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Abstract
In the visualization of the topology of second rank symmetric tensor fields in the plane one can extract some key
points (degenerate points), and curves (separatrices) that characterize the qualitative behaviour of the whole
tensor field. This can provide a global structure of the whole tensor field, and effectively reduce the complexity of
the original data. To construct this global structure it is important to classify those degenerate points accurately.
However, in existing visualization techniques, a degenerate point is only classified into two types: trisector and
wedge types. In this work, we will apply the theory from the analysis of binary differential equations and demon-
strate that, topologically, a simple degenerate point should be classified into three types: star (trisector), lemon
and monstar. The later two types were mistakenly regarded as a single type in the existing visualization techniques.

1. The introduction

Symmetric second rank tensor data is central to many ap-
plications in both physics and engineering. In recent years
an increasing quantity of tensor data has been produced in
scientific experiments and engineering simulations. For ex-
ample, the velocity gradient and rate-of-strain tensor in fluid
flow, the stress and strain tensors in solid mechanics, or the
diffusion tensor in medical physics. Scientists and engineers
face the problem of understanding these significant quanti-
ties of important data. The development of new algorithms
for the visualization of tensor data is particularly challeng-
ing, not least because of the complexity of the data itself.

The visualization techniques for tensor fields can be clas-
sified into two main categories: one is to map the tensor
data onto the geometric parameters of the icons such as hy-
perstreamlines [DH92], and the other is the automatic ex-
traction of the features—namely, singularities, the topologi-
cal features—of the tensor data [Del94] [LLH97]. The icon
based visualization can provide good visual cue of the data
directly, but with the increase of the volume of data, visual
clutter can become a very serious problem. Furthermore, it
can be difficult to extract useful information from a large

number of icons resulting from the large volume of data. By
using feature based approach to extract the interesting in-
formation from the data directly, it will largely reduce the
information to be processed and the visual clutter.

The visualization of the topology of tensor fields was first
introduced by Delmarcelle [DH94] to the visualization com-
munity in 1994 and analysis of the topology of tensor fields
is an extension of the analysis of the topology of vector
fields [HH89] [HH90] [HH91]. Similar to analysis of topol-
ogy in vector fields, key points (degenerate points) are ex-
tracted and curves (separatrices) are produced that character-
ize the whole tensor field into different qualitative behaviour.
This provides a way to extract global structure information
from tensor data whilst reducing the complexity of the origi-
nal data. These degenerate points and separatrices consist of
a so-called topological structure of the tensor field.

In order to construct the topological structure of the tensor
field in the plane accurately, it is important to classify de-
generate points. However, in the existing visualization tech-
niques, a degenerate point is only classified into two types:
trisector and wedge types. In this paper, we will apply the-
ory from the analysis of binary differential equations and
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demonstrate that a simple degenerate point topologically
should be classified into three types: star (trisector), lemon
and monstar. A lemon is not a monstar, but the two were
classified as a single type, known as the wedge type in the
existing visualization literature.

2. Analysis of the topology of tensor fields

Whilst the analysis of the topology of vector fields is cen-
tered on the analysis of critical points, the analysis of the
topology of tensor fields is based on the analysis of degen-
erate points, which are points where the two eigenvalues are
equal. At each non-degenerate point of the domain the tensor
field has two distinct eigenvalues, and while it is tempting to
choose a unit eigenvector for each of these, this is not usu-
ally possible in a globally consistent manner. One therefore
considers line fields that are the one dimensional eigenspaces
of the tensor at each point; since the tensor field is symmet-
ric these are always orthogonal, except at degenerate points
where they are not defined. The integral curves of these line
fields are called the characteristic curves or integral curves
of the tensor field. Note that it is possible to distinguish the
two characteristic curves globally (where they are defined),
for example one has a larger eigenvalue than the other.

An index for a tensor field can be defined in a similar way
to the index of a vector field [ALGM73].

Definition 1 (tensor index) The tensor index IT (γ) of a
Jordan curve [Car78] γ relative to a tensor field T : R

2 →
R

2 ⊗R
2 is defined as;

IT (γ) =
Δθ
2π

where Δθ is the total change in the angle θ between one of
the characteristic lines and the x axis, as the curve γ is tra-
versed once in an anticlockwise direction.

Since the two characteristic lines are always orthogonal,
they rotate by the same amount so that this index is the same
for each of the line fields. Unlike the index for a vector field,
here the index is only a half-integer. This is because Δθ is
only a multiple of π not of 2π.

Given a symmetric tensor field on R
2 with respect to a

basis, (
T11(x,y) T12(x,y)
T12(x,y) T22(x,y)

)
, (1)

one can obtain the following equation for the tensor index
calculation

IT (γ) =
1

2π

�
γ

(T11 −T22)dT12 −T12d(T11 −T22)
(T11 −T22)2 +4T 2

12

(2)

Definition 2 (tensor index of a degenerate point) Let Ω be
an open subset of R

2, and x0 ∈ Ω is an isolated degenerate
point of the tensor field T : R

2 →R
2⊗R

2. The index IT (x0)
of a degenerate point x0 of line fields of a symmetric tensor

field is defined as the index of any Jordan curve γ contain-
ing x0 in its interior such that there are no other degenerate
points of the field either inside or on γ

IT (x0) = IT (γ)

In this paper, from now on we will usually use the more
familiar “eigenvector” rather than “characteristic lines”.

However, before Delmarcelle’s theory, Bruce et
al. [BF89] proposed the local classification of solution
curves of line fields, determined by eq. (3):

a(x,y)(dy)2 +2b(x,y)dydx−a(x,y)(dx)2 = 0 (3)

where a(x,y) and b(x,y) are smooth functions which both
vanish at 0 ∈ R

2.

Given a tensor field as defined in eq. (1), one can show

that the line fields

(
dx
dy

)
of this tensor field satisfy the binary

differential equation:

T12((dy)2 − (dx)2)+(T11 −T22)dydx = 0 (4)

Comparing eq. (4) to (3), one can obtain

a(x,y) = T12(x,y),b(x,y) = (T11(x,y)−T22(x,y))/2 (5)

One can also show that the two real eigenvalues of a symmet-
ric 2× 2 matrix represented by eq. (1) are equal at (x0,y0),
i.e. (x0,y0) is a degenerate point, if{

(T11(x0,y0)−T22(x0,y0))/2 = 0

T12(x0,y0) = 0
(6)

Therefore the problem of the local classification of the de-
generate point of tensor fields in Delmarcelle’s method is
actually the same as the problem of the local classification
of solution curves of eq. (3), where a and b both vanish at
degenerate points.

Both Delmarcelle and Bruce have proved that the local
classification of line fields or degenerate points can be deter-
mined by the constants:

a1 = ∂a/∂x(x0,y0),a2 = ∂a/∂y(x0,y0)

b1 = ∂b/∂x(x0,y0),b2 = ∂b/∂y(x0,y0)
(7)

Thus a(x,y) and b(x,y) at (x0,y0) can be approximated by:

a(x,y) = a1x+a2y+O(2)

b(x,y) = b1x+b2y+O(2)
(8)

when δ = a1b2−a2b1 �= 0. The whole field can be separated
into different regions by the root lines of a cubic equation
C3(p1):

C3(p1) = a2 p3
1 +(2b2 +a1)p2

1 +(−a2 +2b1)p1 −a1 (9)

The cubic equation (9) will have one or three distinct real
roots (δ = a1b2−a2b1 �= 0). Delmarcelle showed that the de-
generate point can be classified into two types based on the
sign of δ (Delmarcelle originally defined δ = a2b1 − a1b2.
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(c)

Wedge PointTrisector point

(a)(a)(a) (b)

δ > 0, IT = −1/2 δ < 0, IT = 1/2

sep2 sep3

sep1

sep1

sep2
sep1 = sep2

Figure 1: Delmarcelle’s classification of degenerate points
reproduced from [Del94] (sepi denotes the separatrices
arising from each type of degenerate points)

−1 0 1
−1

0

1

−1 0 1
−1

0

1

(a)Lemon

(
x y
y −x

)
(b)Monstar

( 1
4 x 3y
3y − 1

4 x

)

−1 0 1
−1

0

1

(c) Star

(
x −y
−y −x

)

Figure 2: Three types of solution curves of binary differen-
tial equations

We use Bruce’s definition here); When δ > 0, the degenerate
point is called a trisector point and has an index − 1

2 ; When
δ < 0, the degenerate point is called a wedge point and has
an index + 1

2 . Therefore, the degenerate point can be classi-
fied either by calculating its tensor index or δ (see Figure 1).
Bruce classified the solution curves into three types: lemon,
star and monstar as shown in Figure 2 (The terminology is
due to Berry and Hannay [BH77]). The blue and red solution
curves are orthogonal to each other. The same set of data can
be visualized using textures as shown in Figure 3. Here the
white lines on top of each texture [LPTH05] represent the
solution lines in each case.

Comparing Figures 2 and 1, Delmarcelle defined both
lemon and monstar as a single type—a wedge point. For the
wedge point, two cases exist, as shown in Figure 1 (b) and

(c). In Figure 1 (b) there are two separatrices sep1 and sep2,
and in Figure 1 (c) there is just one separatrix sep1 = sep2.
However as shown in Figures 2 and 3, the topology of lemon
and monstar cases is quite different, thus they can not be re-
garded as a single type, even though they both have an index
of + 1

2 . Both monstar and star cases have three root lines,
although the former is contained in a right angle and the
other is not. In the lemon case, the cubic C3(p1) has just one
real root. Therefore, Delmarcelle’s method is not sufficient

(a)Lemon (b)Monstar

(c) Star

Figure 3: One of the two line fields of the tensor fields de-
fined in Figure 2 is visualized by textures. The white lines
are root lines of cubic C3(p1). (Textures are coloured by the
corresponding eigenvalue)

for differentiating lemon and monstar. Bruce et al. showed
that the field of pairs of characteristic lines lifts to define
a vector field on a new surface which projects back down
to R

2 [BF89]. The zeros of this vector field (critical points)
are (0, p1), and p1 are the roots of eq. (9). The eigenvalues
(λ1,λ2) of the Jacobian matrices of these critical points are
calculated (see Proposition 1.5 in [BF89] for the proof):

λ1 = 2(a2 p2
1 +(a1 +b2)p1 +b1)

λ2 = −(3a2 p2
1 +2(a1 +2b2)p1 +(2b1 −a2)) (10)

where p1 is one of roots of eq.(9). It is known that critical
points of vector fields can be classified by the eigenvalues
of their Jacobian matrices (see Figure 4). By classifying the
critical points of the lifted vector field, one can classify the
degenerate point of tensor fields:

• If the lifted vector field has just one critical point which is

c© The Eurographics Association 2008.
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Repelling Star
R1 = R2
I1 = I2

R1 = R2
I1 = I2

Attracting Star

Figure 4: The classification of critical points, where Ri and
Ii represent the real and imaginary parts of the eigenvalue
λi, i = 1,2.

a saddle, the degenerate point of the tensor field is lemon
type;

• If the lifted vector field has three critical points and all
are saddles, the degenerate point of the tensor field is star
type;

• If the lifted vector field has three critical points, two sad-
dles and one node, the degenerate point of the tensor field
is monstar type.

For example, in the monstar case shown in Figure 2 (b), the
symmetric tensor field with respect to a basis can be repre-
sented by the matrix: ( 1

4 x 3y
3y − 1

4 x

)
(11)

The eigenvector satisfies the binary differential equation:

3ydy2 − (
1
4

x+
1
4

x)dydx−3ydx2 (12)

One can obtain a1 = 0,a2 = 3,b1 = 1/4,b2 = 0 (using
eqs. (3) and (7)), thus the cubic C3(p1) = 3p3

1 − 5
2 p1 has

three roots: 0,
√

5/6,−√
5/6. For each critical point of the

lift vector field, its two eigenvalues λ1 and λ2 (see eq. (10))
are 0.5,2.5 and 5.5,−5 and 5.5,−5 respectively. These three
critical points are one node and two saddles (see Figure 4).
Similarly one can check that for the lemon case in Figure 2
(a), the lift vector field has just one saddle.

Furthermore, if p1 = y/x, then eq. (9) can be written in a
cubic form, m1x3 + 3m2x2y + 3m3xy2 + m4y3 (m1, · · ·m4,∈
R). In the case of C3(p1) having one or three real roots,
the cubic form can be classified as either an elliptic (three
real and distinct roots) or a hyperbolic (one real root, two
complex conjugate roots) case [Por01]. Therefore, both the

monstar and star can also be regarded as an hyperbolic type,
whilst the lemon is an elliptic type.

In order to further analyse the relationship between
lemon, star and monstar types, the cubic form can be de-
noted by:

αz3 +3βz2z+3βzz2 +αz3 (13)

where z = x+ iy ∈ C and α and β both elements of C. With
a proper coordinate transformation (z = α1/3z), eq. (13) can
be transformed into

z3 +3βz2z+3βzz2 + z3 (14)

when α �= 0. Therefore, any cubic form in R
2 can be rep-

resented by β in a complex plane. When α = 0, eq. (13)
becomes 3βz2z + 3βzz2, and can be considered as lying at
the infinity of the complex plane. Porteous [Por71] [Por83]
[Por01] has shown that a cubic from within the complex
plane can be classified as shown in Figure 5. The tricusp-
idal curve is defined by β = −γ2 − 2γ, where |γ| = 1. For
lemon type, the β values of the cubics will lie outside this
curve. Inside this curve but outside the circle |β| = 1, the cu-
bics will be of monstar type, inside the circle the cubics will
be of star type.

L

L

L

SM

M

M

β = −γ2 − 2γ̄

|β| = 1

γ = eiθ

Figure 5: The relationship of lemon (L), monstar (M) and
star (S) in the complex plane

All of the above classifications assume δ �= 0. When δ = 0,
there is a higher order degenerate point such that a first or-
der Taylor expansion of a(x,y) and b(x,y) (see eq.(8)) is no
longer sufficient; higher order terms must be included. How-
ever, this is beyond the scope of this paper. More details re-
garding to higher order degenerate points can be found else-
where [Liu08].

In the next section, we will discuss how to apply those
theories to the visualizations.

c© The Eurographics Association 2008.



J. Liu & W.T. Hewitt & W.R.B Lionheart & J. Montaldi & M. Turner / A Lemon is not a Monstar

3. Classifying the degenerate point in the visualization

In section 2, we introduced the idea that a degenerate point
could be classified into three types—lemon, monstar and
star. The first two classifications both have indices of +1/2,
whilst the latter one has an index of −1/2. Thus to clas-
sify the type of a linear degenerate point, its tensor index
can first be calculated. If the tensor index is +1/2, then
Bruce’s result will be used to differentiate lemon and mon-
star, which in the work of Delmarcelle were denoted by
a single classification—wedge. The detailed algorithm for
classifying linear degenerate points is as follows:

step 0 To compute the partial derivatives values
a1,a2,b1,b2 at a degenerate point (x0,y0) in eq. (7)
using the Surface Spline (SSPL) [HD72] [Yu01] method
directly;

step 1 To compute the tensor index, if the index is − 1
2 , the

degenerate point is classified as star type, and stop. Oth-
erwise, go to step 2;

step 2 To solve the cubic equation eq. (9) and to obtain one
or three critical points of the lifted vector field;

step 3 To compute the eigenvalues λ1 and λ2 of Jacobian
matrix at these critical points obtained in step 2 using
eq. (10). If there is just one saddle point, then the degener-
ate point is classified as lemon, otherwise the degenerate
point is classified as monstar.

To compute the tensor index in step 1, one possible approach
involves evaluating the integral shown in eq. (2). However,
in most cases the tensor data is not analytical and eq. (2) can
not be applied. A direct computation from the definition of
the tensor index is adopted here. For example, in Figure 6
(a), there is a degenerate point O at (0.68,−0.59). A circle
can be obtained around the degenerate point as long as there
are no other degenerate points on or inside this circle. If Pi
and Pi+1 (i = 1,2, . . . ,n) are two anticlockwise consecutively
sampled points on the circle and n is the total number of sam-
ple points on the circle, then the eigenvectors vi and vi+1
can be evaluated at these sample points (The obtained eigen-
vector vi of a 2× 2 matrix points in one direction only, but
by multiplying the vector by −1, one can obtain the bival-
ued eigenvector.). We note that these eigenvectors are bidi-
rectional, as shown in Figure 6, so that the angle change of
eigenvectors from Pi to Pi+1 can be calculated by:

Δφi = min(acos(vi ·vi+1),acos(vi ·−vi+1))

Assuming that θi is the angle of eigenvector vi makes with
the x axis (positive direction), if θi+1 > θi, then the eigenvec-
tor is rotated anticlockwise, otherwise the eigenvector is ro-
tated clockwise. The former results in positive angle changes
and the later result in negative angle changes. Furthermore,
positive angle changes result in a positive index, whilst neg-
ative angle changes result in a negative index. Finally, the
total change of angle is the sum of Δφi:

φtotal =
n

∑
i=1

Δφi (15)

0.5 0.6 0.7 0.8 0.9
−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

1
2

3456
7

8
9
10

1112 1314
15

O

(a)

v1v2
v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13v14v15

(b)

Figure 6: Computation of the tensor index around a degen-
erate point. Two different arrow heads are used in (b). One
arrow head (on the left in the image) is for vi, and the other
is for −vi. Note from v12 to v13, the angle change is calcu-
lated as Δφ12 = acos(v12 ·−v13).

Therefore, the index of the degenerate point will be

IT = φtotal/2π

In the example shown in Figure 6 (a), there are 15 samples
on the circle i.e., a total of 15 eigenvectors are evaluated, one
at each point. Shifting the centre of these eigenvectors to the
same point as shown in Figure 6 (b), we can see that along
the circle the anticlockwise eigenvectors v1 to v15 have ro-
tated through a total angle of −π. Therefore the index for
this degenerate point will be − 1

2 , i.e. a star type degenerate
point.

4. Results

In order to test the accuracy of the proposed algorithm, it was
necessary to design synthetic tensor data with known topo-
logical features. The design of the test tensor data adopted
the following heuristic: from Theorem A.1 [SHK∗97] (see
Appendix A), one can define a vector field with specified
order and location with

v = E(z, z̄)e1 (16)

where E : C
2 → C is a complex valued function on C

2.
Eq. (16) can also be represented as (Refer to eqs. (27) to
(29) in Appendix A)(

v1
v2

)
=

(
R(E)
−I(E)

)
(17)

Here, R(E) stands for the real part of E, and I(E) stands for
the imaginary part of E.

A symmetric rank-2 tensor on R
2 with respect to an arbi-

trary basis can be represented as:

T =
(

T11 T12
T12 T22

)

which can be further decomposed into two parts:

T = U +D (18)
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where

U =
(

(T11 +T22)/2 0
0 (T11 +T22)/2

)
(19)

and

D =
(

(T11 −T22)/2 T12
T12 −(T11 −T22)/2

)
(20)

U and D are also known as isotropic and deviatoric parts of
a matrix T . Since a general symmetric tensor and its devi-
atoric part have the same set of eigenvectors [LLH97], the
computation of eigenvectors for the deviatoric part is suffi-
cient for a general matrix. Therefore, only the deviatoric part
of a general matrix is required for the design of synthetic ten-
sor data. This is sufficient for our purpose, the testing of our
algorithms for the extraction of degenerate points and the
subsequent construction of topological skeletons of the ten-
sor fields. For any real tensor data on R

2, T11,T12, and T22
will be known in advance. If{

(T11 −T22)/2 = R(E)
T12 = −I(E)

where E : C
2 → C is a complex valued function on C

2, as
introduced in appendix A (see eq. (28)), then the tensor field
T on R

2 with respect to a basis can be defined as follows:(
R(E) −I(E)
−I(E) −R(E)

)
(21)

which has degenerate points when eq. (6) is satisfied, that is{
R(E) = 0

I(E) = 0

Therefore, all zeros within the vector field v (see eq. (17))
specify the degenerate points for the tensor field T defined
in eq. (21).

E = (z− (−0.5−0.2i))(z− (−0.7−0.7i))(
1
4
(x−0.7)−3(y−0.4)i

)
(22)

which consists of three different types of linear degen-
erate points, at locations (−0.7,−0.7), (−0.5,−0.2) and
(0.7,0.4). Note that the third component of E:

F3 =
(

1
4
(x−0.7)−3(y−0.4)i

)

is designed from the monstar in Figure 2 (b), since R(F3) =
1
4 (x− 0.7) and −I(F3) = 3(y− 0.4)i. This leads to a tensor
field:(

R(F3) −I(F3)
−I(F3) −R(F3)

)
=

( 1
4 (x−0.7) 3(y−0.4)
3(y−0.4) − 1

4 (x−0.7)

)
(23)

Figure 7 (a) and (b) show the topological structures extracted
using the existing visualization technique and our algorithm
respectively. It can be seen that at the location (0.7,0.4) there
is a monstar in Figure 7 (a), which is classified into a wedge

(‘W’) type in Figure 7 (b). Due to this classification, there is
a missing separatrix in Figure 7 (a). Therefore the topolog-
ical structure is misleading. It is important to construct the
correct topological structure to help the users to understand
the data in the sense that Figure 7 (b) visualizes the struc-
ture of the underlying data correctly. Using the space filling
textures in Figure 7, it also demonstrates different eigenvec-
tor patterns in each subregion separated by these separatrices
(white curves) without visual clutter. By overlaying the topo-
logical structure on top of it, it will enable the user to quickly
focus on the interesting features in the data, at the same time
as filling in the gaps between separatrices.

−1.0 0.0 1.0
−1.0

0.0

1.0

x

y

W

T

W

(a) Degenerate points are only classified as the wedge
and trisector (‘T’) types.

−1.0 0.0 1.0
−1.0

0.0

1.0

x

y

L

S

M

(b) Degenerate points detected by the new algorithm,
at (0.7,0.4) there is a monstar type degenerate point.

Figure 7: Test data set designed from eq. (21)

5. Conclusions and future works

By extracting the topological structure of the tensor field in
the plane, it can greatly reduce the complexity of data to be
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visualized and provide a global visualization of the whole
field. Furthermore, it can be combined with the icon based
method (textures) to enhance the visualization. However, it
is important to extract the accurate topological structure, oth-
erwise it will be very misleading.

In this work, we applied theory from the analysis of binary
differential equations to address the classification issue of
the degenerate point in the existing visualization techniques.
In the construction of the topological structure of tensor
field, the degenerate point should be classified into three dif-
ferent types: star, monstar and lemon. Lemon is topologi-
cally different from monstar. To classify them correctly, a
new visualization algorithm is proposed and validated by a
synthetic tensor data in this paper.

Last but not the least, in many real cases the tensor fields
under study are not generic but satisfy some constraints,
often that they must satisfy some system of partial differ-
ential equations. In the original case considered by Dar-
boux [Dar96] of the second fundamental form of a surface
that tensor indeed statisfies some differential constraints,
but nevertheless all three types of degenerate points are ob-
served. In elasticity two common constraints are encoun-
tered. A stress-tensor field σ, in the absence of body forces,
is said to be solenoidal which means ∂σ1i/∂x1 +∂σ2i/∂x2 =
0, i = 1,2. A strain-tensor field from a small displacement
vector field is given by εi j = ∂ui/∂x j + ∂u j/∂xi, i, j = 1,2,
where ui denote the components of a displacement vector
and x1,x2 are the basis in the plane, and is said to be po-
tential. A necessary and sufficient condition for a tensor
field to be potential is the vanishing of the St Venant’s ten-
sor [Sha94] in this case is a second order partial differential
operator applied to εi j . In both these important cases all three
types of singularities are found. In the future, we will focus
on the application of our algorithm on real tensor data aris-
ing in these and other applications.
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Appendix A: The design of synthetic data

Scheuermann et al. [SHK98] proposed a method to construct
polynomial vector fields by specifying the critical points and
their indices in advance. This method will be used to design
the tensor fields on plane as described in section 4. The most
important results from the work of Scheuermann et al. are
now briefly introduced. If {e1,e2} is a basis of R

2, a vector
field is defined as:

v : R
2 → R

2

(x,y) → v(x,y) = v1(x,y)e1 + v2(x,y)e2 (24)

Then if z = x+ iy, z̄ = x− iy are complex numbers in C, then;

x =
1
2
(z+ z̄) (25)

y =
1
2i

(z− z) (26)

Thus eq. (24) can be written as:

v(x,y) = v1

(
1
2
(z+ z̄),

1
2i

(z− z̄)
)

e1 + v2

(
1
2
(z+ z̄),

1
2i

(z− z̄)
)

e2

(27)

and if e2
1 = 1,e1e2 = i, e2e1 = −i, then;

v(x,y) =
[
v1

(
1
2
(z+ z̄),

1
2i

(z− z̄)
)
− iv2

(
1
2
(z+ z̄),

1
2i

(z− z̄)
)]

e1

= E(z, z̄)e1 (28)

where E is a function of z and z;

E : C
2 → C

(z, z̄) �→ v1

(
1
2
(z+ z̄),

1
2i

(z− z̄)
)
− iv2

(
1
2
(z+ z̄),

1
2i

(z− z̄)
)

(29)

Therefore designing a polynomial vector field on R
2 is

equivalent to designing a complex-valued function E on C
2,

where the critical points of v are the zeros of E(z,z). For ex-
ample, in Figure 8 (a), E = z actually defines a vector field

ze1 = (x+ iy)e1 = xe1 − ye2 =
(

x
−y

)
,
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(b) index=1,E = z̄
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(f) index=−3,E = z3

Figure 8: Examples of vector fields (The notations E, z and
z will be clarified in the proceeding text.)

with a critical point z = 0, i.e. x = y = 0, which is a saddle
with index −1. In comparison, from E = z, a critical point
with index +1 can be generated (see Figure 8 (b)). In Fig-
ure 8 (c), since E = z2, then E has a zero with the multiplic-

ity 2 which defines a vector field shown as dipole

(
x2 − y2

2xy

)
with index +2. Scheuermann et al. [SKMR98] then intro-
duced the following theorem making it possible to design an
analytic vector field with specified positions and topological
indices of critical points in R

2.

Theorem A.1 Let v : R
2 → R

2 be an arbitrary polyno-
mial vector field with isolated critical points. Let E : C

2 →
C be the polynomial, so that v(x,y) = E(z, z̄)e1. Let Fk :
C

2 → C,k = 1, . . . ,m be the irreducible components of E,
so that E(z, z̄) = ∏m

k=1 Fk. Then, the vector fields wk : R
2 →

R
2,wk(x,y) = Fk(z,z)e1 have only isolated zeros z1, . . . ,zm.

These are then the zeros of v, and for the Poincaré-Hopf in-
dices we have

Iv(z j) =
m

∑
k=1

Iwk (z j) (30)

where Iv(z j) denotes the index of the critical point z j of the
vector field v, and Iwk (z j) denotes the index of the critical
point z j of the vector field wk.

This theorem states two important results. The first is that
if a polynomial vector field v is obtained from a complex-
valued function E, the product of the irreducible components
Fk, and each Fk further defines a vector field wk, then each
critical point of wk will be the critical point of v. The second
is that for a critical point at z j, its index relative to the vector
field v is equal to the sum of indices of z j relative to each
vector field wk (see eq. (30)).
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