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Abstract

Simple polytopes play important role in applications
of algebraic geometry to physics. They are also main
objects in toric topology.

There is a commutative associative ring P generated
by simple polytopes. The ring P possesses a natural
derivation d, which comes from the boundary operator.
We shall describe a ring homomorphism from the ring
P to the ring of polynomials Z[t,α] transforming
the operator d to the partial derivative ∂/∂t.

This result opens way to a relation between polytopes
and differential equations. As it has turned out, certain
important series of polytopes (including some recently
discovered) lead to fundamental non-linear differential
equations in partial derivatives.
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Definition. A polytope Pn of dimension n is said to be
simple if every vertex of P is the intersection of exactly
n facets, i.e. faces of dimension n− 1.

Definition. Two polytopes P1 and P2 of the same
dimension are said to be combinatorially equivalent
if there is a bijection between their sets of faces
that preserves the inclusion relation.

Definition. A combinatorial polytope is a class
of combinatorial equivalent geometrical polytopes.

The collection of all n-dimensional combinatorial simple
polytopes is denoted by Pn.
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An Abelian group structure on Pn is induced
by the disjoint union of polytopes.

The zero element of the group Pn is the empty set.

The weak direct sum

P =
∑

n>0
Pn

yields a graded commutative associative ring.
The product Pn1 Pm2 of homogeneous elements Pn1 and
Pm2 is given by the direct product Pn1 × Pm2 .
The unit element is a single point.

Remarks:
1. The direct product Pn1 × Pm2 of simple polytopes
Pn1 and Pm2 is a simple polytope as well.

2. Each face of a simple polytope is again a simple
polytope.
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Let Pn ∈ Pn be a simple polytope. Denote by
dPn ∈ Pn−1 the disjoint union of all its facets.

Lemma. We have a linear operator of degree −1

d : P −→ P ,

such that

d(Pn1 Pm2 ) = (dPn1 )Pm2 + Pn1 (dPm2 ).

Examples:

d∆n = (n + 1)∆n−1,

dIn = n(dI )In−1 = 2nIn−1,

where ∆n is the standard n-simplex and In = I×· · ·×I
is the standard n-cube.
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Face-polynomial.

Consider the linear map

F : P −→ Z[t,α],

which send a simple polytope Pn to the homogeneous
face-polynomial

F(Pn) = αn+ fn−1,1α
n−1t+ · · ·+ f1,n−1αt

n−1 + f0,nt
n,

where fk,n−k = fk,n−k(Pn) is the number of its
k-dimensional faces. Thus, fn−1,1 is the number
of facets and f0,n is the number of vertex.

Note that fk,n−k = fn−k−1, where f (Pn) = (f0, . . . , fn−1)
is f -vector of Pn.

Theorem The mapping F is a ring homomorphism
such that

F(dPn) =
∂

∂t
F(Pn).
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Corollary.

F(In) = (α + 2t)n,

F(∆n) =
(α + t)n+1 − tn+1

α
.

Set

U (t, x; α, I ) =
∑

n>0
F(In)xn+1.

Lemma. The function U (t, x; α, I ) is the solution
of the equation

∂

∂t
U (t, x) = 2x2 ∂

∂x
U (t, x)

with the initial condition U (0, x) = x
1−αx.

We have

U (t, x; α, I ) =
x

1− (α + 2t)x
.
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Set

U (t, x; α,∆) =
∑

n>0
F(∆n)xn+2.

Lemma. The function U (t, x; α,∆) is the solution
of the equation

∂

∂t
U (t, x) = x2 ∂

∂x
U (t, x)

with the initial condition U (0, x) = x2

1−αx.

We have

U (t, x; α,∆) =
x2

(1− tx)(1− (α + t)x)
.
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Consider the series of Stasheff polytopes
(the associahedra)

As = {Asn = Kn+2, n > 0}.

Each facet of Asn is Asi × Asj, i > 0, i + j = n − 1,
where embedding µk : Asi×Asj → ∂Asn, 1 6 k 6 i+2,
correspondes to the pairing

(a1 · · · ai+2)× (b1 · · · bj+2) −→
−→ a1 · · · ak−1(b1 · · · bj+2)ak+1 · · · ai+2.

Lemma.

dAsn =
∑

i+j=n−1

i+2∑

k=1
µk(As

i×Asj) =
∑

i+j=n−1
(i+2)(Asi×Asj).

Corollary.

∂

∂t
F(Asn) =

∑

i+j=n−1
(i + 2)F(Asi)F(Asj).
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Set

U (t, x; α,As) =
∑

n>0
F(Asn)xn+2.

Theorem. The function U (t, x; α,As) is the solution
of the Hopf equation

∂

∂t
U (t, x) = U (t, x)

∂

∂x
U (t, x)

with the initial condition U (0, x) = x2

1−αx.
The function U (t, x; α,As) satisfies the equation

t(α + t)U2 − (1− (α + 2t)x)U + x2 = 0.
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Quasilinear Burgers–Hopf Equation

The Hopf equation (Eberhard F.Hopf, 1902–1983)
is the equation

Ut + f (U )Ux = 0.

The Hopf equation with f (U ) = U is a limit case
of the following equations:

Ut +UUx = µUxx (the Burgers equation),

Ut +UUx = εUxxx (the Korteweg–de Vries equation).

The Burgers equation (Johannes M.Burgers, 1895–1981)
occurs in various areas of applied mathematics
(fluid and gas dynamics, acoustics, traffic flow). It used
for describing of wave processes with velocity u and
viscosity coefficient µ. The case µ = 0 is a prototype
of equations whose solution can develop discontinuities
(shock waves).

K-d-V equation (Diederik J.Korteweg, 1848–1941 and
Hugo M. de Vries, 1848–1935) was introduced
as equation for the long waves over water (in 1895).
It appears also in plasma physics. Today K-d-V equation
is a most famous equation in soliton theory.
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Let us consider the Burgers equation

Ut = UUx − µUxx.

Set U = U0 +
∑
k>1

µkUk. Then

U0,t +
∑

k>1
µkUk,t =


U0 +

∑

k>1
µkUk





U0,x +

∑

k>1
µkUk,x


−

− µU0,xx −
∑

k>1
µk+1Uk,xx.

Thus we obtain:

U0,t = U0U0,x,

U1,t = (U0U1)x −U0,xx.
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For simple polytopes, the formula for the Euler
characteristic admits a generalization in the form
of Dehn–Sommerville relations. In terms of the f -vector
of an n-dimensional polytope P, they can be written
as follows:

fk−1 =
n∑

j=k
(−1)n−j

(j
k

)
fj−1, k = 0, 1, . . . , n.

Consider the ring homomorphism

T : Z[t,α] −→ Z[t,α],

T p(t,α) = p(t + α,−α).

Theorem. The Dehn–Sommerville relations
are equivalent to the formula

T F(Pn) = F(Pn).
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Consider the ring homomorphism

λ : Z[t,α] −→ Z[z,α] : λ(t) =
1

2
(z− α), λ(α) = α,

and

T̂ : Z[z,α] −→ Z[z,α] : T̂ (z) = z, T̂ (α) = −α.

Lemma. T̂λp(t,α) = λTp(t,α)

Corollary. For any Pn ∈ Pn the polynomial

p(z,α) = λF(Pn)

is such that p(z,α) = p(z,−α).

Examples. Set additionally λ(x) = x. Then
1. λU (t, x; α, I ) = x

1−zx .

2. λU (t, x; α,∆) = x2(
1−1

2(z−α)x
)(

1−1
2(z+α)x

) .

3. Set U = U (t, x; α,As). The function Û = λU
satisfies the equation

(z− α)(z + α)Û2 − 4(1− zx)Û + 4x2 = 0.
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The solution of this quadratic equation with the initial
condition Û (0, x) = x2

1−αx gives

(z2 − α2)Û = 2
[
(1− zx)− (1− 2zx + α2x2)1/2

]
.

Consider two vectors r, r′ such that

|r| = 1, |r′| = αx, 〈r, r′〉 = zx.

Then |r||r′| cos(r, r′) = αx cos(r, r′) = zx.

Thus, z = α cos(r, r′), z2 − α2 = −α2 sin2(r, r′),
1− zx = |r|2 − 〈r, r′〉 = 〈r, r − r′〉,
(1− 2zx + α2x2)1/2 = |r − r′|.

Lemma. The function Û satisfies the equation

α2 sin2(r, r′)Û = 2
[
|r − r′| − 〈r, r − r′〉

]
.
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We have

d
dz

(
(z2 − α2)Û

)
= 2

(
−x +

x
|r − r′|

)
=

= 2x
∞∑

n>1
αnLn

(z
α

)
xn,

where Ln(·) are Legendre polynomials.
We have

Ln
(z

α

)
=

1

n(n + 1)

d
dz

(
(z2 − α2)

d
dz
Ln

(z
α

))
.

Thus,

Û = 2
∂

∂z


 ∑

n>1

αn

n(n + 1)
Ln

(z
α

)
xn+1


 ,

∂2Û
∂x2 = 2

∂

∂z


 ∑

n>1
αnLn

(z
α

)
xn−1


 .

Corollary. x ∂2

∂x2 U = ∂
∂t

1
|r−r′|.
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Graph-associahedra.

Given a finite graph Γ. The graph-associahedron P(Γ)
is a simple polytope whose poset is based on the con-
nected subgraph of Γ. When Γ is:
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an n-star graph

the polytope P(Γ) results in the:
- associahedron (Stasheff polytope) Asn,
- cyclohedron (Bott–Taubes polytope) Cyn,
- permutohedron Pen,
- stellohedron Stn,
respectively.
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GRAPH-ASSOCIAHEDRON
Associahedron As3

The Stasheff polytope K5.
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GRAPH-ASSOCIAHEDRON
Cyclohedron C3

Bott–Taubes polytope
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GRAPH-ASSOCIAHEDRON
Permutoedron Π3.
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The connection between bracketing and plane trees
was known to A. Cayley (see [∗])

The Stasheff polytope K3
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The languages: diagonals, brackets and plane trees.

∗A.Cayley, On the analytical form called trees, Part II, Philos. Mag.
(4) 18,1859,374–378.
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The Stasheff polytope K4.
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Consider the series of Bott–Taubes polytopes
(the cyclohedra)

Cy = {Cyn : n > 0}.
Lemma. (A.Fenn)

dCyn = (n + 1)
∑

i+j=n−1
Cyi × Asj.

Set

U (t, x; α,Cy) =
∑

n>0
F(Cyn)xn.

Theorem. The function U (t, x; α,Cy) is the solution
of the equation

∂

∂t
U1 =

∂

∂x
(U0U1)

with the initial condition U1,0(0, x) = 1
1−αx, where

U0 is the solution of the Hopf equation

∂

∂t
U0 = U0

∂

∂x
U0

with the initial condition U0(0, x) = x2

1−αx.
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Complex cobordism.

Consider the complex cobordism ring

ΩU = Z[zn : n > 1], deg zn = −2n.

We have ΩU ⊗Q = Q
[
[CPn] : n > 1

]
.

The ring ΩU is a module over Landweber–Novikov
algebra S, which is a Hopf algebra over Z.

There are primitive elements sn ∈ S, n > 1,
and they generate a Lie algebra:

[sn, sm] = (m− n)sm+n.

The operations sn are derivations of the ring ΩU .
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One can describe the two-parameter Todd genus

Tda,b : ΩU −→ Z[a, b]

as exponential of the formal group law:

f (u, v) =
u + v − auv

1− buv
, deg a = −2, deg b = −4.

Consider the ring homomorphism

γ : Z[a, b] −→ Z[t,α] : γ(a) = α+2t, γ(b) = αt+ t2,

and Tt,α = γTda,b.

Lemma. Tt,α
(
s1[M2n]

)
= ∂

∂tTt,α
(
[M2n]

)
.

The sending [CPn] to ∆n gives the commutative
diagram

ΩU Tda,b
$$IIIIIIIIII

Z
[
[CPn] : n > 1

]
44iiiiiiiiiiiiiiiiiiiii

²²

Z[a, b]
γ

²²

Z[∆n : n > 1]

**VVVVVVVVVVVVVVVVVVVVVV
Z[t,α]

P
F

99ssssssssss
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Let M2n be a smooth symplectic manifold with
an effective hamiltonian actions of a compact torus Tn

and Φ(M) ⊂ Rn be a convex polytope, where
Φ : M2n → Rn is a moment map.

Theorem. Tt,α[M2n] = γTda,b[M2n] = F(Φ(M2n)).

Corollary. Tt,α
(
S1[M2n]

)
= ∂

∂tF(Φ(M2n)).

The genus Tt,α[M2n] is:
the n-th Chern number cn(M2n) for α = 0,
the Todd genus Td(M2n) for t = 0,
the L-genus (the signature) σ(M2n) for z = α + 2t = 0,
respectively.

Corollary.

cn(M2n) = f0,nt
n,

Td(M2n) = αn,

σ(M2n) = (−1)n[2n − 2n−1fn−1,1 + · · ·
· · · + (−1)n−12f1,n−1 + (−1)nf0,n]t

n.
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