
A Preconditioned Newton Algorithm for the
Nearest Correlation Matrix

Borsdorf, Rudiger and Higham, Nicholas J.

2008

MIMS EPrint: 2008.50

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

A PRECONDITIONED NEWTON ALGORITHM FOR THE

NEAREST CORRELATION MATRIX∗

RÜDIGER BORSDORF† AND NICHOLAS J. HIGHAM‡

Abstract. Various methods have been developed for computing the correlation matrix nearest
in the Frobenius norm to a given matrix. We focus on a quadratically convergent Newton algo-
rithm recently derived by Qi and Sun. Various improvements to the efficiency and reliability of the
algorithm are introduced. Several of these relate to the linear algebra: the Newton equations are
solved by minres instead of the conjugate gradient method, as it more quickly satisfies the inexact
Newton condition; we apply a Jacobi preconditioner, which can be computed efficiently even though
the coefficient matrix is not explicitly available; an efficient choice of eigensolver is identified; and a
final scaling step is introduced to ensure that the returned matrix has unit diagonal. Potential diffi-
culties caused by rounding errors in the Armijo line search are avoided by altering the step selection
strategy. These and other improvements lead to a significant speedup over the original algorithm
and allow the solution of problems of dimension a few thousand in a few tens of minutes.

Key words. correlation matrix, positive semidefinite matrix, Newton’s method, precondition-
ing, rounding error, Armijo line search conditions, alternating projections method

AMS subject classifications. 65F10, 65F15, 90C25

1. Introduction. Correlation matrices are real, symmetric positive semidefi-
nite matrices with ones on the diagonal. They arise in situations where correlations
between pairs of random variables are computed, but also when pairwise similarity
measures between objects are formed and suitably scaled, for example in machine
learning [18]. It is common in practice to be faced with an approximate correlation
matrix: a matrix that is supposed to be a correlation matrix but for a variety of pos-
sible reasons is not. In finance, for example, the correlations may be between stocks
measured over a period of time and missing data (perhaps due to a company not trad-
ing for the whole period) may compromise the correlations and lead to a non-positive
semidefinite matrix. Again in finance, a practitioner may wish to explore the effect
on a portfolio of assigning correlations between certain assets differently from the his-
torical values, but this again can destroy the semidefiniteness of the matrix. The use
of approximate correlation matrices in these applications can render the methodology
invalid and lead to negative variances and volatilities being computed [5], [16], [21].

The prevalence of approximate correlation matrices has led to much interest in
the problem of computing the nearest correlation matrix to a given matrix A ∈ R

n×n,
that is, solving the problem

min{ ‖A−X‖F : X = XT , X ≥ 0, Diag(X) = e },(1.1)

where for symmetric matrices X and Y , X ≥ Y denotes that X − Y is positive
semidefinite, Diag(X) is the vector of diagonal elements of X, e is the vector of 1s,
and the Frobenius norm ‖X‖F = trace(XTX)1/2. The objective function in (1.1) is
convex and the constraints are closed convex sets, so there is a unique minimizer.

∗Version of April 21, 2008. This work was supported by a Royal Society-Wolfson Research Merit
Award to the second author.

†Department of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
(ruediger.borsdorf@s2003.tu-chemnitz.de). This author was supported by an EPSRC Studentship
held in the School of Mathematics, The University of Manchester.

‡School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
(higham@ma.man.ac.uk, http://www.ma.man.ac.uk/˜higham).

1

The nearness problem (1.1) has been extensively studied over the last twenty
years. Much of the literature is concerned with ad hoc methods that are not guaran-
teed to solve the problem. An early example is a method of Knol and ten Berge [10]
that writes X = Y T Y and iteratively minimizes the objective function over each unit
2-norm column of Y . More recently, Lurie and Goldberg [11] use the Gauss–Newton
method to minimize ‖A−RTR‖2F , where R is upper triangular with columns of unit
2-norm.

Higham [9] uses convex analysis to give a characterization of the solution and
describes an alternating projections algorithm that converges linearly to the solution.
This algorithm has several attractive features. First, it is very simple to implement,
requiring just matrix additions and computation of eigendecompositions. Second, it
can take advantage of the property, proved in [9], that if aii ≥ 1 for all i and A has
many negative eigenvalues (as is likely in finance applications) then the solution has
at least as many zero eigenvalues (so is of low rank). Third, it is readily adapted to
solve the problem with additional constraints that require X to belong to a convex set,
such as a constraint that holds any set of elements of X fixed [1, Chap. 7]. The main
drawback of the alternating projections algorithm is its possibly slow convergence.

Malick [12] studies a problem more general than (1.1) in which the positive
semidefinite matrices are replaced by a convex set and the constraints on the diagonal
of X are replaced by general linear constraints. He dualizes the linear constraints
and applies a quasi-Newton method to the dual problem. Boyd and Xiao [2] explore
similar ideas. When applied to the problem (1.1) the methods in both these papers
are linearly convergent, because the dual objective function is not twice continuously
differentiable. A breakthrough was subsequently made by Qi and Sun [15], who derive
a quadratically convergent Newton method for (1.1), again by working with the dual
problem. The proof of quadratic convergence relies heavily on the theory of semis-
mooth optimization. Interior point methods can also be applied to classes of problems
containing (1.1). Toh [20] develops such a method that requires the solution of dense
linear systems of dimension about n2/2, constructs preconditioners for the systems,
and applies the method to (1.1).

Qi and Sun [15] build from their theory a globally convergent Newton algorithm
for finding the nearest correlation matrix and illustrate its performance on a small set
of artificial test problems. The purpose of our work is to improve the efficiency and
reliability of the algorithm through a careful analysis of its component steps. The
main improvements we make are as follows.

• The Newton equations are solved by minres instead of the conjugate gradient
(CG) method, since minres minimizes the residual that appears in the inexact
Newton condition.

• We show how to efficiently apply a Jacobi preconditioner to the Newton
equations—a nontrivial task since the coefficient matrix is not explicitly avail-
able.

• The line search is modified so as to perform reliably in finite precision arith-
metic when the convergence tolerance is close to the machine precision.

• We show experimentally that the choice of eigensolver can have a significant
effect on the computational cost and identify a suitable choice.

• We introduce a final scaling step, justified by a distance bound, that ensures
that the returned matrix has unit diagonal.

The outline of the paper is as follows. In Section 2 we present background on
the dual problem and the Newton method and we state Qi and Sun’s algorithm. In

2

Section 3 we develop our refinements to the algorithm. The improved algorithm is
described in Section 4 and some numerical experiments are reported in Section 5.
Concluding remarks are in Section 6.

2. Qi and Sun’s Newton algorithm. In this section we summarize the key
results from the analysis of Qi and Sun [15] that will be needed later and we state Qi
and Sun’s algorithm.

The problem obtained by dualizing the linear constraints in the nearest correlation
matrix problem (1.1) is the unconstrained convex optimization problem [12], [15]

min
y∈Rn

f(y) :=
1

2
‖(A + diag(y))+‖

2
F − eT y.(2.1)

Here, diag(y) for y ∈ R
n denotes the diagonal matrix whose diagonal elements are

those of the vector y, while diag(A) for A ∈ R
n×n denotes diag([a11, a22, . . . , ann]).

(Recall that Diag, introduced in Section 1, maps matrices onto vectors.) The op-
erator (·)+ projects onto the positive semidefinite matrices: for symmetric C ∈
R

n×n with spectral decomposition C = QΛQT (QT Q = I, Λ = diag(λi)), C+ =
Qdiag(max(λi, 0))QT is the nearest positive semidefinite matrix to C in the Frobe-
nius norm [7]. The following lemma collects some key properties of the dual problem
obtained by Malick [12].

Lemma 2.1. The dual problem (2.1) has the following properties.

(a) f is convex and continuously differentiable and has a unique minimizer.

(b) The gradient ∇f is given by

∇f(y) = Diag
(
(A + diag(y))+

)
− e(2.2)

and is Lipschitz continuous with Lipschitz constant 1.
(c) The solutions y∗ of the dual problem (2.1) and X∗ of the primal problem (1.1)

are related by

X∗ = (A + diag(y∗))+.(2.3)

Note that the lemma shows that the original constrained problem with (n2−n)/2
variables is equivalent to an unconstrained problem with just n variables.

To find y∗ we need to solve g(y∗) = 0, where g(y) = ∇f(y). Noting that g is not
differentiable, we denote by ∂g the generalized Jacobian, which is defined since ∇f is
Lipschitz continuous. Qi and Sun apply the generalized Newton iteration

yk+1 = yk − V −1
k g(yk), Vk ∈ ∂g(yk), k = 0:∞.(2.4)

For a general g this iteration need not converge. However, by exploiting the strong
semismoothness of the operator (·)+, Qi and Sun are able to prove quadratic conver-
gence of the iteration for g = ∇f .

Theorem 2.2 (Qi and Sun). Let y∗ denote the minimizer of (2.1). All V ∈
∂g(y∗) are positive definite and the generalized Newton method (2.4) converges quadrat-

ically to y∗ for any choice of Vk if y0 is sufficiently close to y∗.
In order to implement the method we need to be able to compute a generalized

Jacobian V ∈ ∂g(y). Qi and Sun show that such a matrix is given implicitly by

Vyh = Diag
(
Py(Wy ◦ (PT

y HPy))PT
y

)
.(2.5)

3

Here, ◦ denotes the Hadamard product (X ◦ Y = (xijyij)); h ∈ R
n and H = diag(h);

Py is an orthogonal matrix calculated from the spectral decomposition of A+diag(y):

A + diag(y) = Pydiag(λ(y))PT
y ,(2.6)

with λ(y) the vector of eigenvalues; and Wy depends on the eigenvalues λ(y) in the
way we now describe. Let λ(y) be in descending order and define the sets α = {i :
λi(y) > 0}, β = {i : λi(y) = 0}, and γ = {i : λi(y) < 0}. Then the matrix Wy is
defined by

Wy =

Eαα Eαβ T
Eβα 0 0
T 0 0

 , T =

(
λi(y)

λi(y)− λj(y)

)

i∈α,j∈γ

,(2.7)

where Eαβ denotes the matrix of ones of dimension |α| × |β|. It is easy to show that
Vy ≥ 0. We have

hT Vyh = trace
(
HPy(Wy ◦ (PT

y HPy))PT
y

)

= trace
(
H̃(Wy ◦ H̃)

)
where H̃ = PT

y HPy,

= ‖W̃ ◦ H̃‖2F where W̃ ◦ W̃ = Wy,

≥ 0,

using the symmetry of H̃.
The matrix Vy can be explicitly computed by setting h = ei in (2.5), i = 1:n,

where ei is the ith unit vector. But since evaluating (2.5) for a single h costs O(n3)
operations, obtaining Vy costs a prohibitively expensive O(n4) operations. We are
therefore restricted to solving the Newton equation by methods that require matrix-
vector products only.

The following algorithm implements the method above as an inexact Newton
method (the linear system (2.4) is solved only approximately) and it uses a line
search strategy and globalization techniques. The algorithm is globally convergent
and is essentially the same as [15, Alg. 5.1].

Algorithm 2.3. Given a symmetric matrix A ∈ R
n×n and a convergence toler-

ance tol this algorithm computes the nearest correlation matrix X to A in the Frobenius

norm. On termination ‖∇f(yk)‖2 ≤ tol (see (2.2)). The algorithm is quadratically

convergent.

Step 1: Initialization: y0 ∈ R
n, η ∈ (0, 1), ρ, σ ∈ (0, 1/2], and k = 0.

Step 2: Calculate ∇f(yk). If ‖∇f(yk)‖2 ≤ tol, set X = (A + diag(yk))+ and
quit.

Step 3: Compute a spectral decomposition (2.6) of A + diag(yk) and form the
matrix Wyk

from (2.7).
Step 4: Determine the new direction dk by applying an iterative method (using

(2.5) to compute Vkdk) to

Vkdk = −∇f(yk),(2.8)

terminating when both the conditions

‖∇f(yk) + Vkdk‖2 ≤ ηk‖∇f(yk)‖2,(2.9)

−
∇f(yk)T

‖dk‖2
·

dk

‖dk‖2
≥ ηk,(2.10)

4

are satisfied, where ηk = min (η, ‖∇f(yk)‖2). If either one of these con-
ditions cannot be satisfied, let

dk = −B−1
k ∇f(yk)(2.11)

where Bk is any symmetric positive definite matrix with {‖Bk‖2} and
{‖B−1

k ‖2} uniformly bounded.
Step 5: Choose an appropriate step length αk by applying Armijo backtracking:

find the smallest nonnegative integer mk such that

f(yk + ρmkdk) ≤ f(yk) + σρmk∇f(yk)T dk(2.12)

is satisfied.
Step 6: Set αk = ρmk , yk+1 = yk + αkdk and k ← k + 1. Goto Step 2.

In the next section we develop several refinements that improve the efficiency and
robustness of the basic algorithm.

3. Refinements.

3.1. Linear equation solver. Qi and Sun [15] take the CG method as the
solver for the Newton system (2.8). The stopping criterion (2.9) is based on the norm
of the residual rk = ∇f(yk)+Vkdk, but the CG method minimizes the error y∗−yk in
the Vk norm (‖x‖Vk

= (xT Vkx)1/2) rather than the residual, and it can produce very
non-monotonic residuals. Moreover, the possible singularity of the coefficient matrix
Vk can cause problems for the CG method.

Instead of CG, we use the minres method of Paige and Saunders [14]. This method
minimizes the residual norm ‖rk‖2 at every iteration and so produces a monotonically
decreasing sequence of residuals. Moreover, unlike CG, minres is defined for indefinite
systems and thus it should be more stable than CG in finite precision arithmetic for
nearly singular or numerically indefinite matrices. Minres requires only one matrix-
vector product per iteration, but it requires a few more vector operations than CG.

3.2. Preconditioning. As we noted in Section 2, the coefficient matrix Vk is
not explicitly available. We know that Vk is positive semidefinite and is positive
definite for k sufficiently large, but nothing else is known about the spectrum of Vk.
Preconditioning the system (2.8) is therefore a challenge. However, it is possible to
compute the diagonal elements of Vk in O(n3) operations and thereby to apply the
Jacobi preconditioner. Recall that the Jacobi preconditioner for a positive definite
matrix A is D = diag(A) and the preconditioned matrix is D−1/2AD−1/2, which
has 2-norm condition number within a factor n of the minimum over all diagonal
congruences, by a result of van der Sluis [22], [8, Cor. 7.6]. The Jacobi preconditioner
is a reasonable choice in view of the existence of residual bounds for minres that
depend on κ2(A) [4, Chap. 6], [6, Chap. 3].

To see how to compute diag(Vk), let h = ei, H = eie
T
i , and PT

k = [p1, p2, . . . , pn].
Then, from (2.5), the (i, i) element of Vk is given by

vii = eT
i Pk(Wk ◦ PT

k HPk)PT
k ei

= pT
i (Wk ◦ pip

T
i)pi

= pT
i diag(pi)Wkdiag(pi)pi

= qT
i Wkqi,

5

where qi = pi ◦ pi. Thus the diagonal elements vii can be computed as follows:

Qk = [q1, q2, . . . , qn] = Pk ◦ Pk n2 flops,

Mk = [m1,m2, . . . ,mn] = WkQk ≤ 2n3 flops,

vii = qT
i mi, i = 1:n 2n2 flops.

The dominant cost is therefore the matrix-matrix multiplication giving Mk. In form-
ing Mk the zero and eeT blocks of Wk (see (2.7)) can be exploited to reduce the
cost.

To allow for a possibly singular Vk and the effects of rounding errors we set all
diagonal entries less than a predefined positive tolerance to that tolerance.

3.3. Armijo backtracking. We are aiming for an algorithm that is capable
of computing the nearest correlation matrix to full machine accuracy, so we wish to
allow the convergence tolerance tol in Algorithm 2.3 to be of the order of the unit
roundoff, u. However, the Armijo backtracking can break down for small tolerances.
To see why, consider a twice continuously differentiable function φ : R

n → R and the
expansion

φ(x + p) = φ(x) +∇φ(x)T p +
1

2
pT∇2φ(x + tp)T p, t ∈ (0, 1).

If |φ(x)| = 1, ‖p‖2 < u1/2, ‖∇φ(x)‖2 < u1/2/2, and ‖∇2φ(x + tp)‖2 < 1 then
|φ(x + p) − φ(x)| < u|φ(x)| and so fl(φ(x + p)) = fl(φ(x)). In this situation, x
may still be some distance from a minimizer of φ—albeit perhaps only one or two
steps away for a quadratically converging method—yet the Armijo condition cannot
be verified because the function values it needs to compare are indistinguishable in
floating point arithmetic. In numerical experiments we have found that this problem
with the Armijo condition can cause Algorithm 2.3 to fail to converge in finite precision
arithmetic.

To avoid this problem, when fl(f(yk + ρmkdk)) and fl(f(yk)) are close enough
that rounding errors are dominating we take the inexact Newton direction with step
length 1, provided that the resulting yk+1 satisfies

‖∇f(yk+1)‖2
‖∇f(yk)‖2

< 1− µ for some µ > 0,(3.1)

where the latter condition ensures that useful progress is made towards the minimizer.
Or, if (3.1) is not satisfied we take the steepest descent direction with step length 1.

The next result provides support for the test (3.1) by showing that it is satisfied
for sufficiently large k.

Lemma 3.1. For sufficiently large k in Algorithm 2.3, yk+1 = yk +dk with dk the

inexact Newton direction and

‖∇f(yk+1)‖2
‖∇f(yk)‖2

= O(‖dk‖2).

Proof. From the proof of [15, Thm. 5.3] we know that for all sufficiently large k
the inexact Newton step is taken with step αk = 1, dk satisfies (2.9) and (2.10), that

‖yk+1 − y∗‖2 = O
(
‖yk − y∗‖

2
2

)
,(3.2)

‖yk − y∗‖2 ≤ ‖dk‖2 + O
(
‖dk‖

2
2

)
,(3.3)

6

and also that there exists a ρ > 0 so that

‖∇f(yk)‖2‖dk‖2 ≥ −∇f(yk)T dk ≥ ρ‖dk‖
2
2.(3.4)

It follows from (3.3) and (3.4) that for sufficiently large k

‖yk − y∗‖
2
2

‖∇f(yk)‖2
≤
‖yk − y∗‖

2
2

ρ‖dk‖2
≤

1

ρ
‖dk‖2 + O

(
‖dk‖

2
2

)
= O(‖dk‖2).(3.5)

From (3.2), using the Lipschitz property in Lemma 2.1 (b) of ∇f(y) and (3.5), we
deduce that

‖∇f(yk+1)‖2
‖∇f(yk)‖2

=
‖∇f(yk+1)−∇f(y∗)‖2

‖∇f(yk)‖2
≤
‖yk+1 − y∗‖2
‖∇f(yk)‖2

= O

(
‖yk − y∗‖

2
2

‖∇f(yk)‖2

)
= O(‖dk‖2),

which completes the proof.

3.4. Accuracy of the solution. A subtle problem with Algorithm 2.3 is that
it does not yield a matrix with unit diagonal, because the constraints Diag(X) = e
are not explicitly enforced. Indeed if ∇f(y) 6= 0 on termination then it is clear
from (2.2) and (2.3) that the returned matrix does not have unit diagonal. If we
simply set the diagonal elements to 1 then we may destroy the definiteness. We could
then restore definiteness by projecting onto the nearest positive semidefinite matrix,
which changes the diagonal. Iterating this procedure essentially gives the alternating
projections algorithm [9].

We will adopt a simpler and less expensive approach. We replace the final iterate
X by

X̃ = D−1/2XD−1/2, D = diag(X),

which has unit diagonal. Since this transformation is a congruence it preserves the
definiteness of X. However, it can increase the distance from A. The next lemma
provides a bound on the increase.

Lemma 3.2. If X ≥ 0 is the output of Algorithm 2.3 and D = diag(X) > 0 then

‖A−D−1/2XD−1/2‖F ≤ ‖A−X‖F +
tol

1− tol
‖X‖F .(3.6)

Proof. We have

‖A−D−1/2XD−1/2‖F ≤ ‖A−X‖F + ‖X −D−1/2XD−1/2‖F .(3.7)

Our aim is to bound the second term of (3.7) by using ‖∇f(yk)‖2 ≤ tol, where yk is
the final iterate of Algorithm 2.3. From (2.2) and (2.3) it follows that

D = diag(∇f(yk)) + I.(3.8)

With G = X −D−1/2XD−1/2, we have

g2
ij =

(
xij − (∇f(yk)i + 1)−

1

2 xij (∇f(yk)j + 1)−
1

2

)2

= x2
ij

(
1− (∇f(yk)i + 1)−

1

2 (∇f(yk)j + 1)−
1

2

)2

.(3.9)

7

Using |∇f(yk)i| ≤ tol for all i yields

1

1 + tol
≤ (∇f(yk)i + 1)−

1

2 (∇f(yk)j + 1)−
1

2 ≤
1

1− tol
.(3.10)

Hence, in order to find an upper bound for g2
ij it is enough to maximize the function

f(s) = (1 − 1/(1 + s))2 = s2/(1 + s)2 over s ∈ [−tol, tol]. The maximum is attained
at s = −tol and so we obtain from (3.9) g2

ij ≤ x2
ijtol2/(1 − tol)2, giving ‖G‖F ≤

‖X‖F tol/(1− tol). The required bound then follows.

The bound (3.6) is very satisfactory: it says that the increase in the distance
‖A−X‖F induced by the normalization of the diagonal is at most about tol‖X‖F <

∼
ntol, and we expect ntol≪ ‖A−X‖F in applications.

3.5. Choice of eigensolver. Algorithm 2.3 requires a full eigenvalue decompo-
sition of the symmetric matrix A + diag(y) for every evaluation of f(y) and ∇f(y),
thus at least one eigenvalue decomposition per iteration. This is a major part of the
total cost of the method, so it is essential to minimize its cost.

There are three main algorithmic options, for which the NAG Library and LA-
PACK codes are f08fa/dsyev, f08fc/dsyevd, and f08fd/dsyevr. All three algo-
rithms reduce the symmetric matrix to a tridiagonal matrix but then proceed differ-
ently: f08fa uses the QR algorithm, f08fc uses the divide and conquer algorithm,
and f08fd uses the dqds algorithm and multiple relatively robust representations
(MRRR). In our numerical experiments we compare these algorithms.

4. The modified algorithm. The following modification of Algorithm 2.3 in-
corporates the improvements described in the previous section.

Algorithm 4.1. Given a matrix A ∈ R
n×n and a convergence tolerance tol this

algorithm computes the nearest correlation matrix X to A in the Frobenius norm. On

termination ‖∇f(yk)‖2 ≤ tol (see (2.2)). The algorithm is quadratically convergent.

Step 1: Initialization: η = 0.5, ϕ = 10−6, µ ∈ (0, 1), ρ, σ ∈ (0, 1/2], and k = 0.
Step 2: Set A ← (A + AT)/2 if A is nonsymmetric. Set aii = 1, i = 1:n, and

y0 = 0.
Step 3: Calculate ∇f(yk). If ‖∇f(yk)‖2 ≤ tol, set X = D−1/2X̃D−1/2 where

X̃ = (A + diag(yk))+ and D = diag(X̃), and quit.
Step 4: Compute a spectral decomposition of A + diag(yk) and form the matrix

Wyk
from (2.7) and the Jacobi preconditioner Dk (see Section 3.2).

Step 5: Determine the new direction dk by applying minres to the preconditioned
linear system (using (2.5) to compute Vkdk)

D
−1/2

k VkD
−1/2

k ·D
1/2

k dk = −D
−1/2

k ∇f(yk),(4.1)

terminating when both the conditions

‖∇f(yk) + Vkdk‖2 ≤ min (η, ‖∇f(yk)‖2)‖∇f(yk)‖2,(4.2)

−
∇f(yk)T

‖dk‖2
·

dk

‖dk‖2
≥ min (ϕ, ‖∇f(yk)‖2),(4.3)

are satisfied. If either of these conditions cannot be satisfied, let dk =
−∇f(yk).

Step 6: (Choice of step using Armijo backtracking.)
for m = 0:∞

8

If f(yk + ρmdk) ≤ f(yk) + σρm∇f(yk)T dk set αk = ρm and goto
Step 7.
If f(yk + ρmdk) and f(yk) are “nearly equal” then if

‖∇f(yk + αkdk)‖2
‖∇f(yk)‖2

≤ 1− µ,(4.4)

set αk = 1 and goto Step 7, else set dk = −∇f(yk), αk = 1, and goto
Step 7.

end
Step 7: Set yk+1 = yk + αkdk and k ← k + 1. Goto Step 3.

A few comments are in order.

(a) Since all matrices agreeing with A on the off-diagonal have the same nearest
correlation matrix we set the diagonal of A to unity at the start. With y0 = 0 this
gives immediate convergence if the resulting matrix is positive semidefinite.

(b) Step 2 projects onto the symmetric matrices [7] and allows the algorithm to
work for nonsymmetric inputs A [1, Thm. 4.91].

(c) Our use of ϕ ≪ η in (4.3) and (4.2) encourages the use of inexact Newton
directions over the steepest descent direction, which our numerical experiments have
shown leads to faster run times.

(d) In Step 6 a suitable test for two floating point numbers a and b being “nearly
equal” is |a− b| < γu(1 + |a|+ |b|), where γ is a constant that we set to 100.

(e) Some other straightforward tests that terminate when rounding errors start
to dominate are omitted to avoid clutter, but are included in our implementation
tested in the next section.

5. Numerical experiments. We now present some numerical experiments that
illustrate the behaviour of Algorithm 4.1 and compare it with Algorithm 2.3 and the
alternating projections method. Details of more extensive tests can be found in [1].
The tests were carried out in MATLAB R2006b on a 2.4 GHz AMD Athlon under
linux (Tables 5.1 and 5.2) and MATLAB R2007b on a 2.2 GHz AMD Athlon under
Windows XP (Tables 5.3 and 5.4); the unit roundoff is u = 2−53 ≈ 1.1 · 10−16. We
invoked certain NAG Fortran Library (Mark 21) codes via the NAG Toolbox for
MATLAB (Beta 1 under linux and Beta 2 under Windows) [13].

The codes tested are as follows.
• nearcor: a MATLAB implementation of Algorithm 2.3 written by the au-

thors of [15] and used in the testing in that paper.
• nearcor new: Our MATLAB implementation of Algorithm 4.1. We take

µ = 0.9, ρ = 0.5, and σ = 10−4. We use a MATLAB implementation of
minres provided by the authors of [4].

• The MATLAB implementation of the alternating projections method used in
the testing in [9].

We use four test matrices, all of which are approximate correlation matrices with
unit diagonal.
cor1399 A matrix of dimension 1399 of stock data provided by a fund management

company. It is highly rank-deficient and its off-diagonal entries are in the
interval [−0.9644, 1.1574].

cor3120 A matrix from the same source as the first one. It has dimension n = 3120
and has full rank. The off-diagonal elements are in the interval [−0.6250, 1.0751].

9

Table 5.1
Comparison of different iterative methods in nearcor new; tol = 10−7

n.

cor1399
CG minres

no preconditioning
Ttot 213.4 170.9
Tmvp 146.3 104.3
Teig 62.6 61.7
Iters. 7 7
mvp 42 30

with preconditioning
Ttot 142.4 111.0
Tmvp 76.6 45.2
Teig 52.8 52.8
Iters. 6 6
mvp 22 13
Time Pre. 8.83 8.9

cor3120
CG minres

no preconditioning
Ttot 2799 1736
Tmvp 2100 1138.6
Teig 662.0 562.8
Iters. 7 6
mvp 57 31

with preconditioning
Ttot 1197 905.7
Tmvp 624.2 331.1
Teig 468.3 469.2
Iters. 5 5
mvp 17 9
Time Pre. 72.9 72.89

Risk-daily, Risk-monthly Matrices from the RiskMetrics database [19]. The docu-
mentation says that “The data sets contain consistently calculated volatilities
and correlation forecasts for use in estimating market risk. The asset classes
covered are government bonds, money markets, swaps, foreign exchange and
equity indices (where applicable) for 31 currencies, and commodities.” We
obtained two matrices for a one day and a one month horizon assigned to July
15, 2006, which have dimension 387 and a smallest eigenvalue of −7.92 · 10−6

and −4.91 · 10−6, respectively.

First, we investigate the influence of the iterative solver and of precondition-
ing. With tol = 10−7n, we solved the first two problems using nearcor new, again
with nearcor new with the CG method replacing minres, using the NAG CG suite
f11gd/f11ge/f11gf, and in each case solving both with and without preconditioning.
The results are in Table 5.1, where we report Ttot: the total run time (in seconds),
Tmvp: the time taken to compute all the matrix-vector products Vkh (see (2.5)), Teig:
the time to compute the spectral decompositions, Iters.: the number of outer (inex-
act Newton) iterations, # mvp: the number of matrix-vector products required, and
Time Pre.: the time to compute the preconditioner.

Several comments can be made on Table 5.1. First, minres leads to a faster al-
gorithm than the CG method both with and without preconditioning, and results in
one fewer iteration for the cor3120 matrix without preconditioning; the reduction in
time is largely accounted for by the fewer matrix-vector products. Second, precondi-
tioning brings a useful speedup, amounting for cor3120 to a 48% reduction in time
with minres and a 58% reduction with CG. Third, the eigenvalue computations take
32% of the total time for cor3120 with unpreconditioned minres, rising to 52% of the
time with preconditioning.

We now take a look at the effect of the choice of eigensolver (see Section 3.5.) The
results in Table 5.1 are based on the use of NAG code f08fc (divide and conquer).
Table 5.2 reports the results for solving the same problems as in Table 5.1 using
nearcor new with this eigensolver, f08fa (the QR algorithm—as used by MATLAB
for the eig function), and f08fd (dqds/MRRR). The results shown are ratios of total

10

Table 5.2
Ratios of total time taken by nearcor new with f08fa and f08fd to total time for nearcor new

with f08fc.

f08fa f08fc f08fd

cor1399 2.1 1.0 1.9
cor3120 2.3 1.0 2.2

times spent to run Algorithm 4.1 with each eigensolver normalized by the run time
with the fastest eigensolver, f08fc. We see that with f08fc the algorithm is twice
faster than if the other two eigensolvers are used, for these matrices, and indeed f08fc

is also the fastest in similar tests we have performed with different matrices [1]. We
found this difference quite surprising, and it shows the importance of trying different
algorithmic variants of the basic linear algebra “black boxes”. The performance of
these codes for tridiagonal matrices is investigated by Demmel, Marques, Parlett, and
Vömel [3], who observe that the performance of divide and conquer and dqds/MRRR
depends strongly on the particular matrices to which they are applied.

Finally, in Tables 5.3 and 5.4 we compare nearcor new with Qi and Sun’s code
nearcor and with the alternating projections code from [9], with two different con-
vergence tolerances corresponding to half and full machine precision. The main dif-
ferences between nearcor new and nearcor affecting the run time are the different
eigensolvers (f08fc for nearcor new, MATLAB’s eig for nearcor), the different it-
erative method for computing the Newton direction (minres versus CG), the use of
the Jacobi preconditioner in nearcor new, and more optimized MATLAB coding in
nearcor new, particularly for the gradient evaluations. In the tables “–” denotes that
nearcor did not converge or that alternating projections was unable to handle the
matrix in a reasonable time (we estimate a run time of several days for cor3120). The
speedup of nearcor new over nearcor of a factor more than 6 on both problems is
significant given that both codes are using the same Newton algorithm.

6. Concluding remarks. Our MATLAB implementation nearcor new of Qi
and Sun’s Newton method can solve problems of dimension a few thousand in a few
minutes. The run time is dominated by the cost of computing spectral decompositions,
and most of the remaining time is spent in computing the matrix-vector products (2.5).
Although an extensive computational comparison of all available methods for solv-
ing the nearest correlation matrix problem is lacking, the available evidence suggests
that the Newton method is the best general-purpose method. Toh [20] reports his
code having run times of over 1 hour to solve a nearest correlation matrix problem
of dimension 1600 (the maximum size reported therein), whereas nearcor new solves
a problem of twice the dimension within 30 minutes. The alternating projections
method is very easy to implement and is attractive for small problems and modest
convergence tolerances, but in general cannot compete with Newton’s method for effi-
ciency. Extensions of the Newton method to incorporate constraints and to Hadamard
weighting have recently been developed [16], [17] and we expect that the ideas herein
can be profitably employed in those methods.

Acknowledgements. We thank Jörg Liesen, Marcos Raydan, David Sayers, and
David Silvester for helpful discussions on this work.

11

Table 5.3
Time in seconds for the new code nearcor new, nearcor (Qi and Sun), and alternating projec-

tions; tol = 10−7
n.

nearcor new nearcor Altern. proj.
Time Iter. Time Iter. Time Iter

cor1399 96.9 5 378.5 5 529.0 62
cor3120 814.0 4 5256.7 4 – –
Risk-daily 0.39 0 0.47 0 1.02 2
Risk-monthly 0.36 0 0.53 0 1.22 2

Table 5.4
Time in seconds for the new code nearcor new, nearcor (Qi and Sun), and alternating projec-

tions; tol = 2nu.

nearcor new nearcor Altern. proj.
Time Iter. Time Iter. Time Iter

cor1399 171.9 7 537.1 7 4251.0 494
cor3120 1533.8 6 15685.0 9 – –
Risk-daily 5.73 5 – – 30.92 55
Risk-monthly 15.94 10 – – 18.66 27

12

REFERENCES

[1] Rüdiger Borsdorf. A Newton algorithm for the nearest correlation matrix. M.Sc. Thesis,
The University of Manchester, Manchester, UK, September 2007. 151 pp. MIMS EPrint
2008.49, Manchester Institute for Mathematical Sciences, The University of Manchester,
UK.

[2] Stephen Boyd and Lin Xiao. Least-squares covariance matrix adjustments. SIAM J. Matrix

Anal. Appl., 27(2):532–546, 2005.
[3] James W. Demmel, Osni A. Marques, Beresford N. Parlett, and Christof Vömel. Performance

and accuracy of LAPACK’s symmetric tridiagonal eigensolvers. SIAM J. Sci. Comput., 30
(3):1508–1526, 2008.

[4] Howard C. Elman, David J. Silvester, and Andrew J. Wathen. Finite Elements and Fast

Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University
Press, 2005. xiii+400 pp. ISBN 0-19-852867-1.

[5] Christopher C. Finger. A methodology to stress correlations. RiskMetrics Monitor, Fourth
Quarter:3–11, 1997.

[6] Anne Greenbaum. Iterative Methods for Solving Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1997. xiii+220 pp. ISBN 0-89871-396-X.

[7] Nicholas J. Higham. Computing a nearest symmetric positive semidefinite matrix. Linear

Algebra Appl., 103:103–118, 1988.
[8] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second edition, Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN
0-89871-521-0.

[9] Nicholas J. Higham. Computing the nearest correlation matrix—A problem from finance. IMA

J. Numer. Anal., 22(3):329–343, 2002.
[10] Dirk K. Knol and Jos M. F. ten Berge. Least-squares approximation of an improper correlation

matrix by a proper one. Psychometrika, 54(1):53–61, 1989.
[11] Philip M. Lurie and Matthew S. Goldberg. An approximate method for sampling correlated

random variables from partially-specified distributions. Management Science, 44(2):203–
218, 1998.

[12] Jerome Malick. A dual approach to solve semidefinite least-squares problems. SIAM J. Matrix

Anal. Appl., 26(1):272–284, 2004.
[13] NAG Toolbox for MATLAB. NAG Ltd., Oxford. http://www.nag.co.uk/.
[14] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations.

SIAM J. Numer. Anal., 12(4):617–629, 1975.
[15] Hou-Duo Qi and Defeng Sun. A quadratically convergent Newton method for computing the

nearest correlation matrix. SIAM J. Matrix Anal. Appl., 28(2):360–385, 2006.
[16] Hou-Duo Qi and Defeng Sun. Correlation stress testing for Value-at-Risk: An unconstrained

convex optimization approach. Manuscript, March 2007. 35 pp.
[17] Hou-Duo Qi and Defeng Sun. An augmented Lagrangian dual approach for the H-weighted

nearest correlation matrix problem. Manuscript, February 2008. 21 pp.
[18] Hou-Duo Qi, Zhonghang Xia, and Guangming Xing. An application of the nearest correlation

matrix on web document classification. Journal of Industrial and Management Optimiza-

tion, 3(4):701–713, 2007.
[19] Educational datasets. http://www.riskmetrics.com/stddownload_edu.html.
[20] Kim-Chuan Toh. An inexact primal-dual path following algorithm for convex quadratic SDP.

Math. Programming, 112:221–254, 2008.
[21] Saygun Turkay, Eduardo Epperlein, and Nicos Christofides. Correlation stress testing for value-

at-risk. The Journal of Risk, 5(4):75–89, 2003.
[22] A. van der Sluis. Condition numbers and equilibration of matrices. Numer. Math., 14:14–23,

1969.

13

