send a simple polytope P to the homogeneous
face-polynomial

F(P") = Oé”+fn—1,104”_1f+ c +f1,n—104f”_1 +font",

where [, ,_p = [ ,_p(P") is the number of its
k-dimensional faces. Thus, f,_1 | is the number
of facets and f , is the number of vertex.

Note that f, ,_p = [4_s_1, Where f(P") = (fo, ..., [n—_1)
is [-vector of P",

Theorem The mapping F is a ring homomorphism

such that

F(dP") = %F(P”).



Corollary.

FUI") = (a + 20)",

(a 4+ t)n+l . tn—H

(87

F(A™) =

Set

U(t,x;0,1) = Y F(IMx™tL
n>=0

Lemma. The function U(¢, x; «, ) is the solution
of the equation

0 5
—U(t,x) = 2x"—U(t,
Py (¢, x) = 2x p (¢, x)
with the initial condition U(0, x) = =
We have
Ult,x,a,1) = *

] — (o +28)x



Set

U(t, x;a,A) = Y F(AM"2,
n=0

Lemma. The function U(¢, x; o, A) is the solution
of the equation

0 9 0
—U(t,x) = x*—U(t,
ot (%) = x 0x (t, %)

)
with the initial condition U(0, x) = 1=

—ax’

We have

x2

(1 —tx)(1 — (a4 t)x)

U(t,x;,a, A) =



Consider the series of Stasheff polytopes
(the associahedra)

As = {As" =K, 9,n > 0}.

Each facet of As" is As! x As/, i > 0, i+j=n—1,
where embedding 4 : Ast x As! — 9As™, 1 < k < i+2,
correspondes to the pairing

(@y---ajyo) X (by -+ bjpo) —
— ap- - ap_ (b1 biyo)apyy - aiqg.

Lemma.
i+2 . . . .
dAs" = > ) pup(As'xAs’) = > (i+2)(As' x As!).
i+j=n—1k=1 i+j=n—1
Corollary.

9 pas) = S (i +2F(4s)F(AS)).
o1 i+j=n—1



Set

U(t,x;a,As) = > F(As™)x"T2,
n>=0

Theorem. The function U(?, x; «, As) is the solution
of the Hopf equation

0 0
—U(t,x) =U(t, x)—=Ul(¢,
50 (6 x) = UL, %) U, x)

o
with the initial condition U(0, x) = *—.

The function U (¢, x; o, As) satisfies the equation

ta+ U —(1—(a—|—2t)x)U—|—x = 0.



Quasilinear Burgers—Hopf Equation

The Hopf equation (Eberhard F.Hopf, 1902-1983)
is the equation

The Hopf equation with f(U) = U is a limit case
of the following equations:

U+ UUy = nUyx  (the Burgers equation),
U+ UUy = eUxxx (the Korteweg—de Vries equation).

The Burgers equation (Johannes M.Burgers, 1895-1981)
occurs in various areas of applied mathematics

(fluid and gas dynamics, acoustics, traffic flow). It used
for describing of wave processes with velocity u and
viscosity coefficient ;1. The case u© = 0 is a prototype
of equations whose solution can develop discontinuities
(shock waves).

K-d-V equation (Diederik J.Korteweg, 1848-1941 and
Hugo M. de Vries, 1848—-1935) was introduced

as equation for the long waves over water (in 1895).

It appears also in plasma physics. Today K-d-V equation
is a most famous equation in soliton theory.
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Let us consider the Burgers equation
Ut — UUX — ,LLUxx.
Set U=1Uy+ X p*U,. Then

k>1
k k k
Upt+ > 1iUpy = (Uo +> w Uk) (UO,x + > w Uk,x) -
E>1 p>1 E>1
k+1
— plo,xx — Z H " Uk, xx-
k>1

Thus we obtain:

Uo.r = UpUp x»

Uy s = (oUp)x — Uy xx-

"



For simple polytopes, the formula for the Euler
characteristic admits a generalization in the form

of Dehn—Sommerville relations. In terms of the f-vector
of an n-dimensional polytope P, they can be written

as follows:

n

fol g = Z(—1)”—f(£)fj_1, L=0,1,...,n

=k

Consider the ring homomorphism
T: Z[t, o] — Z[t, a,
Tp(t,a) =p(t+ a, —a).

Theorem. The Dehn—Sommerville relations
are equivalent to the formula

T F(P") = F(P").

12



Consider the ring homomorphism

AN At o) — Zlz,a] @ A(t) = %(2 — ), Ma) = a,
and

T:7Zlz,al — Zlz,a] : T(z) =2z, T(a)=—a.

Lemma. TA\p(t,a) = ATp(¢, @)

Corollary. For any P" € &2, the polynomial

p(z, ) = \F(P")

is such that p(z, a) = p(z, —a).

Examples. Set additionally A\(x) = x. Then
1. XUt x;0,1) = =2

l—2zx

2. \U(fx:a, A) = x”

(1—%(2—@))6) (1—%(z+a)x> .
3. Set U = U(¢, x; o, As). The function U= \U
satisfies the equation

(z —a)(z+ oz)l72 —4(1 — 2x)U + 452 = 0.

13



The solution of this quadratic equation with the initial

. 2
condition U(0, x) = =~ gives

(2% — a®)U = 2|(1 — zx) — (I — 22x + ax%) /2],
Consider two vectors r, ' such that

rl =1,

| = ax, {(r,r") = zx.

r

Then |r||r'| cos(r, ") = ax cos(r, ') = zx.
Thus, z = acos(r,r’), 2% —a? = —a?sin?(r,r'),
L—zx =|r|* = (r,/') = (r,r = 1),

(1 — 2zx 4+ a2x2)12 = |r — 1|

Lemma. The function U satisfies the equation

AN

o? sin2(r, U = 2[|r — r/| — (r,r — r’}]

14



We have

fi@£—0%0)22ﬁw+- u >=

dz lr —r'|
s 2

= 2x Z OfnLn <—> Xn,
n>1 a

where L, (-) are Legendre polynomials.
We have

En (Z) - n(nl—l— 1) ;z <(22 Bl aQ)%Ln (Z)) '

Thus,
N 0 o' 2
U=2— Lo (Z) 2",
0z (Z nin+1) n(O)X )

n>1
&2U
P _y0 (zam (2) )

0 ;70 1
Corollary. XWU = 2T

15



Graph-associahedra.

Given a finite graph I". The graph-associahedron P(I")
is a simple polytope whose poset is based on the con-
nected subgraph of I'. When I is:

a path 1

a cycle

a complete graph

an n-star graph ﬂ\

| 2 n

the polytope P(I") results in the:

- associahedron (Stasheff polytope) As”,

- cyclohedron (Bott—Taubes polytope) Cy”,
- permutohedron Pe”,

- stellohedron St”,

respectively.

16



GRAPH-ASSOCIAHEDRON

Associahedron As3

The Stasheff polytope As.
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GRAPH-ASSOCIAHEDRON

Cyclohedron C3
Bott—Taubes polytope
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GRAPH-ASSOCIAHEDRON

Permutoedron II°.
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The connection between bracketing and plane trees
was known to A. Cayley (see [*])

The Stasheff polytope K3

(ajag)as /(\
- A\
aj(agas) A\

The languages: diagonals, brackets and plane trees.

*A.Cayley, On the analytical form called trees, Part Il, Philos. Mag.
(4) 18,1859,374-378.
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The Stasheff polytope X,.

The language of plane trees.
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Consider the series of Bott—Taubes polytopes
(the cyclohedra)

Cy={Cy" : n>0}.
Lemma. (A.Fenn)

dCy" = (n+1) Y Cy' xAs.
i+j=n—1

Set
U(t, x;0,Cy) = > F(Cy™")x™.
n=0
Theorem. The function U(?, x; a, Cy) is the solution
of the equation

0 5,
— U] = a—(UoU1)
X
1

ot
with the initial condition U} (0, x) = 1—-, where

Up is the solution of the Hopf equation

9, 0
— Uy = Uy— U
ot 0 Oé’x 0

)
with the initial condition Up(0, x) = 1.
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Complex cobordism.

Consider the complex cobordism ring

Qy =2Zlzn : n > 1], degzy = —2n.

We have Qy ® Q = Q[ [CP"] : n > 1].
The ring ();; is a module over Landweber—Novikov
algebra S, which is a Hopf algebra over Z.

There are primitive elements s, € S, n > 1,
and they generate a Lie algebra:

[sn, sm] = (m — n)Sm+n.

The operations sy, are derivations of the ring ().
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One can describe the two-parameter Todd genus
Tda,b: QU — Z[a, b]
as exponential of the formal group law:
[(u,v) =

Consider the ring homomorphism

u-—+ov—auu

, dega = —2, degb = —4.
1 — buv

~: Zla,b] — Z[t, o] : @) = a+2t, v(b) = at +12,
and T; o, = yTd .

Lemma. Ty, (s;[M?"]) = 2T, . (IM?"]).

The sending [CP"] to A" gives the commutative
diagram

L[ [CP"] Z[a bl

i i

ZIA" : Zlt, al

\/
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Let M2" be a smooth symplectic manifold with

an effective hamiltonian actions of a compact torus 7"
and (M) C R” be a convex polytope, where

d: M?" — R" is a moment map.

Theorem. T, ,[M?"] = 4Td, ,[M?"] = F(®(M?")).
Corollary. Ty ,(S1[M2"]) = SF(2(M>")).

The genus Tt,a[MQ”] is:

the n-th Chern number cn(MQ”) for a=0,

the Todd genus Td(M?") for t =0,

the L-genus (the signature) o(M?2") for z = a + 2t = 0,
respectively.

Corollary.
cn(M?") = fo nt",
Td(M?") = o™,
(M) = (—D)"[2" — 2" L
S D L MU (8 DL A [
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