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Firstly, we describe and investigate the algorithm of Qi and Sun which solves
the problem of finding the nearest correlation matrix to a symmetric matrix. This
algorithm claims a quadratic convergence. We discuss improving this algorithm’s
efficiency and reliability and detect a problem when we are aiming at a nearest cor-
relation matrix with a high accuracy, using small error tolerences. As a consequence,
we suggest a modified version, based on the algorithm of Qi and Sun, which is also a
quadratically convergent algorithm, has improved efficiency and is modified so that
the algorithm can return the nearest correlation matrix to high accuracy showing a
robust and reliable behaviour.

Secondly, we investigate the general alternating projections method and also
Higham’s alternating projections method for the nearest correlation matrix. We
discuss variations of the latter and include a further projection which allows more
constraints to be added to the problem. We introduce a new algorithm and compare
its convergence behaviour with Higham’s alternating projections method.
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Chapter 1

Introduction

Our thesis concerns the problem of finding the nearest correlation matrix to a given

symmetric matrix. Before focusing our attention on solving this problem, we clarify

what it covers and for which applications it is used. Basically, the keywords in our

problem are the words ‘nearest’ and ‘correlation matrix’. The first one means we look

for the smallest distance measured in the Frobenius norm (see Section 1.14) between

an input matrix and a matrix which has all the properties of a correlation matrix.

We now explain the meaning of the second keyword.

1.1 Correlation Matrices

A correlation matrix is a symmetric positive semidefinite matrix with ones on the

diagonal. The term ‘correlation matrix’ comes from statistics, describing a matrix in

which the (i,j) entry indicates the correlation between two random variables ξi and ξj.

This explains immediately why correlation matrices have ones on the diagonal and are

symmetric. The reason is that the correlation between a random variable and itself is

always 1 and the correlation between ξi and ξj is the same as between ξj and ξi. We

also deduce the semidefiniteness from the original meaning of a correlation matrix.

Therefore, let A = (aij)
n
i,j=1 be a ‘statistical’ correlation matrix corresponding to a

12



CHAPTER 1. INTRODUCTION 13

random vector ξ = (ξ1, . . . , ξn) and let x ∈ Rn be arbitrary. Then we have

xT Ax =
n∑

i,j=1

xiaijxj

=
n∑

i,j=1

xi
E ((ξi − µi)(ξj − µj))√

νiνj

xj

= E

(
n∑

i=1

xi(ξi − µi)√
νi

n∑
j=1

xj(ξj − µj)√
νj

)

= E




(
n∑

i=1

xi(ξi − µi)√
νi

)2



≥ 0

(1.1)

where E(X) denotes the mean value for a random variable X, νi is the variance of

ξi and µi := E(ξi). Since x was arbitrary we obtain that the matrix A is positive

semidefinite.

Now conversely, we prove that every correlation matrix is a ‘statistical’ correlation

matrix. Therefore, let A be symmetric and positive semidefinite matrix with ones on

the diagonal. Since A is symmetric, there exists a factorization of A with

A = PΛP T = RRT , (1.2)

where P is orthogonal, Λ is a diagonal matrix with the eigenvalues (λ1, . . . , λn) of A

on the diagonal and

R := P




√
λ1

. . .
√

λn


 . (1.3)

Now let η = (η1, . . . , ηn) be a random vector with η1, . . . , ηn linearly independent and

ηi normally distributed with a mean value of 0 and a variance of 1. Then we can

define a random vector ξ as ξ := Rη where this vector is the random vector which
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corresponds to the matrix A since

E(ξξT ) = E((Rη)(Rη)T )

= E(RηηT RT )

= RE(ηηT )RT

= RInRT

= A

(1.4)

with In the identity in Rn×n. It follows that A is a ‘statistical’ correlation matrix.

1.2 Applications

The problem (1.14) arises for example in the financial world, where for prediction

purposes the correlations between pairs of stocks are measured. Unfortunately, in

practice only an approximate correlation matrix is obtained, since not all values of all

stocks of interest can be recorded at the same time over a long period. This obtained

matrix does not necessarily satisfy all the properties of a correlation matrix. Thus,

the nearest matrix satisfying these properties is desired. More details, in particular

how such approximate correlation matrices are computed, can be found in [22].

If we would like to change some entries of a correlation matrix computed histori-

cally for example, then it will also be likely that a solution of our problem is required,

because the modified matrix will not generally have the properties of a correlation

matrix. Reasons for changing the matrix are that perhaps a user has more insight

which tells him that a particular correlation may not be up to date, or stress test-

ing purposes, where a user wishes to examine the effect of an extreme market on a

portfolio.

Note that using matrices which do not satisfy the properties of a correlation matrix

can lead to a breakdown of a Value-at-Risk methodology if these matrices are used

to calculate the Value-at-Risk of a portfolio; see [8].

Further applications occur in robust quadratic optimization and numerical lin-

ear algebra involving preconditioning of linear systems and error analysis of Jacobi
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methods for the symmetric eigenvalue problem; see [5] for more details.

1.3 Problem Formulation

1.3.1 Some Definitions and a Lemma

We want to express the problem of finding the nearest correlation matrix, a convex

optimization problem, mathematically. Therefore, we need to define a space where

we can measure distances. For that purpose, we start with the definition of an inner

product and continue with the definition of a Hilbert space. Then we define our

particular Hilbert space equipped with an inner product giving rise to a norm. This

norm will be the Frobenius norm and the norm which we will use to measure distances.

Since the Cauchy-Schwarz inequality is required later and linked with the definition

of an inner product, we also state here a lemma which proves this inequality for all

elements in a real Hilbert space.

Finally, we define what convex means and what a convex optimization problem

is. In this context, convex refers to functions or sets. We provide both definitions.

Beyond that, we also define the terms “cone” and “linear” since these definitions are

also used later.

Definition 1.3.1. Let K ∈ {R,C} be a field and V a K-vector space. A mapping

〈·, ·〉: V × V 7→ K is called an inner product, if

• 〈·, w〉 : V 7→ K is linear (see Definition (1.3.8)) ∀w ∈ V

• 〈v, w〉 = 〈w, v〉 ∀v, w ∈ V

• 〈v, v〉 ≥ 0 and 〈v, v〉 = 0⇔ v = 0 ∀v ∈ V

Now we have defined the inner product and we can give the definition of a Hilbert

space.

Definition 1.3.2. A space H is a Hilbert space if H is a real or complex vector space

equipped with an inner product where this vector space is also complete and normed
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under the norm defined by the inner product:

‖·‖ :=
√
〈·, ·〉. (1.5)

Now we define an operator 〈·, ·〉 : Rn×n 7→ Rn×n with

〈X, Y 〉 := trace
(
XT Y

)
=

n∑
i,j=1

XijYij, ∀X,Y ∈ Rn×n. (1.6)

The operator 〈·, ·〉 clearly satisfies all conditions of Definition 1.3.1 with R as field

and Rn×n as vector space so that we can now specify our particular Hilbert space as

Rn×n equipped with this inner product 〈·, ·〉. Note that this Hilbert space will be our

general framework for our problem later. Our associated norm is then defined as

‖X‖
F

:=
√
〈X, X〉, ∀X ∈ Rn×n

which defines the Frobenius norm and is thus our measurement of distance in our

Hilbert space Rn×n.

Next, we state a lemma which proves the Cauchy-Schwarz inequality

|〈v, w〉| ≤ ‖v‖‖w‖ (1.7)

for all v, w in a real Hilbert space.

Lemma 1.3.3. (see [6, Theorem 1.2 (Schwarz Inequality)]) Let H be a real Hilbert

space (need not to be complete) and 〈·, ·〉 the corresponding inner product with R as

field. Furthermore, let ‖·‖ :=
√
〈·, ·〉 be the associated norm. Then for any v, w ∈ H,

|〈v, w〉| ≤ ‖v‖‖w‖ . (1.8)

Moreover, equality holds in (1.8) if and only if v and w are linearly dependent (there

exists a λ ∈ R so that v = λy).

Proof. “⇒”:

Let v and w be linearly dependent, then there exists a scalar λ with v = λw. It

immediately follows that both sides of (1.8) are equal to |λ| ‖w‖2.
“⇐”:



CHAPTER 1. INTRODUCTION 17

Now conversely, let v and w be linearly independent, then v−λw 6= 0 for every scalar

λ, therefore using the third property in Definition 1.3.1 yields

0 < 〈v − λw, v − λw〉 = ‖v‖2 − 2λ〈v, w〉+ λ2‖w‖2. (1.9)

Setting λ := 〈v,w〉
‖w‖2 leads to

0 < ‖v‖2 − |〈v, w〉|2
‖w‖2 (1.10)

which implies strict inequality in (1.8) and we obtain our assertion.

We now give the definition of convex functions and subsequently the definition of

convex sets.

Definition 1.3.4. A function f : I 7→ R is called convex if ∀x, y ∈ I and ∀t ∈ (0, 1):

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) (1.11)

where I is an arbitrary real interval.

Definition 1.3.5. A set C in a complex or real vector space is called convex if for

all x, y ∈ C the line segment connecting x and y is also in C, i.e.

∀x, y ∈ C : x + t(y − x) ∈ C ∀t ∈ [0, 1]. (1.12)

Now we can define a convex optimization problem.

Definition 1.3.6. Let E and I be arbitrary index sets and Ω an arbitrary set. Con-

sider the following problem.

min f(x)

s.t. x ∈ Ω

hi(x) = ci, ∀i ∈ E

gj(x) ≤ 0, ∀j ∈ I

(1.13)

where f : Ω 7→ R is the objective function, hi : Ω 7→ R are the equality constraints

with ci a constant ∀i ∈ E and gj : Ω 7→ R are the inequality constraints ∀j ∈ I.
The problem (1.13) is called a convex optimization problem if Ω is a convex set, f, gj

convex functions and hi linear ∀i ∈ E and ∀j ∈ I [24].
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Finally, we provide the two remaining definitions.

Definition 1.3.7. A subset C of a real vector space is a cone if

λx ∈ C, ∀x ∈ C and ∀λ ≥ 0.

Definition 1.3.8. Let K ∈ {R,C} be a field and V a K-vector space. A function

f : V 7→ K is called linear if

• f(x + y) = f(x) + f(y), ∀x, y ∈ V and

• f(λx) = λf(x), ∀λ ∈ K and ∀x ∈ V .

1.3.2 The Problem

We express our problem mathematically as the convex optimization problem

min
1

2
‖G−X‖2

F
, G ∈ Sn given

s.t. diag(X) = e and X ∈ Sn
+

(1.14)

where Sn is the set of symmetric matrices in our underlying Hilbert space Rn×n,

Sn
+ ⊂ Sn denotes the set of symmetric positive semidefinite matrices, diag(X) is a

linear operator which produces a vector of the diagonal elements of X and e is a

vector of all ones. The constraints of this problem guarantee that our matrix X is a

correlation matrix.

1.3.3 Why It Is a Convex Optimization Problem

Here, we outline why this problem is a convex optimization problem. Consider Ω :=

Sn
+ in Section 1.3.1. Ω is convex since the set of symmetric positive semidefinite

matrices is a closed convex cone. Now we look at our objective function. We prove

that it is convex. Let X, Y ∈ Sn
+ be arbitrary. Then

1

2
‖G− (tX + (1− t)Y )‖2

F
=

1

2
‖tG− tX + (1− t)(G− Y )‖2

F

≤ 1

2
(t‖G−X‖

F
+ (1− t)‖G− Y ‖

F
)2 ∀t ∈ (0, 1).

(1.15)
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Since the function x2 is convex on the positive real axis, we have that

1

2
(t‖G−X‖

F
+ (1− t)‖G− Y ‖

F
)2 ≤ 1

2
(t‖G−X‖2

F
+ (1− t)‖G− Y ‖2

F
)

= t
1

2
‖G−X‖2

F
+ (1− t)

1

2
‖G− Y ‖2

F
∀t ∈ (0, 1).

(1.16)

Hence our objective function is convex. Now consider our linear operator diag(X) as

diag(X) = [h1(X), . . . , hn(X)]T with hi : Sn
+ 7→ R and hi(X) = Xii. Then we can

rewrite our constraint as

hi(X) = 1, ∀i = 1, . . . , n.

Since hi(X) is linear (recall diag(X) is linear) and ci := 1 is constant, we have a

convex optimization problem.

1.4 Some Properties of the Problem

In this section, we show that a solution of our problem exists and is unique. We start

with the existence. Our objective function is continuous, the feasible set Sn
+ ∩ {X ∈

Sn : diag(X) = e} is closed and convex (see [17]) and the feasible set is not empty

(consider X equal to the identity). Moreover, since we can intersect our feasible set

with a closed bounded set and obtain an equivalent problem, a solution exists.

Such a bounded set is for example B := {X ∈ Sn : ‖X‖
F
≤ 2‖G‖

F
+
√

n}, as we

now prove. Therefore, we denote the original problem as Problem 1 and the problem

where we intersect our feasible set with B by Problem 2. Let U be a solution of

Problem 1. Since we have

‖U‖
F
− ‖G‖

F
≤ ‖G− U‖

F

≤ ‖G− In‖F

≤ ‖G‖
F

+
√

n.

(1.17)

with In the identity in Rn×n, it follows by adding ‖G‖
F

on both sides that U ∈ B
and hence U is also a solution of Problem 2. We obtain one direction of the proof.

Now conversely, let U be a solution of Problem 2 and assume that U is not a solution
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of Problem 1, i.e. there exists a matrix Û in the feasible set of Problem 1 with

‖G− Û‖
F

< ‖G− U‖
F

and Û 6∈ B. From (1.17) and the fact that ‖Û‖
F
− ‖G‖

F
≤

‖G− Û‖
F
≤ ‖G− U‖

F
it follows that ‖Û‖

F
≤ 2‖G‖

F
+
√

n. However, this is a

contradiction to Û 6∈ B and we obtain our assertion.

Now we consider the uniqueness. Therefore, we provide first a lemma which will

be helpful to show the uniqueness.

Lemma 1.4.1. If ‖X + Y ‖
F

= ‖X‖
F

+ ‖Y ‖
F

for X,Y ∈ Sn
+ and X, Y 6= 0 then it

holds that Y = λX for a λ > 0.

Proof. Let X,Y ∈ Sn
+ with X, Y 6= 0 and ‖X + Y ‖

F
= ‖X‖

F
+ ‖Y ‖

F
. Then from

‖X + Y ‖2
F

= 〈X + Y, X + Y 〉 = ‖X‖2
F

+ 2〈X, Y 〉+ ‖Y ‖2
F
, (1.18)

and

(‖X‖
F

+ ‖Y ‖
F
)2 = ‖X‖2

F
+ 2‖X‖

F
‖Y ‖

F
+ ‖Y ‖2

F
, (1.19)

we obtain that

〈X, Y 〉 = ‖X‖
F
‖Y ‖

F
. (1.20)

Since the equality holds in the Cauchy-Schwarz inequality (〈X, Y 〉 ≤ ‖X‖
F
‖Y ‖

F
) it

follows by Lemma 1.3.3 that Y = λX and thus, it only remains to show that λ > 0.

Obviously,

|1 + λ| ‖X‖
F

= ‖X + λX‖
F

= ‖X + Y ‖
F

= ‖X‖
F

+ ‖Y ‖
F

= ‖X‖
F

+ ‖λX‖
F

= (1 + |λ|)‖X‖
F

(1.21)

which implies that λ > 0 and hence, we obtain our assertion.

We move back to showing the uniqueness, we know from Section 1.3.3 that our

objective function is convex and hence that every local minimum is the global mini-

mum [24, Theorem 2.5]. However, we still have to show that the minimum is attained
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only once. We assume that we have two matrices X, Y which minimize our objective

function with X,Y 6= G (if X = G or Y = G then obviously G is our unique solution),

X 6= Y and X, Y in the feasible set. We show that X = Y . Since we have a convex

optimization problem 1
2
(X + Y ) also minimizes the objective function and lies in the

feasible set. Hence, we deduce that

1

2
‖G−X + G− Y ‖

F
= ‖G− 1

2
(X + Y )‖

F
=

1

2
‖G−X‖

F
+

1

2
‖G− Y ‖

F
(1.22)

and by Lemma 1.4.1 it follows that G−X = λ(G− Y ) for a λ > 0 since G−X 6= 0

and G− Y 6= 0. From

‖G−X‖
F

= ‖G− Y ‖
F

= ‖λ(G−X)‖
F

= |λ| ‖G−X‖
F

(1.23)

and the fact that ‖G−X‖
F
6= 0 we obtain that λ = 1 and subsequently that X = Y .

This implies our uniqueness, the minimum of (1.14) is achieved and it is achieved at

a unique matrix X.

1.5 Approaches

In the financial world, many different methods are applied to solve our problem. For

example one approach is to solve the problem by using an angles parametrization of

a correlation matrix. That is,

min
∥∥G−B(Θ)B(Θ)T

∥∥2

F

with Θ ∈ Rn×(n−1)
(1.24)

and B ∈ Rn×n defined as

B(Θ)ij :=





cos(Θij)
∏j−1

k=1 sin(Θik) if j < n

∏j−1
k=1 sin(Θik) if j = n

(1.25)

where B(Θ)B(Θ)T is our correlation matrix which is by construction always positive

semidefinite and the latter condition (1.25) guarantees that this matrix has ones on

its diagonal. However, whether all correlation matrices can be represented in this

way is unclear. Unfortunately, the authors in [29] leave this as an open question.
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To carry on listing approaches, Finger [8] proposes an algorithm to solve our

problem that we summarize now. Let C ∈ Rm×m be a given correlation matrix with

the block structure

C :=


C11 C12

CT
12 C22


 (1.26)

with C11 ∈ Rk×k, C12 ∈ Rk×(m−k) and C22 ∈ R(m−k)×(m−k). Furthermore, let C11

contain all correlations which are desired to be changed and let ν ∈ [0, 1] be a given

scalar. Then the new matrix CF obtained by the Finger algorithm is

CF :=


ΠC11Π

T ΠC12

CT
12Π

T C22


 =


Π 0

0 I


 ·


C11 C12

CT
12 C22


 ·


Π 0

0 I




T

(1.27)

where Π := ΓA with Γ = diag(δ
−1/2
11 , . . . , δ

−1/2
kk ) and δii the (i, i) element of AC11A

T

and A = (aij)
k
i,j=1 with

aij :=





1− ν + ν
k

if j = i

ν
k

otherwise

. (1.28)

The right-hand side of (1.27) clarifies why the matrix CF preserves the symmetry

and positive semidefiniteness of C and since we rescale the diagonal of the matrix

AC11A
T to 1 by multiplying Γ from both sides, we guarantee all conditions of a

correlation matrix. Hence, our new matrix CF is also a correlation matrix. The

matrix A is chosen in this way since applying the matrix A to C as shown in (1.27)

is equivalent to modifying the random variables corresponding to the entries of C11

by taking a convex combination of the original random variable and the average of

all other random variables corresponding to C11 (see therefore [8]). That is,

ξ̂i := (1− ν)ξi + ν
1

k

k∑
j=1

ξj ∀i = 1, . . . , k, (1.29)

where ξ1, . . . , ξk are the random variables corresponding to C11 and ξ̂i are the changed

random variables. Hence, the value of ν is operative and has to be computed in

advance.
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In [21] an improved version of Finger’s algorithm is proposed where the modifica-

tion of the blocks C12 and C21 is reduced, a new correlation matrix

C∗ :=


 C∗

11 C∗
12

C∗
12

T C∗
22


 (1.30)

is computed with C∗
11 = ΠC11Π

T , C∗
22 = C22, C∗

12 = ΠC12 +B12 where B12 ∈ Rk×(m−k)

is chosen to minimize ‖C∗
12 − C12‖F

subject to C∗ positive semidefinite. In other

words, we look for a matrix B with

B :=


 0 B12

BT
12 0


 (1.31)

and C∗ = CF + B such that the matrix C∗ is a correlation matrix having a top right

block C∗
12 which is nearest to C12.

Another approach is also to project the original matrix onto the set of positive

semidefinite matrices and to rescale the diagonal elements to 1 by multiplying a

diagonal matrix from both sides afterwards [29].

Unfortunately, all these methods have the problem that they are either too in-

accurate or inapplicable for a large dimension of the matrix G. Obviously, for this

reason our problem has recently been investigated quite frequently and other ap-

proaches have been proposed. However, the approach to solve the problem by means

of semidefinite programming techniques, for example to reformulate and solve it by

using the interior point method, has so far been unsuccessful. Higham [17, Section

3.3] outlined some reasons. He introduced some approaches using such techniques

and showed that they all suffer, mainly from either requiring too many variables or

involving too many constraints and, hence, that solving our problem with such tech-

niques becomes prohibitively expensive, especially for n large. An approach that may

be competitive is described in [3].

Higham [17] proposes an alternating projections method with correction due to

Dykstra to solve our problem. This method guarantees to converge to the nearest

correlation matrix with high accuracy, however, at best linearly. In other respects,

this method is quite flexible. So for example, variations of the problem can easily be
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adapted because the method is essentially based on carrying out only two projections

onto closed convex sets in each iteration. Therefore, we only have to introduce a fur-

ther projection in each iteration (potentially with a correction [17, Section 3.2]) which

projects onto a closed convex set which is due to our variations and the algorithm

is applied as before. Moreover, because of the procedure of alternating projections

the algorithm is fairly easy to code and it is particularly preferable if the matrix G

is highly rank deficient since the spectral properties of G are exploited.

The next two approaches are not as flexible as the last one, but they claim a faster

convergence. One of them is to apply a quasi-Newton method to the Lagrangian dual

function of the problem as proposed by Malick [23]. The other one, recently proposed

by Qi and Sun [27], is also based on the dual problem but, in contrast to the approach

of Malick, an inexact Newton method is applied to the dual function. Qi and Sun

proved the quadratic convergence for this approach and also provided an algorithm

which we focus our attention on in the next chapters and which we take as the basis

for our algorithm.

In the next chapter we point out the basic theoretical background of the approach

proposed by Qi and Sun. In Chapter 3 we introduce an algorithm to compute the

nearest correlation matrix by using this approach which is essentially the same as

the algorithm of Qi and Sun in [27, Algorithm 5.1]. We analyse and discuss possible

improvements to this algorithm in Chapter 4 and introduce our modified version in

Chapter 5. We perform some numerical tests in Chapter 6. Chapter 7 concerns the

alternating projections method: we introduce Higham’s method, discuss its variations

and perform relevant numerical tests. We draw our concluding remarks in Chapter 8.



Chapter 2

Theoretical Background

We now introduce the idea presented by Qi and Sun [27] to formulate a quadratically

convergent algorithm for (1.14) and outline the proof. Furthermore, we state all

notations and formulas which are important for the later chapters. Further details of

the proofs can be found in [27]. We start with the dual problem.

2.1 The Dual Problem

2.1.1 Dual Formulation

The dual problem to (1.14) is also a convex optimization problem which, unlike the

primal problem, is unconstrained and can be posed as

min
y∈Rn

θ(y) :=
1

2
‖(G + Diag(y))+‖2F − eT y. (2.1)

Here, Diag(y) is a linear operator which puts the entries of y on the diagonal of a

matrix which consists apart from that of zero elements. The operator (·)+ : Sn 7→ Sn
+

projects onto the set Sn
+ (see [17, Theorem 3.2]):

(C)+ := P




max (λ1, 0)

. . .

max (λn, 0)


 P T , (2.2)

where C is any symmetric matrix having the spectral decomposition

C = P Diag(λ)P T , (2.3)

25
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with P orthogonal and λ = (λ1, . . . , λn) the vector of eigenvalues. For the definition

of a projection operator onto closed convex sets see Definition 7.1.2 in Chapter 7.

Note that our underlying Hilbert space is now the Euclidean space Rn equipped with

the Euclidean inner product

〈x, y〉 := xT y for x, y ∈ Rn (2.4)

and the corresponding 2-norm

‖x‖2 :=
√

xT x for x ∈ Rn. (2.5)

2.1.2 Derivation of the Dual Problem

In this section we point out how to derive the dual problem (2.1) from the primal

problem (1.14). First we form the partial Lagrangian of our objective function in

(1.14), which is

L(X, y) :=
1

2
‖G−X‖2

F
− yT (diag(X)− e) for y ∈ Rn, X ∈ Sn

+ (2.6)

and transform it into the following expression (see [23], using properties of the inner

product 〈·, ·〉 of Definition 1.3.1)

L(X, y) =
1

2
‖(G + Diag(y))−X‖2

F
−

(
1

2
‖Diag(y) + G‖2

F
− 1

2
‖G‖2

F

)
+ yT e. (2.7)

Now we place (2.7) in the definition of the corresponding dual function which is

defined as

θ̃(y) := min
X∈Sn

+

L(X, y) (2.8)

and obtain with C := G + Diag(y)

θ̃(y) = min
X∈Sn

+

(
1

2
‖C −X‖2

F
− 1

2
‖C‖2

F
+

1

2
‖G‖2

F
+ yT e

)
, (2.9)

where only the first term depends on X. The minimizer of the first term is the

projection of C onto the set Sn
+ since this is one property of the projection operator
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(·)+ (see Definition 7.1.2). We have

θ̃(y) = min
X∈Sn

+

(
1

2
‖C −X‖2

F

)
− 1

2
‖C‖2

F
+

1

2
‖G‖2

F
+ yT e

=

(
1

2
‖C − (C)+‖2F

)
− 1

2
‖C‖2

F
+

1

2
‖G‖2

F
+ yT e

= −1

2
‖(C)+‖2F +

1

2
‖G‖2

F
+ yT e,

(2.10)

where the latter equality holds since

1

2

(‖C − (C)+‖2F − ‖C‖2F
)

=
1

2
(〈C − (C)+, C − (C)+〉 − 〈C,C〉)

= −〈C, (C)+〉+ 1

2
〈(C)+, (C)+〉

= 〈(C)+ − C, (C)+〉 − 1

2
〈(C)+, (C)+〉

= −1

2
‖(C)+‖2F ,

(2.11)

and where 〈(C)+ − C, (C)+〉 = 0 because a projected matrix onto a closed convex

cone is orthogonal to the difference of this matrix and its projection in the sense of

an inner product [18, Prop. 3.2.3].

Now, we can define our dual problem, which is

sup
y∈Rn

θ̃(y) (2.12)

and using (2.10) equivalent to

min
y∈Rn

θ(y) :=
1

2
‖(G + Diag(y))+‖2F − eT y, (2.13)

since 1
2
‖G‖2

F
is independent of y. For more details see [23].

2.1.3 Some Properties of the Dual Problem

The dual problem is well posed, a solution of the problem exists and is unique.

Furthermore, our dual function θ(y) has the following properties:

• θ is convex and continuously differentiable.

• The gradient ∇θ(y) is Lipschitz-continuous with the Lipschitz-constant 1.
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• The gradient is given by

∇θ(y) = diag(G + Diag(y))+ − e. (2.14)

We consider here only the second property. For all other derivations see [23]. In order

to prove the second property we anticipate the Lemma 7.3.1 which we state in a later

chapter when we consider projections onto closed convex sets more generally. This

lemma says that for any Y in a Hilbert space H with an inner product 〈·, ·〉 and the

corresponding norm ‖·‖

〈Y − PC(Y ), Z − PC(Y )〉 ≤ 0, ∀Z ∈ C (2.15)

with PC the projection operator onto a closed convex set C ⊂ H (see Definition

7.1.2). The subsequent lemma uses this property and proves that the projection

PC(·) is Lipschitz continuous with constant 1 [18, Proposition 3.1.3].

Lemma 2.1.1. Let C be a closed convex set of a Hilbert space H and PC : H 7→ C

the projection operator onto C. For all Y1, Y2 ∈ H it holds that

‖PC(Y1)− PC(Y2)‖ ≤ ‖Y1 − Y2‖ . (2.16)

Proof. Let Y1, Y2 ∈ H. From (2.15) with Z = PC(Y2) ∈ C we have that

〈Y1 − PC(Y1), PC(Y2)− PC(Y1)〉 ≤ 0 (2.17)

likewise,

〈Y2 − PC(Y2), PC(Y1)− PC(Y2)〉 ≤ 0. (2.18)

Adding (2.17) to (2.18) yields

〈Y2 − Y1 + PC(Y1)− PC(Y2), PC(Y1)− PC(Y2)〉 ≤ 0. (2.19)

By using the linearity of the inner product (see Definition 1.3.1) and applying the

Cauchy-Schwarz inequality (see Lemma 1.3.3) we obtain

‖PC(Y1)− PC(Y2)‖2 ≤ ‖PC(Y1)− PC(Y2)‖‖Y1 − Y2‖ (2.20)

which completes the proof.
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Note that the best Lipschitz constant is 1 because the projection of Y1, Y2 ∈ C onto

C is the element Y1 and Y2, respectively so that we obtain the equality in (2.16). The

remaining part is to show that ∇θ(y) is also Lipschitz continuous with the constant

1. Let y1, y2 ∈ Rn be arbitrary. We apply our Lemma 2.1.1 with H := Sn ⊂ Rn×n

and the inner product as defined in (1.6), C := Sn
+, PC(·) := (·)+ and obtain

‖∇θ(y1)−∇θ(y2)‖2 = ‖diag(G + Diag(y1))+ − diag(G + Diag(y2))+‖2
≤ ‖(G + Diag(y1))+ − (G + Diag(y2))+‖F

≤ ‖Diag(y1)−Diag(y2)‖F

≤ ‖y1 − y2‖2

(2.21)

which implies that ∇θ(y) is Lipschitz continuous with constant 1.

We know that we can find a solution y∗ of the dual problem but we have not

clarified yet that we can derive the solution of the primal problem X∗ from the

solution of the dual problem. Fortunately, by the subsequent Theorem 2.1.2 there is

no duality gap between the primal and the dual and we can indeed derive X∗ from

y∗.

Theorem 2.1.2. If y∗ is a solution of the dual problem (2.1) then

X∗ = (G + Diag(y∗))+ (2.22)

is the solution of the primal problem (1.14).

Proof. The proof consists of two parts. First, we show that

1

2
‖G−X‖2

F
≥ θ̃(y) (2.23)

for all y ∈ Rn and all X in the feasible set of the primal problem in (1.14), θ̃(y) is

defined as in (2.8). Second, we prove that the lower bound in (2.23) is reached and

is achieved at θ̃(y∗), we obtain that

θ̃(y∗) =
1

2
‖G−X‖2

F
(2.24)
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for an X. Furthermore, we prove that X = (G+Diag(y∗))+ and obtain our assertion.

Let y ∈ Rn and X be primal-feasible. Then

1

2
‖G−X‖2

F
=

1

2
‖G−X‖2

F
− yT (diag(X)− e)

= L(X, y) ≥ θ̃(y)

(2.25)

with L(X, y) as defined in (2.6) and the first part follows.

From (2.7) and the fact that the minimizer regarding the variable X in (2.7) is

the projection of G + Diag(y) onto the set Sn
+ we obtain that

X(y) := argminX∈Sn
+
L(X, y) = (G + Diag(y))+. (2.26)

Since y∗ is a solution of the unconstrained dual problem the gradient of θ(y) is zero

at y∗. Hence, (2.26) and (2.14) imply that

diag(X(y∗)) = e (2.27)

and thus that X(y∗) is primal-feasible. Finally, we have from (2.8) that

θ̃(y∗) := L(X(y∗), y∗) =
1

2
‖G−X(y∗)‖2F (2.28)

and hence the second part follows. That means the lower bound in (2.23) is reached

at X(y∗) and since X(y∗) is primal-feasible X(y∗) is the unique minimizer of the

primal problem.

2.2 Applying an Inexact Newton Method

Now we discuss solving the problem of finding a solution y∗ of the dual problem

numerically and construct a quadratically convergent method. Our target is to apply

an inexact Newton method to the dual function (2.1). Applying an inexact Newton

method to a function means we generate a sequence {xk} by applying a Newton

method to that function but that the required equation

Akdk = bk (2.29)
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is solved only inexactly. That is, we look for a dk ∈ Rn so that

‖Akdk − bk‖ ≤ η‖bk‖ with η ∈ (0, 1) (2.30)

where k is the iteration count, dk := xk+1−xk the step direction, bk ∈ Rn the negative

gradient and Ak ∈ Rn×n the second derivative of the objective function at xk. ‖·‖
denotes any norm in Rn.

However, a problem arises if we apply a Newton method to our dual function θ(y).

The second derivative of θ(y) does not exist since the operator (·)+ is not continuously

differentiable. Fortunately, this operator is strongly semismooth (see the definition

below) and Lipschitz continuous so that in order to tackle the problem, we use the

generalized Jacobian of our gradient function ∇θ(y) in the sense of Clarke in our

Newton iteration instead of the second derivative. Moreover, we aim at applying a

theorem which guarantees a quadratic convergence for such a Newton iteration in the

case of strongly semismooth functions.

2.2.1 Some Definitions and a Basic Theorem

Before introducing the mentioned theorem, we first provide some necessary defini-

tions. We start with the definition of the generalized Jacobian of a Lipschitz function

Φ : Rl 7→ Rm in the sense of Clarke.

Definition 2.2.1. Let Φ : Rl 7→ Rm be a (locally) Lipschitz function. Let DΦ be

the set of all ŷ ∈ Rl where the function Φ is differentiable. Then, the Jacobian of

Φ denoted by Φ′ exists at all ŷ ∈ DΦ. Since Φ is differentiable almost everywhere

according to Redemacher’s theorem [30, Section 9.J] we can define the Bouligand

subdifferential of Φ at all elements y ∈ Rl, which is the following set:

∂BΦ(y) := {V ∈ Rm×l : V accumulation point of Φ′(yk), where yk → y and yk ∈ DΦ}.

Our generalized Jacobian ∂Φ is then defined as:

∂Φ(y) := conv ∂BΦ(y),

where conv denotes the convex hull.
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Note that the generalized Jacobian is now a set. The next definition is required

to define the property of strongly semismoothness.

Definition 2.2.2. The function Φ : Rl 7→ Rm is said to be directionally differentiable

at y ∈ Rl if for any vector v ∈ Rl the limit,

lim
h→0

Φ(y + h · v)− Φ(y)

h

exists.

Now we clarify, as we mentioned above, what strongly semismooth means.

Definition 2.2.3. The function Φ : Rl 7→ Rm is said to be strongly semismooth at

y ∈ Rl if

• Φ is directionally differentiable at y and

• for any V ∈ ∂Φ(y + h),

Φ(y + h)− Φ(y)− V h = O(‖h‖2).

We present the theorem which we pronounced earlier and which is the basic the-

orem in the paper of Qi and Sun [27, Theorem 2.1].

Theorem 2.2.4. Let y∗ be a solution of Φ(y) = 0 and let Φ : Rl 7→ Rm be a Lipschitz-

function and strongly semismooth at y∗. If all V ∈ ∂Φ(y∗) are nonsingular then every

sequence {yk} generated by yk+1 = yk − V −1
k Φ(yk) with Vk ∈ ∂Φ(yk) converges to y∗

quadratically if y0 is sufficiently close to y∗.

2.2.2 Applying the Theorem to our Dual Function

To facilitate our analysis in the latter Section 2.2.1, we define

J(y) := diag((G + Diag(y))+) = ∇θ(y) + e (2.31)

and denote ∂J as the generalized Jacobian of J . Note that ∂J is also the generalized

Jacobian of ∇θ(y) since e is a constant and thus, we can use the set ∂J for our

Newton iteration.
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We know that J is Lipschitz continuous since ∇θ(y) is Lipschitz continuous (see

Section 2.1.3) and strongly semismooth (see [27] and references therein). However, in

order to apply this theorem (set Φ = J), we still need to prove that all V ∈ ∂J(y∗)

are nonsingular where y∗ is a solution of J(y) = 0. Moreover, we should be able

to compute at least one element or representative Vk ∈ ∂J(yk) for all k, in order to

construct a sequence like yk+1 = yk − V −1
k J(yk). Fortunately, we can prove that all

V ∈ ∂J(y∗) are nonsingular (see [27]) and we can find such a representative Vk in the

set ∂J(yk) for all k, which has even the property to be at least positive semidefinite

and to converge to a positive definite matrix for yk → y∗. This makes the theorem

applicable.

Furthermore, Qi and Sun [27] proved by means of Theorem 2.2.4 that the sequence

yk converges quadratically for yk sufficiently close to y∗ when we apply an inexact

Newton method only, i.e. we satisfy the following condition in each step:

‖∇θ(yk) + Vkdk‖2 ≤ ηk‖∇θ(yk)‖2 for ηk = min (η, ‖∇θ(yk)‖2) (2.32)

where η ∈ (0, 1) and dk := yk+1 − yk is our step direction.

Our representative Vy ∈ ∂J(y) is given implicitly by the following formula:

Vyh = diag
(
Py(Wy ◦ (P T

y HPy))P
T
y

)
(2.33)

where ◦ denotes the Hadamard product (X ◦ Y = (xijyij)), h is a vector in Rn and

H is the corresponding matrix given by H := Diag(h). Py is an orthogonal matrix

calculated by the spectral decomposition of G + Diag(y), i.e.

G + Diag(y) = Py Diag(λ(y))P T
y (2.34)

with λ(y) the vector of all eigenvalues and Wy is a constructed matrix which depends

only on the eigenvalues λ(y) as we describe below.

Let λ(y) be in descending order and define the sets α := {i : λi(y) > 0}, β := {i :

λi(y) = 0} and γ := {i : λi(y) < 0}. Then the matrix Wy is defined by

Wy :=




E|α|,|α| E|α|,|β| T|α|,|γ|
E|β|,|α| 0 0

T|γ|,|α| 0 0


 , (2.35)
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where E is the matrix of ones and T = (τij)
n
i,j=1 with τij ∈ (0, 1) for all i ∈ α

and j ∈ γ. The first index of E and T in Wy denotes the number of rows of the

corresponding matrix and the second the number of columns. Note that the values

of τij depend on the eigenvalues in λ(y).

To determine the matrix Vy explicitly, we could use h = ei in (2.33) for all i =

1, . . . , n, where ei is a vector with zeros except for the ith entry which is 1. However,

this would be expensive since we require O(n4) operations to compute this matrix (at

least 2 matrix-matrix products for each column for Vy). Hence, in order to determine

the direction dk in the inequality (2.32) we need to use a method which requires

matrix-vector products only.

We are now in the situation where we can construct a method which converges

quadratically if our yk is close to our solution y∗. We combine this method with a

line search strategy and use global convergence techniques leading to the algorithm

specified in the next chapter.



Chapter 3

The Newton Algorithm

3.1 The Newton Algorithm

The following algorithm applies an inexact Newton method to our dual function as

discussed in Chapter 2 and combines this with global convergence techniques. The

algorithm is essentially the same as the algorithm of Qi and Sun in [27, Algorithm

5.1]. For Qi and Sun’s implementation see Section A.1 of Appendix A.

Algorithm 1. Given a symmetric matrix G ∈ Rn×n this quadratically convergent

algorithm computes the nearest correlation matrix X to G in the Frobenius norm.

On termination ‖∇θ(yk)‖2 ≤ error tol (see (2.14) for the formula of ∇θ(y)) with

error tol the given error tolerance.

Step 1: Set the starting values: y0 ∈ Rn, η ∈ (0, 1), ρ, σ ∈ (0, 1/2) and k := 0.

Step 2: Calculate∇θ(yk). If ‖∇θ(yk)‖2 ≤ error tol compute X with (2.22) (y∗ :=

yk, X := X∗) and exit.

Step 3: Perform a spectral decomposition of G + Diag(yk) and compute the con-

structive matrix Wyk
defined by (2.35).

Step 4: Determine the new direction dk for the step k by applying an iterative

method (using formula (2.33) to compute Vkdk) to

Vkdk = −∇θ(yk) (3.1)

35
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such that the conditions

‖∇θ(yk) + Vkdk‖2 ≤ ηk‖∇θ(yk)‖2 for ηk = min (η, ‖∇θ(yk)‖2) (3.2)

and

− ∇θ(yk)
T

‖dk‖2
· dk

‖dk‖2
≥ ηk (3.3)

are satisfied. If either one of these conditions cannot be satisfied, let

dk := −B−1
k ∇θ(yk) (3.4)

where Bk is any symmetric positive definite matrix with {‖Bk‖2} and

{‖B−1
k ‖2} uniformly bounded.

Step 5: Choose an appropriate step length αk by applying Armijo backtracking:

find the smallest number mk ∈ N0 such that

θ(yk + ρmkdk)− θ(yk) ≤ σρmk∇θ(yk)
T dk (3.5)

is satisfied.

Step 6: Set αk := ρmk , yk+1 = yk + αkdk and k ← k + 1. Go to Step 2.

3.2 Convergence Analysis

To obtain a globally convergent algorithm, i.e. limk→∞∇θ(yk) = 0, we have to satisfy

the following three conditions [20], [24]:

• dk is a descent direction at every iteration.

• The angle between the negative gradient direction −∇θ(yk) and the direction

dk is bounded away from 90 degrees.

• The step length αk is chosen so that the step αkdk is not too small and the

descent in the function θ(y) is sufficient.
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In this algorithm, the inequalities (3.2) and (3.3) guarantee the first and the second

conditions. In the case of not satisfying one of the inequalities, the choice dk :=

−B−1
k ∇θ(yk) with {‖Bk‖2} and {‖B−1

k ‖2} uniformly bounded also guarantees these

conditions. The Armijo backtracking strategy makes sure that the third condition is

satisfied and, hence, Algorithm 1 is globally convergent. Furthermore, since θ(·) is

convex and {yk} is bounded, we also obtain that yk → y∗ as k goes to infinity. From

the fact that the projection (·)+ is Lipschitz continuous with a Lipschitz constant 1

by Lemma 2.1.1, we can deduce with Xk = (G + Diag(yk))+ (compare (2.26)) that

‖Xk −X∗‖F
= ‖(G + Diag(yk))+ − (G + Diag(y∗))+‖F

≤ ‖Diag(yk)−Diag(y∗)‖F

= ‖yk − y∗‖2

(3.6)

and we also obtain that Xk → X∗ as k →∞.



Chapter 4

Discussion of the Algorithm

4.1 Issues

We have implemented a modified version of Algorithm 1 in MATLAB starting with

an M-file obtained from the authors of [27] (see Section A.1 of Appendix A) which

contains the implementation of Algorithm 1. We state the modified version in Chap-

ter 5. We have changed the algorithm referring to some issues which we now discuss,

we consider some weaknesses and possible improvements of the obtained algorithm.

In substance, we pursue and discuss the following issues:

• Choosing ηk in inequality (3.2) and (3.3).

• Choosing the method for (3.1).

• Applying a preconditioner to (3.1).

• Using

‖∇θ(yk) + (Vk + εkIn)dk‖2 ≤ ηk‖∇θ(yk)‖2 , with εk = ‖∇θ(yk)‖2 (4.1)

instead of condition (3.2) or (3.4).

• What accuracy is achievable and how can it be improved.

• Choosing the method for the eigenvalue decomposition of G + Diag(yk) in Al-

gorithm 1.

38



CHAPTER 4. DISCUSSION OF THE ALGORITHM 39

• Strategies if the matrix G is nonsymmetric.

4.2 Regarding ηk in the First Inequality

To prove that Algorithm 1 is quadratically convergent, Qi and Sun use that ηk is

equal to the min (η, ‖∇θ(yk)‖2) with η ∈ (0, 1). However, in their implementation ηk

was set as constant with modulus 10−6 only. We change that fact according to the

theory and use

ηk := min (η, ‖∇θ(yk)‖2). (4.2)

To overcome the last concern determining a reasonable value of η, we follow the

suggestion of Nocedal and Wright in [24], who use 0.5 as the maximum value for ηk

in a line search Newton-CG method.

4.3 Choosing the Appropriate Method

4.3.1 Reasons for Considering Different Methods

To determine a direction dk which satisfies the condition (3.2), Qi and Sun use the

unpreconditioned conjugate gradient method. However, this can lead to some prob-

lems. For example, the conjugate gradient method does not reduce the residual

rk := ∇θ(yk) + Vkdk in every iteration in general and in addition the residual can

oscillate, especially if no preconditioner is used. Another problem is that the matrix

Vk can be positive semidefinite only and consequently the conjugate gradient method

can fail to find a direction dk in (3.2). Further details are given in the next section.

This motivates us to investigate other methods that use only matrix-vector prod-

ucts. We introduce five other methods and point out the pros and cons of the methods

and perform tests in Section 6.3.

All methods are iterative methods which use only matrix-vector products and,

likewise, their convergence behaviour can be improved enormously by using a pre-

conditioner. Note that all specifications of storage and required flops are without
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preconditioning in the subsequent sections.

4.3.2 CG

The linear conjugate gradient (CG) method is an iterative method that was proposed

by Hestenes and Stiefel in the 1950s and is used for solving a linear system Ax = b

with A ∈ Rn×n symmetric positive definite.

This method generates a basis of A-conjugate vectors pk that span a Krylov-

subspace

K(r0, A, k + 1) = span{r0, Ar0, · · · , Akr0} = span{p0, . . . , pk} = span{r0, . . . , rk}

where rk = Axk − b is the residual and is orthogonal to K(r0, A, k). The index

k denotes the current iteration count. The corresponding linear coefficients αk are

chosen to minimize 1
2
xT

k Axk − bT xk with xk =
∑k

i=0 αipi, which is equivalent to

minimizing the energy norm

‖Axk − b‖
A−1 =

√
(Axk − b)T A−1(Axk − b)

over xk.

In exact arithmetic, this method converges after n iterations at the latest since the

generated vectors pk are linearly independent (note that all subsequent methods have

this property, if we consider here RGMRES as GMRES). However, in finite precision

arithmetic the method should be regarded as a genuinely iterative technique with a

termination based on the residual norm, since rounding errors cause loss of linear

independence among the vectors pk.

This method is mathematically equivalent to generating a sequence of symmetric

tridiagonal matrices Tk = QT
k AQk by means of the Lanczos process with Lanczos

vectors Qk = (q1, . . . , qk) (equivalent to normalized rk in CG) and carrying out an

LDLT (Cholesky) factorization of these matrices to solve the system.
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Pros Cons

• Solves systems for large and sparse

matrices A efficiently.

• Method defined for A symmetric

positive definite.

• Requires one matrix-vector product

and only 10n flops per iteration.

• If the matrix is not positive definite

then solving Ax = b can fail or un-

defined CG points xk possible (see

more details in [26]).

• Requires little storage. • No monotonic convergence of the se-

quence of the norms of the residu-

als ‖Axk − b‖2 in general, thus the

residual norm can oscillate wildly.

4.3.3 SYMMLQ

The SYMMLQ is an iterative method based on the Lanczos process for solving linear

systems with a symmetric matrix A and was first proposed by Paige and Saunders

[26]. This method is similar to the conjugate gradient method. The main difference

is that this method is mathematically equivalent to carrying out an LQ factorization

of the symmetric tridiagonal matrices Tk (see Section 4.3.2). This allows the use of

matrices A which are also indefinite.
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Pros Cons

• Suitable for sparse general symmet-

ric matrices A.

• Less efficient in comparison to CG if

the matrix A is positive definite.

• SYMMLQ more suitable for singu-

lar or, in finite precision arithmetic,

nearly singular matrices than CG

since this method is numerically sta-

ble for indefinite systems.

• No monotonic convergence of the se-

quence of the norms of the residuals

‖Axk − b‖2 in general.

• CG iterate xCG
k can be recovered

from the SYMMLQ iterate xk.

• Requires two inner products, five

vector updates and one matrix-

vector product at each iteration (ap-

proximately 12n + 2n2 flops).

4.3.4 MINRES

This method was also proposed by Paige and Saunders in [26] and is the first method

to be introduced which minimizes the residual norm ‖rk‖2 = ‖Axk − b‖2 in every

iteration monotonically. Based on the Lanczos process a sequence of symmetric tri-

angular matrices Tk is also generated. Furthermore, this method is mathematically

equivalent to carrying out a QR factorization of Tk. The matrix A can be symmetric

positive definite or indefinite.

We minimize

‖Axk − b‖2 (4.3)

over the set of the Lanczos-vectors span{q1, . . . , qk} with xk = x0 +
∑k

i=1 αkqk where

x0 is the initial guess.
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Pros Cons

• Suitable for sparse general symmet-

ric matrices A.

• Does not give as accurate results as

SYMMLQ for ill-conditioned A (see

[26]).

• MINRES more suitable for singu-

lar or, in finite precision arithmetic,

nearly singular matrices than CG.

• If we use a preconditioner we do not

have the residual norm ‖Axk − b‖2
available without an additional

computation, we only have the fol-

lowing energy norm ‖Axk − b‖
M−1 =

√
(Axk − b)T M−1(Axk − b) where

M is the preconditioning matrix, see

[7, Section 6.1].

• Reduces the norm of the residual

monotonically.

• Requires slightly more work than

CG, requiring 2 inner products, five

vector updates and 1 matrix-vector

product at each iteration (approxi-

mately 14n + 2n2 flops).

• CG iterate xCG
k can be recovered

from the MINRES iterate xk.

• Can take fewer iterations than CG.

4.3.5 RGMRES

The restarted generalized minimum residual method (RGMRES) was proposed by

Saad and Schultz [31] and can be seen as a generalization of the MINRES algorithm.

It solves the system Ax = b for A ∈ Cn×n sparse general and non-Hermitian. The

residual norm ‖b− Axk‖2 is minimized for xk in the set

S = x0 + span{q1, . . . , qk}
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in every iteration, where x0 is the initial value of the generated sequence {xi}ki=1 and

q1, . . . , qk are vectors generated by Arnoldi’s method. Unfortunately, generating the

orthogonal basis q1, . . . , qk can require a ‘long’ recurrence since the matrix A can be

not real and nonsymmetric. Actually, instead of generating a triangular matrix as

in MINRES it produces an upper Hessenberg matrix. Hence, the computational and

storage costs can become prohibitive. Therefore, in the RGMRES method (differ-

ence to GMRES) a restarting strategy is used, where the iterate xm of a GMRES

sequence computed after m iterations is taken as initial value for the next GMRES se-

quence. The value of m is to specify in advance. See more details in [12], [31] and [25].

Pros Cons

• Suitable for complex sparse general

and non-Hermitian matrices A.

• The value of m is chosen in advance

and the optimal value cannot be pre-

dicted easily.

• Reduces the norm of the residual

monotonically at least in each GM-

RES sequence.

• The choice of m depends on the

problem.

• The GMRES sequence cannot break

down.

• Can stagnate or converge slowly if m

is too small.

• RGMRES converges for all choices of

m if the matrix A is positive real,

in other words, the symmetric part

of the matrix A has strictly positive

eigenvalues.

• RGMRES requires (m+3+1/m)n+

nz flops (we assume that flops corre-

spond with the multiplication opera-

tions in [31]) per iteration on average

and a storage of m+2 vectors of the

length n, where nz denotes the num-

ber of nonzero elements of the matrix

A.

• GMRES cannot perform better than

MINRES for symmetric matrices in

general.
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4.3.6 BI-CGSTAB(`)

The bi-conjugate gradient stabilized method (BI-CGSTAB) (`) proposed by Van der

Vorst is a modification of the BCG (bi-conjugate gradient method) and solves systems

Ax = b with A ∈ Cn×n a sparse general and non-Hermitian matrix. In the BCG

method for solving Ax = b, two sequences of vectors {ri}ki=0 and {r̂i}ki=0 are generated

by means of an unsymmetric Lanczos process such that

span{r0, . . . , rk} = K(r0, A, k + 1),

span{r̂0, . . . , r̂k} = K(r̂0, A
∗, k + 1)

with A∗ = ĀT and

r̂∗j ri =





0 if i 6= j

di 6= 0 if i = j

(bi-orthogonality) and the iterate xk is computed by xk = x0+Qkyk. rk is the residual

Axk − b, r̂0 is any vector and k again denotes the current iteration count. Let Qk :=

(r1, . . . , rk) and R̂ := (r̂1, . . . , r̂n) then Tk = R̂∗
kAQk is a triangular matrix and yk is

the solution of Tkyk = Q∗
kr0 which is computed by carrying out an LU-factorization.

This procedure is done by a recursion over the iterations, i.e. rk and xk can be updated

from its predecessor in each iteration. Note that di = 〈r̂i, ri〉 = 〈Pi(A
∗)r̂0, Pi(A)r0〉

is required in the course of iterations and thus, A∗ is needed to compute r̂i where

ri = Pi(A)r0 and r̂i = Pi(A
∗)r̂0 for Pi a polynomial of degree i generated by the

Lanczos process.

In the BI-CGSTAB(`) method, we do not require A∗. We generate a sequence

{r̃i}ki=1 = {Qi(A)Pi(A)r0}ki=0 derived from the idea that di = 〈Pi(A
∗)r̂0, Pi(A)r0〉 =

〈r̂0, Pi(A)Pi(A)r0〉 and substituting the first polynomial Pi(A) in the second argument

by a polynomial Qi(A) of degree i. That is, d̃i = 〈r̂0, Qi(A)Pi(A)r0〉 where Qi(A) is

chosen to minimize the new residual r̃i. This procedure is also done by recursion.

The value of ` gives the order over which the polynomial Qi(A) is minimized in `

iterations. See [35] and [32] for the whole derivation and the algorithm.
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Pros Cons

• Suitable for complex sparse general

and non-Hermitian matrices A.

• Does not minimize the residual norm

monotonically.

• Requires in the simple form [35, Fig-

ure 9.1.] 2 matrix-vector products,

12n flops for vector updates and 2

inner products.

• BI-CGSTAB can break down since

the unsymmetric Lanczos-process

can break down.

• 7 vectors are required to be stored. • Can converge considerably slower

than CGS.

• Does not require a matrix-vector

product with A∗.

• More robust in term of rounding

errors and overflow than the CGS

method (which is similar to BCG but

generates residual vectors of the form

r̄i = Pi(A)2r0).

• Converges more smoothly than CGS.

4.3.7 TFQMR

The transpose-free quasi-minimal residual method of Freund and Nachtigal [9] solves

a linear system Ax = b with A ∈ Cn×n sparse and non-Hermitian and is a modifica-

tion of the CGS method (which is similar to BCG but generates residual vectors of

the form r̄i = Pi(A)2r0). In contrast to CGS, the iterates xk are chosen to minimize

the norm of a part of the residual (quasi minimization property). Note that this

method is not mathematically equivalent to QMR (Quasi minimal residual method).

For more details see [9], [10], [32] and [25].
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Pros Cons

• Suitable for complex sparse general

and non-Hermitian matrices A.

• TFQMR in the form described in [10]

can break down since the unsymmet-

ric Lanczos-process can break down.

• Almost monotonic convergence

curves in the residual norms, iter-

ates xk satisfy a quasi-minimization

property.

Most of the breakdowns can be

avoided by using look-ahead variants

of the Lanczos process.

• Converges at least as fast as CGS in

terms of iterations.

• Remedies the rather irregular con-

vergence behaviour of CGS in the

residual norm.

• Requires roughly the same work and

storage per iteration as BI-CGSTAB

and CGS.

• Bounds for the residuals are essen-

tially the same as the bounds for

GMRES.

4.4 Using a Preconditioner

4.4.1 The Idea of a Preconditioner

The idea of preconditioning is to transform the system Ax = b without significantly

more additional cost into another system Âx̂ = b̂ so that Â is well conditioned or

has clustered eigenvalues, which leads to a better convergence of an iterative method.

Consider for example the following convergence bound which can be derived for the
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MINRES method ([7, Section 2.4]):

‖rk‖2
‖r0‖2

≤ min
pk∈Πk,pk(0)=1

max
j
|pk(λj)| (4.4)

where rk is the residual, Πk the set of all polynomials of degree at most k and λj are

the eigenvalues of A. This shows clearly why clustering the eigenvalues of A leads

to better convergence results, because the minpk∈Πk,pk(0)=1 maxj |pk(λj)| will become

small already for small k if the eigenvalues are close together.

In the iterative methods of Section 4.3 for A symmetric, Â, b̂ and x̂ are usually

chosen as Â = C−1AC−T , x̂ = CT x and b̂ = C−1b with C nonsingular so that

Â = C−1AC−T is well conditioned and so that the system My = d with M = CCT

and y, d ∈ Rn is easily solvable. Note that using the preconditioner requires only

the additional cost of solving the system My = d at every iteration. M defines our

preconditioner.

In all methods for A nonsymmetric, a matrix M nonsingular is chosen, where M

defines our preconditioner again, so that we obtain the same conditions as in the

symmetric case, however, with Â = M−1A, x̂ = x and b̂ = M−1b. Here, using the

preconditioner also requires the additional cost of solving the system My = d.

4.4.2 Our Choice of Preconditioner

In order to use a preconditioner for our matrix Vk, we need some information about

the matrix. Consider our formula for Vk again.

Vkh = diag(Pk(Wk ◦ (P T
k HPk))P

T
k ). (4.5)

As can be seen in (4.5), the matrix Vk is given implicitly only and computing the whole

matrix, e.g. in order to be able to apply an incomplete Cholesky preconditioner, by

means of the approach described in Chapter 2, is extremely expensive and therefore,

for our purpose rather inefficient. Hence, we restrict our determination of the elements

of the matrix Vk to the diagonal elements only and it turns out that this can be done

quite efficiently (see below). Hence, we pursue the approach to rescale the diagonal

elements of Vk to 1 and apply a preconditioner which is a diagonal matrix and has
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simply these diagonal entries. In other words, we define our preconditioner as

Mk := Diag(diag(Vk)). (4.6)

Note that such a preconditioner is called a Jacobi preconditioner.

Referring to improving the convergence behaviour when applying the precondi-

tioner Mk, we are motivated by the corollary in [16, Corollary 7.6] which says this:

Lemma 4.4.1. Let A ∈ Rn×n be a symmetric positive definite matrix and D∗ =

diag (a
−1/2
ii ) the matrix which scales the diagonal of A to 1 by applying D∗AD∗. Then

κ2(D∗AD∗) ≤ n min
D∈Dn

(κ2(DAD)) (4.7)

with κ = ‖A‖2‖A−1‖2 and Dn the set of diagonal matrices in Rn×n.

Fortunately, our matrix Vy (see (2.33)) is always symmetric positive semidefinite

and converges to a positive definite matrix (all diagonal elements are positive for k

sufficiently large since eT
i Vyei > 0 ∀i), which can be proved by using a similar deriva-

tion for Vij and Vji to the derivation of Vii below. Hence we satisfy the conditions

of Lemma 4.4.1 for all k sufficiently large, the upper bound of Lemma 4.4.1 applies

to our suggested preconditioner (4.6). This does not imply that the convergence

behaviour improves. However, if we consider for instance a diagonal matrix with dif-

ferent values on the diagonal then our matrix will become the identity when we apply

our preconditioner and thus our preconditioner will indeed improve the convergence

behaviour and will cluster the eigenvalues. We test our preconditioner in Section

6.3. Note that if the matrix is only positive semidefinite one diagonal element can

be zero. Theoretically, in such a case we cannot apply our Jacobi preconditioner but

numerical rounding errors often allow it nevertheless.

Now we consider how we can compute our diagonal. Obviously, computing the

diagonal by applying the formula (4.5) directly, using H = eie
T
i , ∀i = 1, . . . , n is

rather impractical because for every diagonal element at least 1 matrix-matrix multi-

plication is required. Hence, computing the whole diagonal needs O(n4) operations.

Fortunately, we can find another approach. Let h = ei, the corresponding matrix
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H = eie
T
i for i ∈ {1, . . . , n} and P T

k = [p1p2 . . . pn]. Then the diagonal element of Vk

located in the ith column and ith row is given by (compare with (4.5))

vii = eT
i Pk(Wk ◦ P T

k HPk)P
T
k ei

= pT
i (Wk ◦ pip

T
i )pi.

(4.8)

Now we can apply [19, Lemma 5.1.2] to our last term and obtain

vii = pT
i Diag(pi)Wk Diag(pi)pi

= qT
i Wkqi,

(4.9)

where qi ∈ Rn with qi(j) = pi(j)
2 for all j = 1, . . . , n. From

Lk = Wk[q1q2 . . . qn]

= WkQk (2n3 flops)
(4.10)

where Qk = Pk ◦ Pk (n2 flops), our diagonal element vii can then computed by

vii = qT
i li for all i = 1, . . . , n (2n2 flops). (4.11)

This computation requires 1 matrix-matrix multiplication plus computations with

operation counts which are all of order n2 only. Moreover, the whole computation

is vectorizable and, consequently, our diagonal can be computed quite efficiently.

Furthermore, note that the structure of the matrix Wk can be exploited when we

multiply this matrix with Qk since Wk contains zero and eeT blocks — see (2.35).

We apply this preconditioner in our tests in Section 6.3.

Note that a preconditioner must be positive definite. Thus we set all entries

of the diagonal that are less than a predefined tolerance to our tolerance in our

preconditioner.

4.5 Choosing ηk in the Second Inequality

In principle, the value of ηk in the inequality (3.3) can be chosen independently of the

ηk in the inequality (3.2). In order to avoid confusion, we rename the ηk in inequality

(3.3) to ϕk first so that (3.3) becomes

∇θ(yk)
T dk ≤ −ϕk‖dk‖22 . (4.12)
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We show now that the value of

ϕk := min (ϕ, ‖∇θ(yk)‖m2 ) with ϕ constant and ϕ ∈ (0, 1) (4.13)

for any nonnegative integer m is sufficient to satisfy the two conditions on the global

convergence linked with the second inequality (3.3). Recall that these two con-

ditions are a descent direction in each iteration and that the descent direction is

gradient-related (the angle between descent direction and negative gradient direction

is bounded away from 90 degrees).

Let ϕk = min (ϕ, ‖∇θ(yk)‖m2 ). Then, obviously inequality (4.12) guarantees that

dk 6= 0 (dk can be assumed to be nonzero because of (3.2)) is a descent direction since

∇θ(yk)
T dk ≤ −ϕk‖dk‖22 < 0. (4.14)

We show that the second condition is also satisfied. Let αk be the angle between the

descent direction dk and the negative gradient direction. To arrive at a contradiction,

assume that cos(αk)→ 0 as k →∞ and that ‖∇θ(yk)‖2 6→ 0 as k →∞. We have

cos(αk)‖∇θ(yk)‖2 = −∇θ(yk)
T dk

‖dk‖2
≥ ϕk‖dk‖2 .

(4.15)

Since the function θ(y) is convex and bounded below and we have a descent direction

at every iteration which follows from (4.14), {‖∇θ(yk)‖2} is also bounded and thus

we conclude from (4.15) that

‖dk‖2 k→∞→ 0 or ϕk
k→∞→ 0 for m > 0 .

Hence, dk → 0 or ϕk → 0 as k → ∞ for m > 0. If ϕk → 0, it follows immediately

from Definition 4.13 that ‖∇θ(yk)‖2 also goes to zero if m > 0 and we obtain the

contradiction. If dk → 0, Vkdk also goes to zero in (3.2) and since ηk is always strictly

less than 1 in this inequality, ‖∇θ(yk)‖2 must converge to zero because otherwise

there exists k so that

‖∇θ(yk) + Vkdk‖2 > ηk‖∇θ(yk)‖2 for ηk < 1 (4.16)
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and this is a contradiction to the computed direction dk which satisfies the inequality

(3.2). Hence we also obtain our contradiction in this case. Note that our proof

includes ϕk := ϕ (take m = 0) but this choice can slow down the convergence of

Algorithm 1 since then we do not guarantee that the inequality in (4.13) is satisfied

for all k large which is necessary for a quadratic convergence assuming that Bk is

the identity for example. Furthermore, it is advisable to use m less than 2 because

otherwise ϕk can become numerically zero and thus infeasible directions would not

be refused by the inequality (4.12).

Based on the theory (Taylor series), taking the inexact Newton direction leads to

a faster convergence than choosing the steepest descent direction. However, comput-

ing the Newton direction is in general more expensive than computing the gradient

direction as in our problem so that for the first steps, where yk is far from the solution,

the gradient direction can be preferable. Since the test results in Section 6.2 have

shown that using the inexact Newton direction is also preferable for the first steps,

we choose the constant ϕ small and m = 1, in order not to slow down the convergence

rate of the algorithm and nevertheless to guarantee the global convergence.

4.6 Using a Shifting Factor

Theoretically, the problem of finding a dk satisfying the inequality (3.2) might not be

solvable since far from the solution the matrix Vk can only be positive semidefinite, i.e.

the matrix Vk is singular and no direction dk satisfying the inequality (3.2) exists. We

take the steepest descent direction in this case but this can lead to slower convergence.

The idea is now to shift the eigenvalues of the matrix Vk by adding a multiple of the

identity In so that the matrix becomes positive definite. That is,

Ṽk := Vk + εkIn. (4.17)

Thereby, we actually press the direction dk more to the steepest descent direction.

Using this shifted matrix guarantees that we always find a direction dk which solves

the inequality ‖∇θ(yk) + Ṽkdk‖2 ≤ ηk‖∇θ(yk)‖2 . However, the question arises which
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convergence rate can be obtained and how to choose εk. We deduce the subsequent

theorem from the proof of Qi and Sun in [27, Theorem 5.3].

Theorem 4.6.1. If εk is chosen as

εk := min (ε, ‖∇θ(yk)‖2) with ε ∈ (0, 1) (4.18)

then Algorithm 1 with Vk := Vk + εkIn converges to the solution y∗ quadratically if yk

is close to the solution.

Proof. Since all conditions for the global convergence are still guaranteed (compare

with Section 3.2) we have that

lim
k→∞
∇θ(yk) = 0 (4.19)

and yk → y∗ with ∇θ(y∗) = 0. Hence, we also obtain that {‖Ṽ −1
k ‖2 : k ≥ 0}

is uniformly bounded with Ṽk := Vk + εkIn since the matrix Vk is always positive

semidefinite and converges to a positive definite matrix. This implies that the iterative

method can always find a direction which satisfies the inequalities (3.2) and for k

sufficiently large also (3.3) (Vk substituted by Ṽk now). Hence, since∇θ(y) is Lipschitz

continuous and by Theorem 2.2.4 we obtain for all k sufficiently large that

‖yk+1 − y∗‖2 = ‖yk + dk − y∗‖2
= ‖yk + Ṽ −1

k [(∇θ(yk) + Ṽkdk)−∇θ(yk)]− y∗‖2
= ‖yk − y∗ − Ṽ −1

k ∇θ(yk)‖2 + ‖Ṽ −1
k (∇θ(yk) + Ṽkdk)‖2

≤ ‖Ṽ −1
k ‖2‖∇θ(yk)−∇θ(y∗)− Ṽk(yk − y∗)‖2 + ‖Ṽ −1

k ‖2ηk‖∇θ(yk)‖2
≤ ‖Ṽ −1

k ‖2
(
‖∇θ(yk)−∇θ(y∗)− Vk(yk − y∗)‖2 + ‖εk(yk − y∗)‖2

)

+ ‖Ṽ −1
k ‖2‖∇θ(yk)‖22

≤ O (‖yk − y∗‖22
)

+ ‖Ṽ −1
k ‖2‖∇θ(yk)‖2‖yk − y∗‖2

+ ‖Ṽ −1
k ‖2‖∇θ(yk)−∇θ(y∗)‖22

≤ O (‖yk − y∗‖22
)

+ 2‖Ṽ −1
k ‖2‖∇θ(yk)−∇θ(y∗)‖2‖yk − y∗‖2

≤ O (‖yk − y∗‖22
)

+ 2‖Ṽ −1
k ‖2‖yk − y∗‖22

≤ O (‖yk − y∗‖22
)
.

(4.20)



CHAPTER 4. DISCUSSION OF THE ALGORITHM 54

Now we show that the step length 1 is indeed taken for all k sufficiently large. From

(4.20) and the fact that yk → y∗ we obtain that for all k sufficiently large

‖yk − y∗‖2 = ‖yk − yk+1 + yk+1 − y∗‖2
≤ ‖dk‖2 + ‖yk+1 − y∗‖2
≤ ‖dk‖2 +O(‖yk − y∗‖22)

(4.21)

and that

‖dk‖2 → 0 as k →∞. (4.22)

(4.21) implies that

‖yk − y∗‖2 ≤ ‖dk‖2 +O (‖dk‖22
)
. (4.23)

Now let rk := ∇θ(yk) + Vkdk + εkdk then for all k sufficiently large

−∇θ(yk)
T dk = 〈dk, Vkdk〉+ εk‖dk‖22 − 〈dk, rk〉

≥ 〈dk, Vkdk〉+ εk‖dk‖22 − ‖dk‖2‖rk‖2
≥ 〈dk, Vkdk〉+ εk‖dk‖22 − ηk‖dk‖2‖∇θ(yk)‖2
≥ 〈dk, Vkdk〉+ εk‖dk‖22 − ‖dk‖2‖∇θ(yk)‖22
≥ 〈dk, Vkdk〉+ εk‖dk‖22 − ‖dk‖2‖yk − y∗‖22

(4.24)

with 〈·, ·〉 the inner product corresponding to ‖·‖2 . From (4.22), (4.23) and (4.24) it

follows that there exists ρ > 0 so that for all k sufficiently large

−∇θ(yk)
T dk ≥ ρ‖dk‖22 . (4.25)

Since the inequality (4.25) holds, by [27, Lemma 5.1] the Armijo condition can be

satisfied for the step length 1 for all k sufficiently large, i.e. yk+1 = yk +dk is accepted

by Algorithm 1 for all k sufficiently large. Hence, from (4.20) we obtain our assertion.

We perform some tests by means of examples in Section 6.2, in order to determine

the influence of this choice.
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4.7 Achievable Accuracy

In this section, we introduce some crucial points of Algorithm 1 which lead to a

restriction to the smallest achievable value of ‖∇θ(yk)‖2 in the course of iterations

and thus to a restriction of the final accuracy of the output matrix X compared with

X∗. Moreover, we discuss improvements or possibilities to reduce this restriction.

4.7.1 Armijo Backtracking Rule

The Problem

The Armijo backtracking rule can cause numerical problems if the difference of θ(yk +

ρmkdk) and θ(yk) is small relative to the value of θ(yk). In order to show this and how

it mirrors the smallest achievable value of ‖∇θ(yk)‖2 , we proceed from the assumption

that θ(y) is twice continuously differentiable. Furthermore, let the iterate yk be given

and let εA be such that

∀ỹ ∈ Rn with |θ(ỹ)− θ(yk)| ≤ εA, fl (θ(ỹ)) = fl (θ(yk)) (4.26)

and denote the set of ỹ which satisfy the condition (4.26) by D. Let yk+1 := yk +

ρmkdk ∈ D. That means θ(yk+1) and θ(yk) are so close together that they have

the same value in machine arithmetic and thus the left-hand side of the Armijo rule

becomes numerically zero. In this case, the Armijo inequality cannot be satisfied

potentially, even for mk large, consequently we stop the backtracking with mk equal

to the maximum inner iteration number. Hence our step ρmkdk can also become

numerically zero and we end up in an infinite outer loop until we reach the maximum

permitted number of iterations.

When the Problem Occurs

Our target is now to find a lower bound for ‖∇θ(yk)‖2 when the problem described

above can occur so that we can estimate the smallest value of ‖∇θ(yk)‖2 which can

possibly be achieved with this algorithm. See also [11, Section 8.2.2].
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We set |θ(yk+1)− θ(yk)| = εA and let p := ρmkdk/‖ρmkdk‖2 and τ = ‖ρmkdk‖2 for

simplicity. We expand θ(y) about yk in a Taylor series and obtain the following for

yk+1 = yk + τp:

θ(yk+1) = θ(yk) + τ∇θ(yk)
T p +

1

2
τ 2pT H(yk)p +O(τ 3), (4.27)

with H(y) the Hessian of θ(y). We suppose that τ is small, which leads to

|θ(yk+1)− θ(yk)| ≈
∣∣∣∣τ∇θ(yk)

T p +
1

2
τ 2pT H(yk)p

∣∣∣∣ . (4.28)

Similarly, we expand ∇θ(y) about yk and obtain

∇θ(yk+1) ≈ ∇θ(yk) + τH(yk)p. (4.29)

Multiplying (4.29) on the left by 1
2
τpT and substituting in (4.28) results in

|θ(yk+1)− θ(yk)| ≈
∣∣∣∣τ∇θ(yk)

T p +
1

2
τ∇θ(yk+1)

T p− 1

2
τ∇θ(yk)

T p

∣∣∣∣

=

∣∣∣∣
1

2
τ (∇θ(yk) +∇θ(yk+1))

T p

∣∣∣∣

≤ 1

2
τ‖∇θ(yk) +∇θ(yk+1)‖2 .

. (4.30)

Using (4.29) again to obtain an approximation for τ leads to

εA ≤ ‖−∇θ(yk) +∇θ(yk+1)‖2 · ‖∇θ(yk) +∇θ(yk+1)‖2
2‖H(yk)p‖2

. (4.31)

Let p now be additionally a linear combination of the eigenvectors of H(yk) corre-

sponding to an eigenvalue λ. Then from (4.31) we obtain that

εA / ‖∇θ(yk)‖22
‖H(yk)p‖2

≈ ‖∇θ(yk)‖22
λ

(4.32)

and thus the following approximate lower bound for ‖∇θ(yk)‖2

‖∇θ(yk)‖2 ≥
√

εAλ. (4.33)

Note that the value of θ(y) (see (2.1)) can become greater than 1 since the positive

eigenvalues of G + Diag(y), which can be greater than 1, are involved quadratically

and thus the first term can dominate over the second. Hence, εA tends to be greater

than the machine epsilon. The value of λ is in the range (0, 1] (consider the 2-norm of
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Vyh in (2.33)) if we treat our generalized Jacobian Vy of ∇θ(y) as a second derivative

of θ(y).

Therefore, if we assume that εAλ is about the value of the machine epsilon, say

10−16, then we get into difficulties with the Armijo rule at the latest when ‖∇θ(yk)‖2
reaches the range of

√
εAλ ≈

√
10−16 = 10−8. Consequently, we cannot use an

error tol (see Algorithm 1) less than 10−8 and expect the Armijo rule to return a

reasonable step length.

Note that this derivation applies to any function f : Rm 7→ R that is twice

differentiable, the described problem is a general problem of the Armijo backtracking

rule.

Approaches to Overcome the Problem

The fact that the alternating projections method by Higham in [17] converges for

small values of error tol and that this method is equivalent to the gradient method

(yk+1 = yk −αk∇θ(yk), with αk := 1) proved in Theorem 5.1 in [23], gives us reasons

to pursue other strategies and one idea to overcome the problem, in order to obtain

a smaller value of ‖∇θ(yk)‖2 and thus, a more accurate solution.

In the case of having a distance between θ(yk+1) and θ(yk) less then εA, we could

deactivate Armijo backtracking and use a constant step size. Bertsekas provides in

[4, Proposition 1.2.3] a constant step size that guarantees convergence.

Theorem 4.7.1. Let f : Rk 7→ R be a continuously differentiable function. Further-

more, let {xk} be a sequence in Rk generated by a gradient method xk+1 = xk +αkdk,

where the angle between the gradient of f at xk and the step direction dk is bounded

away from 90 degrees. Assume that the gradient function ∇f(x) is Lipschitz contin-

uous with a Lipschitz constant L and that there exists a scalar ε such that for all k

we have dk 6= 0 and

0 < ε ≤ αk ≤
(2− ε)

∣∣∇θ(yk)
T dk

∣∣
L‖dk‖22

. (4.34)

Then every the limit point of {xk} is a stationary point of f .

Hence, since L = 1 in our case (consider f = θ) we obtain convergence for any
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αk ∈ (0, 2) for the steepest descent direction. This includes the gradient method

of Malick in [23]. In addition, this issue can also be used if we do not satisfy the

inequality of (3.2), we skip the Armijo condition and use the steepest descent direction

with a constant step size.

If we use the inexact Newton direction then we get immediately a lower bound

for the right-hand side of (4.34) by using the inequality (4.12) which is (2 − ε)ϕk.

However, ϕk is small, in particular for k large thus the range of a feasible step length

is also small and choosing an inexact Newton direction can become disadvantageous.

Assuming that we solve the equality (3.1) exactly leads to another lower bound

for the right-hand side of (4.34). Consider

∣∣∇θ(yk)
T dk

∣∣
‖dk‖22

=

∣∣dT
k Vkdk

∣∣
‖dk‖22

= |λ| ≤ ‖Vk‖2 ≤ 1 (4.35)

with λ the eigenvalue of Vk corresponding to dk and ∇θ(yk) := −Vkdk (consider for

‖Vk‖2 ≤ 1 the 2-norm of Vyh in (2.33)). We obtain that the right-hand side of (4.34)

is equal to (2−ε)λ which is less than 2 and can also become clearly less than 2. Unfor-

tunately, the latter fact was confirmed by some numerical tests (not included in the

numerical tests in Chapter 6) so that choosing our feasible step length αk according

to Theorem 4.7.1 for our inexact Newton direction could still be disadvantageous.

Another approach to overcome the problem of the Armijo rule proceeds from the

assumption that we reach a neighbourhood close to the solution when |θ(yk+1)− θ(yk)|
is small so that we can take the inexact Newton direction with step length 1 with-

out checking the Armijo condition. In order to still guarantee convergence, we check

whether

‖∇θ(yk+1)‖2
‖∇θ(yk)‖2

< 1− µ with µ > 0. (4.36)

For the quadratic convergence we have to prove that the inexact Newton direction dk

with step length 1 satisfies (4.36) for all k sufficiently large. This result is obtained

by the subsequent lemma since ‖dk‖2 → 0 as k →∞.

Lemma 4.7.2. Let dk be the computed inexact Newton direction satisfying inequality



CHAPTER 4. DISCUSSION OF THE ALGORITHM 59

(3.2) for all k ≥ k̂ and k̂ ≥ 0. Then

‖∇θ(yk+1)‖2
‖∇θ(yk)‖2

≤ O (‖dk‖2) (4.37)

for all k sufficiently large.

Proof. From the proof of [27, Theorem 5.3] (or proof of Theorem 4.6.1 with ε = 0

and k sufficiently large) we know for all k sufficiently large that

‖yk+1 − y∗‖2 ≤ O
(‖yk − y∗‖22

)
(4.38)

and

‖yk − y∗‖2 ≤ ‖dk‖2 +O (‖dk‖22
)

(4.39)

hold and also that there exists a ρ > 0 so that

‖∇θ(yk)‖2‖dk‖2 ≥ −∇θ(yk)
T dk ≥ ρ‖dk‖22 . (4.40)

It follows from (4.39) and (4.40) that for all k sufficiently large

‖yk − y∗‖22
‖∇θ(yk)‖2

≤ ‖yk − y∗‖22
ρ‖dk‖2

≤ 1

ρ
‖dk‖2 +O (‖dk‖22

) ≤ O(‖dk‖2). (4.41)

Now, from (4.38) using the Lipschitz property of ‖∇θ(y)‖2 and (4.41) we deduce the

following expression

‖∇θ(yk+1)‖2
‖∇θ(yk)‖2

≤ ‖yk+1 − y∗‖2
‖∇θ(yk)‖2

≤ O
(‖yk − y∗‖22
‖∇θ(yk)‖2

)
≤ O(‖dk‖2) (4.42)

which completes our proof.

As Lemma 4.7.2 shows, checking condition (4.36) is an alternative if we cannot

use the Armijo rule so that we adopt this approach for our modified version (see

Algorithm 2 in Chapter 5). However, if we do not satisfy the condition (4.36) we

have to revert to the approach of taking the steepest descent direction with step

length 1. Moreover, if the ‖∇θ(yk+1)‖2 is negligible in yk+1 = yk + ∇θ(yk) then we

can terminate Algorithm 1 since our minimal achievable value of ‖∇θ(yk+1)‖2 will be

approached.
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4.7.2 Accuracy of the Output Matrix

Here we discuss the accuracy of the output matrix according to ‖∇θ(yk)‖2 with yk the

final iterate and thus the problem that the output matrix is potentially not an element

of the feasible set of the problem (1.14) in general. If Algorithm 1 has terminated

without an error then the norm of the gradient ‖∇θ(y)‖2 at the final iterate yk is

less than or equal to the error tolerance, but of course nonzero in general. Assuming

that ‖∇θ(yk)‖2 > 0 then comparing (2.14) and the formula for X∗ in Theorem 2.1.2

reveals that the entries of the diagonal of our output matrix are not all 1 whereas

the error on the diagonal depends clearly on the value of ‖∇θ(yk)‖2 . That means our

output matrix X is not in the feasible set of our problem (1.14) since the constraint

diag(X) = e is not satisfied.

Our first approach to tackle the problem is to set the diagonal of X to 1 after the

computation. However, this changes the eigenvalues of X so that the modified matrix

X may not be in the feasible set still. Another approach is to rescale the diagonal to

1 by multiplying D−1/2 from both sides, that is

X̃ := D− 1
2 XD− 1

2 (4.43)

where D = Diag(diag(X)). Note that D ≈ In with In the identity. This congruence

transformation preserves the positive semidefiniteness (consider if yT Xy ≥ 0 ∀y ∈
Rn ⇒ yT D− 1

2 XD− 1
2 y ≥ 0 ∀y ∈ Rn for positive diagonal entries of D) and as a

consequence that the eigenvalues, which are changed by the transformation, remain

nonnegative. Now the difference between the diagonal elements of X̃ and a unit

diagonal is negligible so that we combine the second approach with the first one, we

rescale the diagonal to 1 and set it to 1 afterwards. This makes sure that the diagonal

is equal to 1 and that we preserve the positive semidefiniteness.

Note that both approaches can increase the error ‖X −X∗‖F
with X our com-

puted solution and X∗ the exact solution. We therefore consider how the difference

‖G−X‖
F

changes when we multiply D− 1
2 from both sides on X. Let X = (xij)

n
i,j=1

be the computed solution without changing the diagonal and error tol ≤ 1 our error
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tolerance. We have

∥∥∥G−D− 1
2 XD− 1

2

∥∥∥
F

=
∥∥∥G−X + X −D− 1

2 XD− 1
2

∥∥∥
F

≤ ‖G−X‖
F

+
∥∥∥X −D− 1

2 XD− 1
2

∥∥∥
F

.

(4.44)

Our target now is to find an upper bound of the latter term of (4.44) by using that

‖∇θ(yk)‖2 ≤ error tol . From (2.14) and (2.22) it follows that

D = Diag(∇θ(yk)) + In. (4.45)

Now let aij be the (i, j) entry of the matrix X −D− 1
2 XD− 1

2 so that

∥∥∥X −D− 1
2 XD− 1

2

∥∥∥
2

F

=
n∑

i,j=1

a2
ij. (4.46)

From (4.45) we have

a2
ij =

((
X −D− 1

2 XD− 1
2

)
ij

)2

=
(
xij − (∇θ(yk)i + 1)−

1
2 (∇θ(yk)j + 1)−

1
2 xij

)2

= x2
ij

(
1− (∇θ(yk)i + 1)−

1
2 (∇θ(yk)j + 1)−

1
2

)2

.

(4.47)

Using ∇θ(yk)i ≤ error tol ∀i yields

1

1 + error tol
≤ (∇θ(yk)i + 1)−

1
2 (∇θ(yk)j + 1)−

1
2 ≤ 1

1− error tol
. (4.48)

Hence, in order to find an upper bound for a2
ij it is enough to maximize the function

f : J 7→ R with

f(s) :=

(
1− 1

1 + s

)2

(4.49)

and J := [−error tol , error tol ] ⊂ R. Since

argmaxs∈J(f(s)) = argmaxs∈J

(
s2

(1 + s)2

)
= −error tol (4.50)

we obtain from (4.47)

a2
ij ≤ x2

ij

(
1− 1

1− error tol

)2

= x2
ij

(
error tol

1− error tol

)2

.

(4.51)
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Hence,
∥∥∥X −D− 1

2 XD− 1
2

∥∥∥
F

≤ error tol
1−error tol

‖X‖
F

and we obtain the following upper

bound for our distance

∥∥∥G−D− 1
2 XD− 1

2

∥∥∥
F

≤ ‖G−X‖
F

+
error tol

1− error tol
‖X‖

F
. (4.52)

That means the smaller our error tolerance error tol the smaller our upper bound

and in this respect the closer the transformed matrix to the input matrix G.

4.8 Choosing the Method for the Eigendecompo-

sition

In Algorithm 1 a full eigenvalue decomposition of G + Diag(y) is required for every

function evaluation of θ(y), thus at least 1 eigenvalue decomposition in every iteration.

Moreover, obtaining such an eigenvalue decomposition is expensive and consequently

computing all required eigenvalue decompositions is an expensive part of the algo-

rithm. Qi and Sun use the MATLAB function eig calling the LAPACK routine DSYEV

to compute the spectral decompositions. In order to may reduce this computational

time we investigate three different codes F08FAF (DSYEV), F08FCF (SSYEVD/DSYEVD)

and F08FDF (DSYEVR) provided by NAG Fortran Library, Mark 21 to perform an

eigenvalue decomposition of a symmetric matrix. In this section, we explain briefly

these three codes and in Section 6.4 we test which algorithm performs best in terms

of the used time.

All three codes reduce the symmetric matrix to a tridiagonal matrix, say T , by

using orthogonal similarity transformations but then proceed differently. The code

F08FCF uses a divide and conquer algorithm to compute the eigenvalues and eigen-

vectors whereas F08FAF applies a QR algorithm to the tridiagonal matrix T . The

last code F08FDF computes the eigenvalues of T by the dqds algorithm and the cor-

responding eigenvectors from various ‘good’ LDLT representations. For more details

see in [25] or [2] and the references therein.
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4.9 The Case of G Nonsymmetric

Here we clarify what we can do if our given matrix G ∈ Rn×n is nonsymmetric. We

want to find a solution of the problem

min
X∈C
‖G−X‖

F
(4.53)

where G is nonsymmetric and C is the set of all correlation matrices in Rn×n. This

problem can be solved by transforming it into an equivalent problem which has the

form of our standard problem in (1.14). The equivalent problem is,

min
X∈C

∥∥∥∥
1

2

(
G + GT

)−X

∥∥∥∥
F

. (4.54)

This follows by applying the subsequent theorem [14].

Theorem 4.9.1. For A ∈ Rn×n the solution of

min
X∈C
‖A−X‖

F
(4.55)

is also a solution of

min
X∈C

∥∥∥∥
1

2

(
A + AT

)−X

∥∥∥∥
F

(4.56)

and vice versa.

Proof. We prove first that the following equation holds

‖T + K‖2
F

= ‖T‖2
F

+ ‖K‖2
F

(4.57)

with T = T T ∈ Rn×n and K = −KT ∈ Rn×n. We have

‖T + K‖2
F

= ‖T‖2
F

+ ‖K‖2
F

+ 2〈T, K〉. (4.58)

Now we consider the last term only since it remains to prove that this term is equal
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to 0. We use that T = T T , K = −KT and obtain

2〈T, K〉 = 〈T, K〉 − 〈T T , KT 〉

= 〈T, K〉 − trace
(
TKT

)

= 〈T, K〉 − trace
(
(TKT )T

)

= 〈T, K〉 − trace
(
KT T

)

= 〈T, K〉 − trace
(
T T K

)

= 〈T, K〉 − 〈T,K〉

= 0

(4.59)

Hence, the equation (4.57) holds. Let B := 1
2

(
A−X + (A−X)T

)
= 1

2

(
A + AT

)−
X and C := 1

2

(
A−X − (A−X)T

)
= 1

2

(
A− AT

)
be the symmetric and skew-

symmetric parts of A−X with X a correlation matrix. Note that A−X = B + C,

B = BT and C = −CT .

Applying the equation (4.57) with T = B and K = C to our problem (4.55) leads

to

S = argminX∈C‖A−X‖
F

= argminX∈C‖A−X‖2
F

= argminX∈C

(‖B‖2
F

+ ‖C‖2
F

)

= argminX∈C

(∥∥∥∥
1

2

(
A + AT

)−X

∥∥∥∥
2

F

+

∥∥∥∥
1

2

(
A− AT

)∥∥∥∥
2

F

)

= argminX∈C

∥∥∥∥
1

2

(
A + AT

)−X

∥∥∥∥
2

F

= argminX∈C

∥∥∥∥
1

2

(
A + AT

)−X

∥∥∥∥
F

which proves our assertion.



Chapter 5

The Modified Algorithm

The following algorithm is our modification of Algorithm 1. We have changed Algo-

rithm 1 based on the discussion in Chapter 4 but we do not yet specify which method

we use for our spectral decomposition and for solving our linear system. We will

mention these particular methods in Section 6.7 where we draw our conclusions of

the numerical tests in Chapter 6. Note that our changes do not affect the conver-

gence analysis of Section 3.2 apart from taking the steepest descent direction when

Armijo backtracking cannot be applied and the condition (5.5) (see below) cannot be

satisfied. However, since by Lemma 4.7.2 this condition is satisfied for k sufficiently

large this algorithm still converges to the solution of our problem quadratically. For

the implementation of this algorithm see Section A.2 of Appendix A.

Algorithm 2. Given G ∈ Rn×n this quadratically convergent algorithm computes

the nearest correlation matrix X to G in the Frobenius norm. On termination

‖∇θ(yk)‖2 ≤ error tol (see (2.14) for the formula of ∇θ(y)) with error tol the given

error tolerance.

Step 1: Set the starting values: y0 ∈ Rn with y0 := e−diag(G), η = 0.5, ϕ = 10−6,

µ ∈ (0, 1), ρ, σ ∈ (0, 1/2) and k := 0.

Step 2: Set G := G+GT

2
if G is nonsymmetric.

Step 3: Calculate∇θ(yk). If ‖∇θ(yk)‖2 ≤ error tol compute X with (2.22) (y∗ :=

65
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yk, X := X∗) and exit.

Step 4: Perform a spectral decomposition of G + Diag(yk), compute the matrix

Wyk
and the preconditioner Mk defined by (2.35) and (4.6), respectively.

Step 5: Determine the new direction dk for the step k by applying an iterative

method to the preconditioned linear system (using formula (4.5) to com-

pute Vkdk)

Vkdk = −∇θ(yk) (5.1)

such that the conditions

‖∇θ(yk) + Vkdk‖2 ≤ ηk‖∇θ(yk)‖2 , for ηk = min (η, ‖∇θ(yk)‖2)
(5.2)

and

− ∇θ(yk)
T

‖dk‖2
· dk

‖dk‖2
≥ min (ϕ, ‖∇θ(yk)‖2) (5.3)

are satisfied. If either one of these conditions cannot be satisfied, let

dk := −∇θ(yk). (5.4)

Step 6: Test whether Armijo backtracking can be applied regarding the discussions

in Section 4.7.1. If the test is positive goto Step 7.

If not, set αk := 1 and test whether step length 1 is sufficient to satisfy

the global convergence, that is if

‖∇θ(yk + αkdk)‖2
‖∇θ(yk)‖2

≤ 1− µ. (5.5)

If (5.5) is satisfied goto Step 8, otherwise set dk := −∇θ(yk) and goto

Step 8 if dk is not too small relative to yk or else, exit.

Step 7: Choose an appropriate step length αk by applying Armijo backtracking:

find the smallest number mk ∈ N0 (start testing whether (5.6) is satisfied

with mk = 0 and increment by 1 repeatedly) such that

θ(yk + ρmkdk)− θ(yk) ≤ σρmk∇θ(yk)
T dk (5.6)
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is satisfied. During the Armijo backtracking check after every increment

of mk whether Armijo backtracking can be applied again. If yes, con-

tinue, otherwise proceed analogously to Step 6 with αk := ρmk . If Armijo

backtracking was successful, set αk := ρmk .

Step 8: Set yk+1 = yk +αkdk and k ← k +1. If the relative change of ‖∇θ(yk+1)‖2
is sufficiently large go to Step 3, otherwise exit.



Chapter 6

Numerical Tests

In this chapter we test our implemented version of Algorithm 2 for efficiency and

robustness. The first tests in Section 6.2, 6.3, 6.4 are performance tests where we

investigate the discussions in Chapter 4 to reduce the computation time of the al-

gorithm. In Section 6.5 we test the robustness of our algorithm by means of direct

optimization methods and finally in Section 6.6 we compare Algorithm 2 with the Qi

and Sun’s algorithm (Algorithm 1) and Higham’s alternating projections method.

6.1 Information about our Tests

6.1.1 Software and Hardware

Our numerical tests are performed in MATLAB using version 7.3.0.298 (R2006b)

on 2.4 GHz AMD Athlon(tm). The unit roundoff for this MATLAB version is u =

2−53 ≈ 1.1 · 10−16.

6.1.2 Applied Examples

We use six kinds of test examples.

68
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Example 1

We generate randomly a correlation matrix C ∈ Rn×n by using gallery(’randcorr’,

n) of MATLAB which uses an algorithm described in [5]. Furthermore, we generate

a symmetric matrix M ∈ Rn×n by means of the function rand of the same MAT-

LAB version with elements from a uniform distribution in the range [−β, β] where

β is given. Subsequently, we add these two matrices and obtain our test matrix

G = C + M .

Example 2

Here, we generate randomly a symmetric matrix G ∈ Rn×n also by using the MAT-

LAB function rand which is uniformly distributed and has its values Gij ∈ [−1, 1].

Additionally, we set Gii = 1 for all i = 1, . . . , n.

Example 3

Here we generate randomly a correlation matrix A ∈ Rn×n again by means of the

MATLAB function gallery(’randcorr’,n) and then we select randomly i, j ∈
{1, . . . , n} (i = j is also allowed) and change the entry Aij of the matrix A to a

randomly generated value in the range of [−1, 1]. We repeat this procedure n/10− 1

times (if the value n/10 is not an integer we will round the value up). In both cases

the determined random values are uniformly distributed, obtained from the MAT-

LAB function rand. In order to preserve the symmetry, we set Aji := Aij after every

modification.

Example 4

In this example, we generate randomly two correlation matrices A and B by means

of the function gallery(’randcorr’,n) whereas the first correlation matrix A has

size n and the second B size n/2. Assume here that n/2 is an integer: if not we

round this value up to the next largest integer by means of the MATLAB function

ceil. Now we substitute the leading part A(1 : n/2, 1: n/2) by the second generated
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matrix B. If the resulting matrix has only nonnegative eigenvalues we will repeat the

procedure until at least one eigenvalue is negative.

The idea of this example is deduced from the assumptions of Finger’s algorithm

in Section 1.5 where we assumed that the leading part C11 contains all correlations

of random variables which are desired to be changed. That means it is desired to

substitute the matrix C11 by a matrix C̃11 which is potentially a correlation matrix.

Example 5

This example consists of two symmetric matrices from stock data provided by a fund

management company which are approximate correlation matrices with ones on the

diagonal. The first one has a dimension of n = 1399, is highly rank-deficient and its

entries are in the interval [−0.9644, 1.1574] on the off-diagonals. The second one is

larger with a dimension of n = 3120 and has full rank. Its values on the off diagonal

are in the interval of [−0.6250, 1.0751].

Example 6

The last example contains matrices from the RiskMetrics database which we obtained

from RiskMetrics website [1]. We get the following information about the content of

the provided data sets from there.

“The data sets contain consistently calculated volatilities and correla-

tion forecasts for use in estimating market risk. The asset classes covered

are government bonds, money markets, swaps, foreign exchange and eq-

uity indices (where applicable) for 31 currencies, and commodities.”

We obtained two matrices for a one day and a one month horizon assigned to July

15, 2006 which have the size of n = 387 and a smallest eigenvalue of −7.92 · 10−6 and

−4.91 · 10−6, respectively.
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6.1.3 Stopping Criterion

We stop our algorithm if

‖∇θ(yk)‖2 ≤ error tol

where error tol = 10−7 · n with n the size of our given symmetric matrix G.

6.1.4 Other Considerations

Unless otherwise stated, we use MINRES as our method for solving (5.1) and apply

the diagonal preconditioner suggested in Section 4.4.2 for all tests. Furthermore, for

the required eigenvalue decomposition we access the NAG Fortran Library, Mark 21

by means of the MATLAB-NAG Toolbox and the use routine f08fd. What is more,

ϕ = 10−6 in (5.3), ηk = min (0.5, ‖∇θ(y)‖2) in (5.2), µ = 0.9 in (5.5), σ = 10−4 and

ρ = 0.5 in (5.6). According to the discussions in Section 4.7.2, we do not change the

determined matrix after its computation for our tests.

6.2 Comparison of Different Step Directions

Here, we want to demonstrate the difference of taking the negative gradient direction,

the step direction as in Section 4.6 suggested and the Newton direction. We proceed

in the following way. We first compute the minimizer of our problem by starting our

algorithm choosing always the Newton direction. Afterwards, we start our algorithm

again where we compute our iterate yk several times, i.e. we take the Newton direction

first, compute the iterate yk and save the difference in the Frobenius norm to our

minimizer. Now we set yk := yk−1 and take for example the negative gradient direction

until the difference of the minimizer and the iterate yk+l is less than or equal to the

difference produced by taking the Newton direction. We repeat this procedure for

all step directions and start then again with the last iterate yk+1 computed by the

Newton method. We proceed in this way until we satisfy our stopping criterion.

When the stopping criterion is satisfied we compare the time in seconds which has

been taken by the particular step direction at every iteration referring to the Newton
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iterate.

For this purposes we take Example 1 with β = 0.5 and a size of n = 700 and we

use an error tolerance of error tol = n · 10−12. We report our result in Figure 6.1

where we use the two abbreviations dis. and N. iter. which stand for distance and

Newton iteration, respectively.

(6.1)

Figure 6.1: Comparison of different step directions

We observe from Figure 6.1 that computing the Newton direction requires approx-

imately the same amount of time at every iteration whereas when taking the steepest

descent direction the computation time increases in every step. Furthermore, more

time is always required when taking the steepest descent direction in comparison to

the Newton direction. The choice of determining the direction as described in Section

4.6 is not as good as the Newton direction, but gives similar results to the Newton

direction and is clearly better than the negative gradient direction.

This result is reasonable since in order to compute both the Newton direction
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and the shifted direction a more accurate approximation of the function θ(y) is used

which finally guarantees quadratic convergence for y0 close to the solution as discussed

in Chapter 2 and in Section 4.6. Furthermore, for computing the steepest descent

direction also an eigenvalue decomposition is required (see (2.14)) and as we will see

later computing the eigenvalue decomposition is an expensive part in our algorithm.

Hence, taking the negative gradient direction is not tremendously less expensive than

taking the Newton direction.

Since the additional cost of computing the Newton direction is obviously also

worth for the first steps (the other examples of Section 6.1.2 also confirm these results

in our tests which we omitted here) we conclude that the Newton direction should be

taken in every step. The choice of the shifted direction is obviously advisable if we

cannot solve the equation (3.1) but using it instead of the Newton-direction is not

recommended according to the behaviour of our algorithm for our tested examples.

That is why we abandon the approach of choosing the shifted direction and do not

change our Algorithm 2.

6.3 Testing Iterative Methods plus Preconditioner

In this section, we test all the methods which we introduced in Section 4.3 using

Example 1 and Example 5. The size of the matrix G is always n = 700 when it can

be chosen and the value of β is stated in the Table 6.1 where we report our numerical

results.

We access for the methods CG, SYMMLQ, RGMRES (restarting value is 3),

TFQMR and BI-CGTAB (value l = 1, we denote this method as BS in Table 6.1)

the NAG Fortran Library, Mark 21 by means of the MATLAB-NAG Toolbox where

we call the routines f11bd, f11be and f11bf. For the MINRES method we use an

implementation in MATLAB obtained from the authors of [7]. In the Table 6.1 Time

Tot., Time Mvp., Time Eig., Iter., Calls Mvp. and Time Pre., respectively, stand for

the total time used to run the algorithm, the time spent to compute all the matrix-

vector products Vkh (see (2.33)) in the algorithm which is essentially the same time



CHAPTER 6. NUMERICAL TESTS 74

to solve the equation (5.1) summed over all iterations, the time used for computing

all spectral decompositions, the iteration number in the outer loop, the number of

computed matrix-vector products Vkh and the time to compute all preconditioners.

The time is measured in seconds.

Table 6.1: Comparison of different iterative methods

CG SYMMLQ RGMRES TFQMR MINRES BS

Example 1, β = 0.01, No Preconditioning

Time Tot. 9.25 8.27 5.3 4.81 7.31 4.81

Time Mvp. 4.33 3.37 1.93 1.50 2.40 1.50

Time Eig. 4.33 4.3 2.87 2.87 4.3 2.87

Iter. 3 3 2 2 3 2

Calls Mvp. 9 7 4 3 5 3

With Preconditioning

Time Tot. 9.71 8.75 5.53 5.06 7.78 5.05

Time Mvp. 4.33 3.36 1.92 1.51 2.40 1.51

Time Eig. 4.30 4.31 2.87 2.87 4.3 2.87

Iter. 3 3 2 2 3 2

Calls Mvp. 9 7 4 3 5 3

Time Pre. 0.48 0.48 0.24 0.24 0.48 0.24

Example 1, β = 0.1, No Preconditioning

Time Tot. 12.7 11.26 12.23 10.84 9.81 10.76

Time Mvp. 6.25 4.81 5.79 4.34 3.36 4.33

Time Eig. 5.74 5.77 5.76 5.83 5.73 5.73

Iter. 4 4 4 4 4 4

Calls Mvp. 13 10 12 9 7 9

With Preconditioning

Time Tot. 13.54 11.99 12.96 11.54 10.53 11.49

Time Mvp. 6.43 4.81 5.80 4.39 3.36 4.33

Time Eig. 5.74 5.77 5.76 5.75 5.73 5.73
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CG SYMMLQ RGMRES TFQMR MINRES BS

Iter. 4 4 4 4 4 4

Calls Mvp. 13 10 12 9 7 9

Time Pre. 0.75 0.72 0.72 0.72 0.72 0.72

Example 1, β = 1, No Preconditioning

Time Tot. 24.79 21.75 21.09 22.64 18.39 17.92

Time Mvp. 14.04 11.03 11.55 11.58 7.70 8.18

Time Eig. 10.25 10.17 8.64 10.0 10.09 8.66

Iter. 7 7 6 7 7 6

Calls Mvp. 28 22 24 24 16 17

With Preconditioning

Time Tot. 26.53 23.15 20.39 18.93 19.36 18.94

Time Mvp. 15.02 12.27 9.63 8.20 7.25 8.52

Time Eig. 10.3 10.1 8.64 8.64 10.08 8.64

Iter. 7 7 6 6 7 6

Calls Mvp. 28 22 20 17 15 17

Time Pre. 1.45 1.46 1.21 1.21 1.45 1.21

cor1399, No Preconditioning

Time Tot. 344.4 322.4 266.13 249.3 314.6 245.06

Time Mvp. 150.6 128.4 99.92 82.64 137.8 85.63

Time Eig. 178.7 178.7 153.1 153.1 178.6 153.1

Iter. 7 7 6 6 7 6

Calls Mvp. 42 36 28 23 30 36

With Preconditioning

Time Tot. 253.12 235.0 245.7 235.3 229.14 245.3

Time Mvp. 78.6 60.6 72.1 61.7 47.4 60.4

Time Eig. 153.2 153.2 153.1 153.1 153.1 153.1

Iter. 6 6 6 6 6 6

Calls Mvp. 22 17 20 17 13 17
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CG SYMMLQ RGMRES TFQMR MINRES BS

Time Pre. 8.83 8.7 8.76 8.76 8.9 8.7

cor3120, No Preconditioning

Time Tot. 4384 4154 3423 3764 3208 3731

Time Mvp. 2224 1990 1880 1914 1332 1845

Time Eig. 2141 2139 1531 1835 1837 1835

Iter. 7 7 5 6 6 6

Calls Mvp. 57 51 48 49 31 47

With Preconditioning

Time Tot. 2284 2137 2247 2095 2000 2142

Time Mvp. 664.7 506.8 624.6 470.3 352.8 470.2

Time Eig. 1530 1527 1527 1530 1531 1528

Iter. 5 5 5 5 5 5

Calls Mvp. 17 13 16 12 9 12

Time Pre. 72.9 73.0 72.8 72.84 72.89 73.12

We conclude from Table 6.1 that first the time for computing our preconditioner

is as expected in Section 4.4.2 small relative to the total time. Furthermore, if we use

a preconditioner the calls for the matrix-vector products are reduced in most cases

which indicates that our iterate in the iterative methods converges faster and thus the

total time is also reduced as can be seen particularly for the two examples from stock

data. However, we observe that the total time is not always reduced and the number

of matrix-vector products is the same with the preconditioner, so obviously how well

the preconditioner improves the convergence behaviour depends on our input matrix

G. However, in such a case the total time using our preconditioner is only slightly

larger than the total time using no preconditioner.

If we compare the methods using our preconditioner, then the MINRES routine

gives us the best results overall, in particular, if we consider the iterative methods for

symmetric matrices (CG, SYMMLQ, MINRES). This is expected because MINRES

reduces the residual in every step and is rather suitable for nearly singular matrices.
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Moreover, methods like RGMRES which are for general matrices cannot perform bet-

ter in general than methods for symmetric matrices. Thus we also have to consider

that we used for the MINRES routine a MATLAB implementation so that the perfor-

mance of that routine can be improved potentially (so for example the performance

of while and for loops) when transforming it into another language like Fortran.

We observe further that a large part of the total time to run the algorithm is spent

in computing the eigenvalue decomposition. Considering the larger matrix from stock

data in the case of preconditioning approximately 70% of the total time is required

for the spectral decomposition. This fact motivates the test in the next section where

different methods are tested to compute the eigenvalue decomposition.

6.4 Testing Methods for the Eigendecomposition

Here we compare the three methods that we briefly introduced in Section 4.8 for the

eigenvalue decomposition of G+Diag(yk) in Algorithm 2. We test the methods f08fa,

f08fc, f08fd of the MATLAB-NAG Toolbox, i.e. we access the NAG Fortran Library,

Mark 21 in MATLAB again and test actually F08FAF (QR-algorithm), F08FCF (divide

and conquer algorithm) and F08FDF (dqds algorithm) of that Fortran Library. We

use the Example 1, 2, 3 and 4 in Section 6.1.2 for our testing purposes with different

sizes of the matrix n = 500, 1000 and choose the value of β as stated in Table 6.2 if

it is required. Furthermore, we also test Example 5 where the particular matrix is

indicated by the size. We compare the total time in seconds that is used to run the

Algorithm 2 with the different solvers. We report our results in Table 6.2.

Table 6.2: Different methods for the eigenvalue decom-

position

f08fa f08fc f08fd

Example 1 Used Time

n = 500

β = 0.01 4.54 1.68 1.84
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f08fa f08fc f08fd

β = 1 16.8 7.42 7.98

β = 10 26.92 12.76 13.59

n = 1000

β = 0.01 51.97 20.4 20.83

β = 1 127.56 51.75 52.94

β = 10 221.28 94.4 96.36

Example 2

n = 500 17.11 7.48 8.08

n = 1000 122.87 50.31 51.47

Example 3

n = 500 8.32 4.27 4.55

n = 1000 46.43 18.83 19.35

Example 4

n = 500 4.33 1.67 1.83

n = 1000 52.13 20.29 20.76

Example 5

n = 1399 238.02 111.51 210.01

n = 3120 2122.6 907.79 1974.1

In Table 6.2 we observe clearly that the method f08fc (divide and conquer al-

gorithm) performs best in all examples in terms of the used time. Furthermore, we

notice that the difference of the used time between the method can be enormous,

consider Example 5 using method f08fc leads to a reduction of more 50% of the

used time in comparison to using the method f08fa (QR-algorithm).
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6.5 Robustness Testing

6.5.1 Direct Optimization Methods

In this section, we test the robustness and reliability of our algorithm. For that

purpose we use direct search methods. These methods search for a local maximum

of a function f : Rm 7→ R heuristically, that is

max
x∈Rm

f(x) (6.2)

and involve only function values in their computation; derivatives of f are not com-

puted and also not approximated. Various direct search methods have been developed

as described in [15], however, we restrict our investigation by means of only two direct

search methods which were treated by Higham also in [15]. These two methods are the

alternating directions (AD) method and the multidirectional search (MDS) method.

The alternating directions method attempts to maximize the function f(x) by a line

search over each coordinate, starting from a given value x, for all i = 1, . . . , m we

attempt to find an αi such that

αi = argmaxα∈Rf(x + αei) (6.3)

and update our iterate x := x+αiei subsequently. This procedure is repeated until the

iterate x converges. The stopping criterion is a small relative increase in f between

one iteration and the next. To find the αi Higham used in [15] a crude scheme. He

starts with a small value for α then he doubles the value of α if f(x + αei) > f(x),

otherwise he changes the search direction (he reverses the sign of α). Now α is doubled

as long as f(x + αei) > f(x) and at most 25 times. After this procedure αi is set to

α.

In the multidirectional search method of Dennis and Torczon [33], [34] we max-

imize over more than one direction. Starting from a simplex {vi}mi=0 with vi ∈ Rm

and f(v0) = maxi f(vi) the method attempts to find along the lines joining vi and

v0 a new vertex v0 + α(vj − v0) for j ∈ {1, . . . , m} at which the function value is

greater than f(v0) so that a new simplex can be formed from v0 and the new vertices
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v0 + α(vi − v0). In the next iteration vj = argmaxvi
f(vi) is taken as the point of

intersection of the lines joining vi and vj. This procedure is repeated until the iterate

vj converges.

α is determined by a similar method to AD. First we do a reflection step, that

means we set α := −1. If f at one of the new vertices v0 + α(vi − v0) is greater than

f(v0) a new simplex is formed by v0 and the new vertices, then α is doubled and the

same test is done for the doubled size. If the test is successful the simplex is renewed

by the new vertices with the doubled size of α and our iteration is complete. If the

reflection step is unsuccessful, that is f(v0) ≥ maxi f(v0 + α(vi − v0)) we reverse the

search direction. That means we set α = 1/2 and perform our test again. If we

can form a new simplex with the desired properties the current iteration is complete,

otherwise we jump back to the reflection step and work with half of length of α again.

For further details of the MDS method, see [15], [33], [34] and the references therein.

6.5.2 Using these Methods for our Algorithm

Now we test our algorithm by means of the two methods described in the last section.

Thereby we use the implementations of the author in [15] which are two m-files adsmax

for AD and mdsmax for MDS; these implementations are available from the Matrix

Computation Toolbox [13].

Our testing purposes are finding a matrix where our algorithm fails. Our algorithm

may fail by arriving at an infinite loop, not returning a reasonable matrix to the input

matrix or returning an error in spite of reasonable input parameters.

In order to detect such a behaviour we form a function according to (6.2) which

is to be maximized. We try to increase

• The iterations of the algorithm.

• The function evaluations of the algorithm.

Therefore, we write a function in MATLAB which has a vector x as input parameter

and the particular item which we want to increase as output parameter. The vector
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x ∈ Rn(n+1)/2 comprises the upper triangular part and the diagonal of the matrix for

which we want to run our Algorithm 2 strung out into one long vector. Internally,

this function reforms the vector into the corresponding symmetric matrix and runs

our algorithm for that matrix. Now we have formed our function f for which we start

our direct optimization methods.

We choose Example 1 as starting value with β = 0.1, 10 and Example 3 comprised

as a vector, our size is n = 15. The chosen size of the matrix is small because, oth-

erwise, the number of free parameters would be too large for the direct optimization

methods to complete in reasonable time. To run our algorithm we use the machine

epsilon determined by the MATLAB function eps as error tolerance in order to test

whether the algorithm terminates properly even for too small tolerances. In other

words, we expect to obtain a warning that the machine precision is limiting the

convergence.

Now we run our direct optimization methods starting with adsmax using the start-

ing value described above and subsequently mdsmax where we take the output vector

of adsmax as the new starting vector for mdsmax. We terminate adsmax (respectively

mdsmax) if the relative increase in f (respectively the relative size of the simplex) is

less than 10−8.

Once a vector has been returned by mdsmax, we reshape this vector to the cor-

responding matrix and run Algorithm 2 on that matrix and on our original starting

matrix with the same parameters displaying intermediate outputs in order to notice

the difference in the behaviour of the algorithm.

In Table 6.3 we report the worst case out of 30 runs of the direct optimization

methods for both when we maximize the number of iterations and the number of func-

tion evaluations. In other words, we show for both cases the behaviour of Algorithm

2 for the starting matrix and the matrix returned by the direct optimization methods.

In Table 6.3 we indicate for every matrix in order, the number of iterations, function

evaluations and inner iterations summed over all outer iterations which the algorithm

requires, the smallest and the largest eigenvalue, how often the Newton direction is

taken, how often the negative gradient is taken and the distance ‖G−X‖
F
. Note
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that we also indicate when taking the Newton direction whether we have activated

or deactivated the Armijo backtracking rule.

In order to notice whether our algorithm returns a reasonable matrix to the matrix

which is determined by the direct optimization methods we also run the alternating

projections method of Higham [17] for that matrix and compare then the distances

of the input matrix to the returned matrix in the Frobenius norm. For that purposes

we include a further row for every example where we indicate the distance ‖G−X‖
F

with X computed by the alternating projections method.

In the column “↑Iter.” we show the described data for the two matrices when we

maximize the number of iterations and in the column “↑F eval.” when we maximize

the function evaluations. Each column is divided into two further columns where

every first column“St. M.” indicates the data for the starting matrix and every second

column “Re. M.” for the returned matrix.

For simplicity we use the abbreviations St., Re., M., Iter., F eval., Sm., La., eig.,

Num., tak. neg. grad. d., tak. New. d. and AP in Table 6.3 which stand for start-

ing, returned, matrix, iterations, function evaluations, smallest, largest, eigenvalue,

number, taking negative gradient direction, taking Newton direction and alternating

projections, respectively.

Table 6.3: Robustness testing

↑Iter. ↑F eval.

St. M. Re. M. St. M. Re. M.

Example 1, β = 0.1

Iter. 1 10 5 9

F eval. 3 15 7 15

Inner Iterations 0 0 0 0

Sm. eig. 0.077 -0.17 -0.156 -0.272

La. eig. 1.83 2.09 1.71 2.08

Num. tak. New. d. 0 6 4 4



CHAPTER 6. NUMERICAL TESTS 83

↑Iter. ↑F eval.

St. M. Re. M. St. M. Re. M.

Armijo activated 0 3 2 3

Armijo deactivated 0 3 2 1

Num. tak. neg. grad. d. 1 4 1 5

‖G−X‖
F

Newton method 0.2275 0.3397 0.34511 0.40479

‖G−X‖
F

AP method 0.2275 0.3397 0.34511 0.40479

Example 1, β = 10

Iter. 9 15 9 16

F eval. 11 18 11 47

Inner Iterations 0 1 0 29

Sm. eig. -40.93 -46.8 -36.6 -53.4

La. eig. 40.53 42.9 40.6 68.3

Num. tak. New. d. 9 15 9 16

Armijo activated 8 9 7 10

Armijo deactivated 1 6 2 6

Num. tak. neg. grad. d. 0 0 0 0

‖G−X‖
F

Newton method 86.59 92.54 77.37 116.8

‖G−X‖
F

AP method 86.59 92.54 77.37 116.8

Example 3

Iter. 5 10 5 10

F eval. 7 15 7 16

Inner Iterations 0 0 0 0

Sm. eig. -0.025 -0.025 -0.203 -0.21

La. eig. 2.388 2.388 2.65 2.62

Num. tak. New. d. 4 6 4 5

Armijo activated 2 2 3 3

Armijo deactivated 2 4 1 2

Num. tak. neg. grad. d. 1 4 1 5
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↑Iter. ↑F eval.

St. M. Re. M. St. M. Re. M.

‖G−X‖
F

Newton method 0.02785 0.02788 0.2339 0.2707

‖G−X‖
F

AP method 0.02785 0.02788 0.2339 0.2707

As Table 6.3 shows the direct optimization methods find examples which increase

the used number of iterations up to 15 likewise the number of function evaluations

which is increased up to 47. Nevertheless, we observe that the algorithm returns

reasonable matrices for every example if we compare the distance ‖G−X‖
F

with

that computed by the alternating projections method. Furthermore, the algorithm

always terminates with the warning that the precision is limiting the convergence

which is forced by the small tolerance and thus, does not arrive in an infinite loop.

That means the algorithm terminates properly.

Apart from the Example 1 with β = 10, we notice that the results of the second

column and the fourth are similar, when maximizing the function evaluations we

do not obtain a matrix which requires more inner iterations to satisfy the Armijo

backtracking rule, we rather obtain a matrix which requires more Newton iterations.

For the Example 1 with β = 10 the distance between the input matrix and the nearest

correlation matrix is large in comparison to the size of the matrix, in particular, for

the matrix when we require 47 inner iterations. Furthermore, the smallest eigenvalues

of these matrices are large in magnitude so that step lengths that are extremely long

occur. Nevertheless, the algorithm does not arrive in an infinite loop (θ(yk+1) is

reduced in every backtracking step), terminates properly and returns the nearest

correlation matrix.

All examples show that when we have to deactivate the Armijo rule taking the

Newton direction with step length 1 is a good alternative since this choice has often

been taken. Furthermore, when taking the negative gradient direction (Num. tak.

neg. grad. d.) then we could not use the Armijo backtracking rule, thus neither the

angles condition was violated nor solving (5.1) failed.

For these robustness tests we conclude that the algorithm behaves properly and



CHAPTER 6. NUMERICAL TESTS 85

that the suggestions made in Section 4.7.1 help to overcome the problem with the

Armijo rule in our examples.

6.6 Comparison with other Methods

Finally, we compare the performance of the Algorithm 2 with Qi and Sun’s algorithm

and Higham’s alternating projections method in [17]. Since Higham’s alternating

projections method provides full accuracy we will perform the latter comparison with

different error tolerances. We use the default value 10−7 ·n and eps ·n. We will obtain

a result which accuracy of the nearest correlation matrix computed by our algorithm

is achieved for a certain error tolerance and how it improves when we decrease the

tolerance. This is also a test of the correctness of our returned matrix.

In the former comparison we are only interested in the efficiency so we use the

default value of our error tolerance. Note that according to the results in Section

6.4, we use here the method f08fc (divide and conquer algorithm) for the eigenvalue

decompositions in Algorithm 2 whereas for the alternating projections method we

call LAPACK’s DSYEVR (via a MEX interface).

6.6.1 Comparison with Qi and Sun’s Algorithm

We now test the efficiency of Algorithm 2 in comparison to Qi and Sun’s algorithm.

Recall that because of the modifications of the Algorithm 2 due to the tests in Section

6.3 and Section 6.4 the main differences between these algorithms are the different

routine for the eigenvalue decomposition (the MATLAB function eig in Algorithm 1

and f08fc in Algorithm 2), the different method to compute the step direction (CG

in Algorithm 1 and MINRES in Algorithm 2) and the use of a preconditioner (no

preconditioner is applied in Algorithm 1 whereas in Algorithm 2 the Jacobi precon-

ditioner is used).

Our results are reported in Table 6.4 where we state the used time in seconds, the

required iteration number of the particular algorithm and the ratio of the used time

of Qi and Sun’s algorithm and of the Algorithm 2 in the columns denoted by Time,
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Iter. and Ratio, respectively.

First, we test Example 1 with different sizes n = 300, 500, 1000 for our given

matrix G and different values for β = 0.01, 0.1, 1.0. We use the same sizes for testing

the Example 2, 3 and 4, we also compare our efficiency for the Example 5 where the

particular matrix is stated by the size in the Table 6.5 and for the Example 6 where

the particular matrix is indicated by the words “daily” and “monthly”.

Table 6.4: Comparison with Qi and Sun’s algorithm

Algorithm 1 Algorithm 2 Ratio

(Qi and Sun) (Our Modification)

Time Iter. Time Iter.

Example 1

n = 300

β = 0.01 0.86 1 0.76 1 1.1

β = 0.1 2.17 3 1.14 3 1.9

β = 1 3.65 5 2.06 6 1.8

n = 500

β = 0.01 4.49 1 1.77 1 2.5

β = 0.1 10.41 3 4.05 3 2.6

β = 1 17.51 5 7.88 6 2.2

n = 1000

β = 0.01 32.8 1 20.4 2 1.6

β = 0.1 72.8 3 27.2 3 2.7

β = 1 126 5 51.9 6 2.4

Example 2

n = 300 3.58 5 2.12 6 1.7

n = 500 17.2 5 7.8 6 2.2

n = 1000 126 5 52.0 6 2.4

Example 3
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Algorithm 1 Algorithm 2 Ratio

Time Iter. Time Iter.

n = 300 2.26 3 1.21 3 1.9

n = 500 8.08 2 4.64 3 1.7

n = 1000 61.04 2 20.5 2 3.0

Example 4

n = 300 0.84 1 0.79 2 1.1

n = 500 4.45 1 2.97 2 1.5

n = 1000 32.3 1 11.6 1 2.8

Example 5

n = 1399 445 5 111 5 4.0

n = 3120 5893 4 906 4 6.5

Example 6

daily 0.61 0 0.37 0 1.6

monthly 0.68 0 0.34 0 2.0

Table 6.4 shows that we achieve an enormous improvement of the efficiency in

terms of the computation time with our modifications. We reduce the time in all

examples and up to a factor 6.5 for the larger matrix of Example 5.

For the matrices of Example 6 we use zero iterations that means the computed

norm of the gradient was already smaller than the tolerance, even though the smallest

eigenvalues of both examples are less than zero. We will look at this example again

when we decrease the error tolerance in the next Section 6.6.2.

Furthermore, from Table 6.4 we notice that Algorithm 2 sometimes requires more

iterations than Qi and Sun’s algorithm (Algorithm 1). This is caused by the modifi-

cation of inequality 5.2 in our algorithm, this inequality is less strict at the beginning

and thus sometimes more iterations are required but therefore less iterations in the

iterative method potentially.
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6.6.2 Comparison with Higham’s Algorithm

Now, we compare our algorithm with Higham’s alternating projections method. We

start with the larger tolerance and report our numerical results in Table 6.5 where

we, unlike the previous Table 6.4, include a new column ‖G−X‖
F

for both methods

which shows the difference of the given matrix G to the computed matrix X in the

Frobenius norm. Apart from that, we label Table 6.5 like Table 6.4 and use the same

examples as in the previous Section 6.6.1. Note that we indicate the ratio between

the used time of Higham’s alternating projections method and the used time of the

Newton algorithm (Algorithm 2) in the column “Ratio” now.

Table 6.5: Comparison with Higham’s algorithm

Newton Algorithm Higham’s Algorithm Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

Example 1

n = 300

β = 0.01 0.49 0.107233 1 0.81 0.107233 4 1.7

β = 0.1 0.96 5.805298 3 1.57 5.805271 10 1.6

β = 1 1.85 149.905994 6 8.22 149.905974 73 4.4

n = 500

β = 0.01 1.66 0.142109 1 2.91 0.142103 3 1.8

β = 0.1 3.84 12.013733 3 6.92 12.013573 11 1.8

β = 1 7.36 257.190084 6 38.44 257.190061 90 5.2

n = 1000

β = 0.01 19.75 0.312575 2 25.73 0.312572 4 1.3

β = 0.1 26.64 30.077392 3 51.88 30.076585 13 2.0

β = 1 50.16 530.396314 6 284.84 530.396240 104 5.6

Example 2

n = 300 1.85 149.499553 6 8.28 149.499537 74 4.5

n = 500 7.37 256.828853 6 35.87 256.828821 84 4.9
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Newton Algorithm Higham’s Algorithm Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

n = 1000 50.22 530.654053 6 285.48 530.653980 104 5.7

Example 3

n = 300 1.11 0.441387 3 1.42 0.441199 8 1.3

n = 500 4.17 0.807703 3 5.88 0.807319 8 1.4

n = 1000 18.81 0.944036 2 36.48 0.943383 7 1.9

Example 4

n = 300 0.72 0.097560 2 0.8 0.097559 4 1.1

n = 500 2.84 0.109107 2 2.93 0.109077 3 1.0

n = 1000 19.71 0.292461 2 21.21 0.292293 3 1.1

Example 5

n = 1399 114.41 21.033907 5 901.4 21.033693 174 7.8

n = 3120 913.81 5.44375 4 51615 5.443524 161 56.5

Example 6

daily 0.37 3.9655e-05 0 0.98 4.1705e-05 2 2.6

monthly 0.33 1.6297e-05 0 1.17 2.8258e-05 2 3.5

We observe that our method takes far less time for all examples in Section 6.1.2.

Furthermore, the convergence is reached within 0 to 6 iterations. Whereas, the alter-

nating projections method requires between 2 and 174 iterations.

In Section 4.7.1 we mentioned that the gradient method (yk+1 = yk − ∇θ(yk))

is mathematically equivalent to the alternating projections method and as we have

seen in Section 6.2, the Newton direction was always preferable to the negative gra-

dient direction in our tests. Moreover, Algorithm 2 claims quadratic convergence if

the iterate is close enough to the solution whereas Higham’s alternating projections

method converges at best linearly (see [17, Section 3.2]).

Another observation is that the iteration number of both methods depends ob-

viously less on the size, more on the perturbation of the matrix if we consider the

Example 1.
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Now we perform the same tests again with a smaller tolerance. We set our pa-

rameter error tol in Algorithm 2 from n · 10−7 to n · eps. We obtain the results in

Table 6.6.

Table 6.6: Comparison with Higham’s algorithm using a

smaller error tolerance

Newton Algorithm Higham’s Algorithm Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

Example 1

n = 300

β = 0.01 1.2 0.107234 3 1.92 0.107234 9 1.6

β = 0.1 1.87 5.805298 5 4.56 5.805298 26 2.4

β = 1 2.38 149.905994 7 29.37 149.905994 228 12.3

n = 500

β = 0.01 4.38 0.142108 3 6.92 0.142108 8 1.6

β = 0.1 7.48 12.013734 5 19.63 12.013734 31 2.6

β = 1 9.47 257.190084 7 136.84 257.190084 293 14.4

n = 1000

β = 0.01 30.69 0.312575 3 51.01 0.312575 9 1.7

β = 0.1 49.71 30.077394 5 150.64 30.077394 40 3.0

β = 1 81.07 530.396315 8 1058 530.396315 371 13.1

Example 2

n = 300 2.39 149.499553 7 29.83 149.499553 233 12.5

n = 500 9.47 256.828853 7 129.43 256.828853 278 13.7

n = 1000 79.89 530.654054 8 1052.6 530.654054 369 13.2

Example 3

n = 300 1.58 0.441387 4 6.04 0.441387 30 3.8

n = 500 6.35 0.807703 4 21.96 0.807703 29 3.5

n = 1000 44.77 0.944048 4 132.49 0.944048 27 2.9
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Newton Algorithm Higham’s Algorithm Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

Example 4

n = 300 1.1 0.097560 3 1.93 0.097560 9 1.8

n = 500 4.39 0.109107 3 7.69 0.109107 9 1.8

n = 1000 30.7 0.292461 3 50.92 0.292461 9 1.7

Example 5

n = 1399 193.49 21.033911 7 3317 21.033911 614 17.14

n = 3120 1666.5 5.443751 6 - - - -

Example 6

daily 5.65 4.751866e-05 5 26.57 4.751866e-05 55 4.7

monthly 5.09 1.814086e-05 4 17.24 1.814086e-05 27 3.4

First, we notice that the warning that the precision is limiting the convergence

has not occurred. Furthermore, we have not tested the Example 5 with the larger

matrix for the alternating projections method since the expected value is more than

a few days if we consider the difference between the used time for the smaller matrix

of Example 5 in Table 6.5 and the used time in Table 6.6. Beyond that we observe

in Table 6.6 the same convergence behaviour as in Table 6.5. The Newton method

requires at the most 8 iterations, whereas the alternating projections method takes

between 8 and 614 iterations.

Considering the distance ‖G−X‖
F
, we see that both methods return the same

value of the computed difference of G and X now which clearly shows the increased

accuracy and that our algorithm returns the correct solution.

For the matrices of Example 6 our algorithm uses zero iterations and returns the

same input matrices as output matrices in our tests in Table 6.4 and Table 6.5 since

the stopping criterion is satisfied in spite of the smallest eigenvalues of the input ma-

trices are negative. In Table 6.6 we see that more iterations are taken for the matrices

of Example 6 and the smallest eigenvalues of the output matrices are -7.7e-14 (New-

ton method, -3.1e-12 alternating projections method) for the day matrix and -8.9e-15
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(Newton method, -1.93e-12 alternating projections method) for the month matrix

now. This shows that after decreasing the error tolerance the computed matrices

have become more accurate and satisfy the condition semidefiniteness numerically.

We conclude that our method can compute the nearest correlation matrix accu-

rately and is clearly preferable to the alternating projections method in terms of the

computation time especially for such matrices from stock data which we obtained and

matrices which have a relatively large distance to their nearest correlation matrix.

6.7 Conclusion

After performing numerical tests on our modified version of Qi and Sun’s algorithm

(Algorithm 2) for robustness and efficiency we first notice that choosing the MINRES

routine gives us the best results overall for our examples. We therefore conclude that

the choice of using MINRES is preferable to using CG which is applied in Qi and

Sun’s algorithm. A further conclusion is that we should use the Jacobi preconditioner

computed as suggested in Section 4.4.2 in our iterative method since this choice is

inexpensive and can clearly improve the convergence behaviour and thus the per-

formance as we saw in particularly for the matrices from stock data. Furthermore,

from the testing results in Section 6.4 we conclude that the method f08fc which

uses a divide and conquer algorithm is the best choice for forming the eigenvalue

decomposition.

Considering our robustness tests, in Section 4.7.1 we identified that the Armijo

backtracking rule cannot be applied when the difference of the function values θ(yk)

and θ(yk+1) is small which occurs when we use a small error tolerance for ‖∇θ(yk)‖2 .
We made suggestions in Section 4.7.1 to overcome this problem and the robustness

tests in Section 6.5 and 6.6 have shown that we have avoided the problem. Moreover,

in our test examples in Section 6.6 we used an error tolerance of n ·eps for ‖∇θ(yk)‖2
and the Algorithm 2 has always been terminated at step 3 thus the algorithm has not

been aborted and the final norm of ∇θ(y) was smaller than the error tolerance, hence

we can provide almost full accuracy. Furthermore, the results in Section 6.5 have
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shown that the algorithm is reliable since the direct optimization methods could not

find an example, in spite of 30 runs, where our algorithm shows a failing behaviour.



Chapter 7

The Alternating Projections

Method

As mentioned in Section 1.5, Higham [17] proposes an alternating projections method

which also solves the problem of finding the nearest correlation matrix. In the next

Section 7.1 we explain the idea of the general alternating projections method: what

the method is and how it works. In Section 7.2 we explain how we can use this method

for our problem (1.14), we describe Higham’s method [17]. Then we discuss changing

the method by introducing a further projection in Section 7.3 and we perform some

tests in Section 7.4. Finally, we draw our conclusions in Section 7.4.4.

7.1 The General Alternating Projections Method

Here we describe the general alternating projections method. We start with the

definition of the best approximation from a subset of a Hilbert space H.

Definition 7.1.1. Let C ⊂ H and C 6= ∅ and let x ∈ C then x is called the best

approximation from C to an element h ∈ H if

‖h− x‖ = inf
y∈C
‖h− y‖ (7.1)

where ‖·‖ is the norm corresponding to the Hilbert space H.

94
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If C is a closed convex set then the best approximation from C to an element in

H exists and is unique. Compare with Section 1.4 or see [18, Section 3.1]. Hence, the

next definition of the projection operator onto closed convex sets is well defined.

Definition 7.1.2. Let C be a closed convex set in a Hilbertspace H, then the pro-

jection operator PC : H 7→ C onto the set C is defined as

PC(y) := argminx∈C‖y − x‖ . (7.2)

Now let K1, . . . , Km be closed convex sets in H. We are interested in the problem

of finding the best approximation to an element g ∈ H from K := ∩m
i=1Ki, that is

argminx∈K‖g − x‖ . (7.3)

Since K is also a closed convex set in H the solution of (7.3) exists and is unique.

Moreover, if the projection operator PK projecting onto K is known then by definition

applying this operator yields the solution of (7.3). However, PK is often not easily

computable. The method of alternating projections can remedy this problem. It

reduces the problem (7.3) to finding the best approximations from the individual sets

Ki.

The idea of the method is to project g onto the sets Ki one after the other and

repeat iteratively, that is forming a sequence {ak} with

ak+1 := PKm . . . PK2PK1(ak) (7.4)

and a0 := g. Here, PKi
is the projection operator onto Ki for all i = 1, . . . ,m.

The question arises whether ak converges to the best approximation to g from

the set K. By the subsequent Theorem 7.1.3 we obtain that the iterate ak converges

indeed to the solution of (7.3) if the set Ki are closed subspaces and ∩m
i=1Ki is not

empty. This result was obtained by von Neumann for two subspaces and also studied

in [6] to which we refer. See [6, Corollary 9.28] and [6, Theorem 9.27] for a proof or

also for the case of two subspaces [6, Von Neumann Theorem 9.3].
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Theorem 7.1.3. Let M1, . . . , Mm be closed convex subspaces of the Hilbert space H.

Then with M := ∩m
i=1Mi and M 6= ∅

lim
k→∞

(PMn . . . PM2PM1)
k(x) = PM(x) (7.5)

for each x ∈ H where PMi
and PM are the projection operators onto Mi and M,

respectively.

Fortunately, we can extend this result to closed convex sets, but we have to

incorporate a correction to each projection due to Dykstra. Let [k] denote k modulo

m. We change our iterative procedure of (7.4) to Dykstra’s algorithm and obtain the

two new sequence {ak}, {ek} with

a0 := g, e−(m−1) = · · · = e−1 = e0 = 0,

ak := PK[k]
(ak−1 + ek−m),

ek := ak−1 + ek−m − ak

(7.6)

and ek the correction at each iteration. By [6, Boyle-Dykstra Theorem 9.24] we have

the following convergence result for that algorithm.

Theorem 7.1.4. Let K1, . . . , Km be closed convex subsets of the Hilbert space H.

For each g ∈ H, define the sequence {ak} as in (7.6). Then with K := ∩m
i=1Ki and

K 6= ∅
lim
k→∞
‖ak − PK(g)‖ = 0 (7.7)

where PKi
and PK are the projection operators onto Ki and K, respectively.

Now we have also obtained a convergence result when all Ki are closed convex sets

only but we have not clarified yet whether we can omit the correction of a particular

projection if the corresponding set Kj is one of the closed convex sets which is also a

closed subspace for j ∈ {1, . . . , m}. Fortunately, we can omit the particular correction

and moreover not only if the particular Kj is a closed convex subspace but also if it

is a closed affine set (translate of a subspace). That means the second term in (7.6)

becomes

ak := PK[k]
(ak−1) (7.8)
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if K[k] is a closed affine set. See [6, Section 9.26] for a proof. Note also that by [6,

Theorem 9.33] the convergence rate of the algorithm in (7.6) is linear if all Ki are

subspaces and the constant depends on the angles between one subspace Kj and the

intersection of all other subspaces Ki with i 6= j.

Summarizing all this, by the algorithm in (7.6) we can find the best approximation

from K to an element in H if all Ki are closed convex sets. If a particular Kj is a

subspace or translate of a subspace then we can omit the correction.

The only problem which remains is to find for a closed convex set, from which

the best approximation is desired and for which the projection operator is not easily

computable, a finite number of individual closed convex sets which intersection is the

actual set and which correspond to easily computable projection operators.

7.2 Higham’s Alternating Projections Method

In this section, we show how we can solve the problem of finding the nearest correla-

tion matrix (see (1.14)) by means of the alternating projections method as proposed

by Higham in [17]. We define the following two closed convex sets first which are

S := Sn
+ (7.9)

and

U := {Y ∈ Sn : Yii = 1, i = 1, . . . , n}. (7.10)

Clearly, the solution of our problem is an element of U ∩ S, which is not empty

since the identity In is an element of both sets S and U . We are interested in finding

the best approximation to a matrix G with G = GT as in (1.14) from the set U ∩ S.

In order to apply the alternating projections method we need to consider how to

project onto the set S and U individually. Note that our Hilbert space is the set

Sn with the inner product defined in (1.6) now. As regarded in Section 2.1.1 our

projection onto the set S is the operator (·)+. See (2.2) for its definition. Thus,

it remains the projection operator onto the set U which we deduce from the later

stated Theorem 7.3.2 with N := {(i, i) : i = 1, . . . , n} (see also [17, Theorem 3.1])
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and obtain that

PU(G) = G−Diag(diag(G− In)) (7.11)

with In the identity in Sn. Now we satisfy all conditions of Theorem 7.1.4 so that the

algorithm in (7.6) with m = 2, K1 := S, K2 := U , PK1 = PS and PK2 = PU converges

to our solution of the problem (1.14). Note that U is a translate of a subspace so

that the correction can be omitted:

U := In + {Y ∈ Sn : Yii = 0 ∀i = 1, . . . , n}. (7.12)

7.3 Adding further Constraints

7.3.1 Example Requiring further Constraints

Now we address the question of changing our problem (1.14) due to variations. From

Section 7.1 we saw that we can apply the alternating projections method as long as our

variations or additional constraints can be expressed as intersection of closed convex

sets under the assumption that the intersection is not empty and all projections

onto the individual sets are known. Our variation which we consider here is to add

additional constraints so that certain correlations of the input matrix are preserved

during the computation.

Therefore we consider an example first where preserving correlations is required.

Let {ξ1, . . . , ξm, ξm+1, . . . , ξn} be n assets of a portfolio and let C ∈ Sn be the corre-

sponding correlation matrix with the block structure

C :=


C11 C12

CT
12 C22


 (7.13)

where C11 ∈ Sm and C22 ∈ Sn−m contain the correlations of ξ1, . . . , ξm and ξm+1, . . . , ξn,

respectively. Now suppose that it is desired to change the correlations contained in

C22 for stress testing purposes and that the matrix C does not satisfy the conditions

of a correlation matrix after its modification. Let Ĉ ∈ Sn denote the modified matrix
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with

Ĉ :=


C11 C12

CT
12 Ĉ22


 . (7.14)

That means the nearest correlation matrix to Ĉ is desired but in general without

changing the values of C11 since our modification does not affect the assets ξ1, . . . , ξm

and thus, also not the correlations in C11. Consider also Finger’s algorithm in Section

1.5, the matrix C22 in (1.27) is not changed; see also [8].

However, fixing elements of our input matrix G is not covered in our problem

(1.14) so that all values of G are allowed to be changed. See therefore the concrete

example of [8] in Section 7.4.3. In order to tackle the problem described here, we

consider in the next sections our convex optimization problem (1.14) with additional

constraints and subsequently a variation of the alternating projections method.

7.3.2 The Problem

Before we change our alternating projections method so that the problem described

in Section 7.3.1 can be solved by this method we express our new problem mathe-

matically as

min
1

2
‖G−X‖2

F
, G ∈ Sn given

s.t. diag(X) = e, X ∈ Sn
+ and Xij = Gij ∀i, j ∈ N

(7.15)

where N is the index set which specifies all locations of the entries of G which are to

be preserved. Just as (1.14), this is also a convex optimization problem which has a

unique solution if the feasible set is not empty, N must be chosen so that a solution

of problem (7.15) exists.

7.3.3 Solving the Problem by Adding a further Projection

We clarify here what we have to change in Higham’s alternating projections method

in order to solve the problem (7.15). We define a new set F as

F := {Y ∈ Sn : Yij = Gij ∀(i, j) ∈ N}. (7.16)
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Clearly, the solution of the problem (7.15) is the best approximation to g from the

set F ∩ U ∩ S in the Hilbert space Sn with the inner product as defined in (1.6).

Furthermore, since F is a translate of a subspace (compare with U) and thus a closed

convex set our theory in Section 7.1 applies and the projection operator PF exists.

Hence the algorithm in (7.6) can also be applied for solving the problem (7.15) with

m = 3 and K = F ∩U ∩ S. That means we extend Higham’s alternating projections

method only by the projection PF . Note that the correction is still only required for

the projection onto the set S.

It remains to specify the projection operator onto the set F . Therefore, we char-

acterise general projections onto closed convex set with the subsequent Lemma 7.3.1

[18, Theorem 3.1.1] first and show then by means of this lemma how we can compute

the projection PF .

Lemma 7.3.1. Let H be a Hilbert space and C be a closed convex subset of H. Let

x be an arbitrary element in H. Then an element yp ∈ C is the projection PC(x) if

and only if

〈x− yp, y − yp〉 ≤ 0 ∀y ∈ C. (7.17)

with 〈·, ·〉 the inner product in H.

Proof. “⇒”: Let yp = PC(x) and let y be an arbitrary element in C. Since C is

convex we have that yp + α(y − yp) ∈ C for any α ∈ (0, 1) so that

‖x− yp‖ = min
z∈C
‖x− z‖ ≤ ‖x− (yp + α(y − yp))‖ . (7.18)

From (7.18) we obtain that

‖x− yp‖2 ≤ ‖x− yp − α(y − yp)‖2

= ‖x− yp‖2 − 2α〈x− yp, y − yp〉+ α2‖y − yp‖2.
(7.19)

Since α > 0 we divide the expression in (7.19) by α and simplify it to

〈x− yp, y − yp〉 ≤ α

2
‖y − yp‖2. (7.20)

Now we let α↘ 0 and we obtain one direction of the proof.
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“⇐”: Let yp be satisfying the inequality (7.17). If yp = x then obviously yp =

PC(x). If not, it holds for arbitrary y ∈ C that

0 ≥ 〈x− yp, y − yp〉

= 〈x− yp, y − x + x− yp〉

= ‖x− yp‖2 + 〈x− yp, y − x〉

≥ ‖x− yp‖2 − ‖x− yp‖‖y − x‖ .

(7.21)

The latter inequality holds because of the Cauchy-Schwarz inequality (〈x, y〉 ≤ ‖x‖‖y‖);
see Lemma 1.3.3. Since ‖x− yp‖ > 0 it follows that yp = PC(x).

Now we can formulate our theorem which specifies the projection PF .

Theorem 7.3.2. The projection PF onto F is the following operator P eF : Sn 7→ F

with

P eF (X) :=





Gij if (i, j) ∈ N

Xij otherwise

(7.22)

for each X in Sn.

Proof. Let X be an arbitrary element in Sn. Furthermore, for simplicity let T1 :=

X − P eF (X) and T2 := Y − P eF (X) with Y ∈ F . Then by Lemma 7.3.1 it is enough

to show that 〈T1, T2〉 ≤ 0 for all Y ∈ F . From (7.22) we obtain for T1 that

T1 =





Xij −Gij if (i, j) ∈ N

0 otherwise

(7.23)

and equally for T2 that

T2 =





0 if (i, j) ∈ N

Yij −Xij otherwise .

(7.24)

By the definition (1.6) of the inner product 〈·, ·〉 in Sn we have that 〈T1, T2〉 =
∑n

i,j=1 (T1)ij(T2)ij = 0 for all Y ∈ Sn which implies our assertion.
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7.3.4 The Algorithm

Here we formulate the modified version of Higham’s algorithm [17, Algorithm 3.3], we

include an additional projection which is the projection onto F defined in the Theorem

7.3.2. This allows us to hold fix specified elements of the input matrix during our

computation. Note that these specified elements must be in the real interval [−1, 1]

and must be chosen such that a nearest correlation matrix with these entries exists.

For the implementation of this algorithm see Section A.3 of Appendix A.

Algorithm 3. Given a symmetric matrix G ∈ Rn×n this algorithm computes the

nearest correlation matrix to G in the Frobenius norm subject to certain designated

elements of G remaining fixed. Convergence is tested using a given error tolerance

error tol .

Step 1: Set the starting values: ∆E0 = 0, Z0 = A and k := 1.

Step 2: Add Dykstra’s correction ∆Ek−1:

Rk := Zk−1 + ∆Ek−1

Compute the projection onto S:

Xk := PS(Rk)

Compute the new correction:

∆Ek := Rk −Xk

Step 3: Compute the projection onto U :

Yk := PU(Xk)

Step 4: Compute the projection onto F :

Zk := PF (Yk)

Step 6: Compute the following relative differences

Xdiff :=
‖Xk−Xk−1‖F

‖Xk‖F
, Ydiff :=

‖Yk−Yk−1‖F

‖Yk‖F

Zdiff :=
‖Zk−Zk−1‖F

‖Zk‖F
, XYdiff :=

‖Yk−Xk−1‖F

‖Yk‖F

ZXdiff :=
‖Zk−Xk−1‖F

‖Zk‖F
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If max {Xdiff , Ydiff , Zdiff , XYdiff , ZXdiff} ≤ error tol exit, otherwise

goto Step 2.

Note that we choose the stopping criterion according to Higham’s convergence

test for his algorithm in [17, Algorithm 3.3].

7.4 Numerical Tests

In this section, we perform some tests referring to how the required iteration number

changes when we fix certain correlations. Therefore, we use the same software and

hardware as in Section 6.1.1 and set our tolerance to 10−7 · n unless otherwise stated

where n is the size of the given symmetric matrix G. The examples used are described

in the particular section. Furthermore, we use the MATLAB function eig for our

eigenvalue decomposition in the alternating projections method.

7.4.1 Fixing Blocks of Correlations

In this section, we test how the convergence behaviour in terms of the iteration num-

ber varies when we perform a local correlation stress testing and a band correlation

stress testing. Our tests are similar to those in [28]. Therefore, let C be a correlation

matrix generated by the MATLAB function gallery(’randcorr’,n). We divide C

into 4 parts, that is

C :=


C1 C2

C3 C4


 (7.25)

with C1 ∈ Sm, C2 ∈ Rm×(n−m), C3 ∈ R(n−m)×m, C4 ∈ Sn−m and C3 = CT
2 .

Band Correlation Stress Testing

In our first experiment (Experiment 1) we perform the band correlation stress testing.

That means we fix all correlations of the part C1 only and stress the remaining parts

by forming a convex combination of C and Z with Z as a matrix of Example 1 (see
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Section 6.1.2) with β = 0.2. That is defining our set N as

N := {(i, j) : i, j = 1, . . . , m} (7.26)

and generating our example matrix Ĉ with

Ĉ :=





Cij if (i, j) ∈ N

λCij + (1− λ)Zij otherwise

(7.27)

and λ = 1/2.

For our testing purposes we run Higham’s algorithm on this test example with

different values of n = 300, 500, 1000 and m = 1
5
n, 2

5
n, 3

5
n, 4

5
n first, we do not fix the

correlations. Once we have run Higham’s method, we also run our modified version

on these examples and fix the correlations. If m is not an integer value we round the

value up to the next largest integer. Note that we use the same generated matrix Z

for all values of m.

We report our results in Table 7.1, where Higham’s Algorithm, Algorithm 3, Time,

‖G−X‖
F

and Iter. stand for Higham’s alternating projections method (see Section

7.2), our modified algorithm where we add the projection onto F , the time in seconds

to run the particular algorithm, the distance between the computed matrix and the

input matrix in the Frobenius norm and the required iteration number, respectively.

In the column“Ratio”we state the ratio between the number of the used iterations for

not fixing and fixing correlations. Furthermore, our test examples are distinguished

by the size of m and n in the Table 7.1.

Table 7.1: Band correlation stress testing, Experiment 1

Higham’s Algorithm Algorithm 3 Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

n = 300

m = 1
5
n 2.85 4.86 9 3.59 4.93 11 1.2

m = 2
5
n 2.42 4.38 8 5.79 4.59 17 2.1

m = 3
5
n 2.57 3.59 8 7.9 3.97 23 2.9
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Higham’s Algorithm Algorithm 3 Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

m = 4
5
n 2.63 2.40 8 15.73 2.89 46 5.8

n = 500

m = 1
5
n 17.48 10.72 10 23.32 10.8 13 1.3

m = 2
5
n 17.49 9.70 10 36.94 10.1 20 2.0

m = 3
5
n 17.13 8.06 10 56.33 8.82 30 3.0

m = 4
5
n 14.6 5.63 9 74.25 6.62 41 4.6

n = 1000

m = 1
5
n 162.9 27.9 12 238.3 28.2 17 1.4

m = 2
5
n 161.7 25.4 12 320.6 26.4 23 1.9

m = 3
5
n 154.8 21.3 12 424.9 23.1 31 2.6

m = 4
5
n 152.9 15.3 12 495.7 17.6 37 3.1

From Table 7.1 we observe that the iteration number of Higham’s algorithm de-

creases only slightly, although the distance ‖G−X‖
F

clearly becomes smaller when

we increase m, but the iteration number of Algorithm 3 increases more intensively

with m so that the ratio of the iteration numbers also increases when m becomes

larger. Furthermore, the ratio of the iteration number seems to be constant when we

increase n apart from the case when m = 4
5
n.

The closer m is to n the more correlations are fixed, hence the less correlations are

allowed to be changed and the problem becomes more difficult to solve which explains

why more iterations are required in Algorithm 3. Note also that if we increase m then

we change our convex sets and so presumably also the convergence rate.

If the matrix becomes larger (n becomes larger) the time which is used to run

the algorithms increases since e.g. performing the eigenvalue decomposition is more

expensive. However, the ratio between m and n is the same so that obviously the

ratio between the iteration numbers also remains similar.

It is interesting that the alternating projections method requires almost always

the same number of iterations if we increase m. Although less entries are changed if
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we increase m the problem only becomes slightly easier to solve.

Now we perform the second experiment (Experiment 2) in which we try to de-

termine how the algorithm behaves when we vary the number of modifications in

the parts C2, C3, C4. Therefore, we repeat the first experiment but restrict m to 3
5
n

and change randomly x times an entry of the parts C2, C3, C4 in the same manner to

Example 3 in Section 6.1.2 instead of forming the convex combination. We start with

x = 1
5
k and increase it by 1

5
k 4 times where k is number of all entries in C2, C3, C4.

Note that we use only one generated correlation matrix for all values of x and if we

increase x then we leave the modifications from the previous test example (smaller

x) and change entries only remainingly times.

We report our results in Table 7.2 labelled similarly to Table 7.1. The only

difference is that we use other test examples now which are specified by the value of

x indicating how often we modified a randomly chosen entry of the starting correlation

matrix in the appropriate blocks. The number in per cent indicates how much per

cent of all entries was changed.

Table 7.2: Band correlation stress testing, Experiment 2

Higham’s Algorithm Algorithm 3 Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

n = 300

x = 1
5
k (21.2%) 14.34 61.4 42 25.78 64.8 73 1.7

x = 2
5
k (35.3%) 16.83 84.1 52 27.9 88.5 85 1.6

x = 3
5
k (44.8%) 18.11 96.3 59 31.3 101.1 100 1.7

x = 4
5
k (51.2%) 19.19 103.3 64 32.0 108.2 99 1.5

n = 500

x = 1
5
k (21.1%) 84.88 106.6 49 137.4 112.2 79 1.6

x = 2
5
k (35.3%) 107.8 144.4 64 163.3 151.1 96 1.5

x = 3
5
k (44.7%) 119.9 165.9 72 181.8 173.0 107 1.5

x = 4
5
k (51.0%) 127.7 178.5 77 180.5 186.0 111 1.4
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Higham’s Algorithm Algorithm 3 Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

n = 1000

x = 1
5
k (21.1%) 855.9 225.5 64 1199 235.4 92 1.4

x = 2
5
k (35.2%) 1089 301.5 83 1408 312.9 116 1.4

x = 3
5
k (44.7%) 1222 344.0 94 1444 356.1 122 1.3

x = 4
5
k (51.1%) 1296 370.5 100 1515 382.9 128 1.3

In Table 7.2 we observe that when we increase x the iteration number of both

algorithms increases gradually and the ratio between the iteration numbers decreases

slightly. We see the same behaviour when we increase n. The larger the value of x,

the further the distance ‖G−X‖
F

and hence the more iterations are required.

Local Correlation Stress Testing

In our next experiments we stress correlations locally, we perform the same experi-

ments as above but we change correlations in the part C4 only and fix all remaining

parts. Therefore, we redefine our set N as

N := {(i, j) : i = 1, . . . , n; j = 1, . . . , m} ∪ {(i, j) : i = 1, . . . , m; j = 1, . . . , n}.

We report the results in Table 7.3 and in Table 7.4. In the former one we perform

Experiment 1 for local correlation stress testing and in the latter one Experiment 2.

Table 7.3: Local correlation stress testing, Experiment 1

Higham’s Algorithm Algorithm 3 Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

n = 300

m = 1
5
n 2.34 3.67 8 9.56 3.97 29 3.6

m = 2
5
n 1.99 2.41 7 19.1 6.32 55 7.9

m = 3
5
n 1.67 1.34 6 35.1 1.86 101 16.8

m = 4
5
n 1.32 0.56 5 65.3 0.83 181 36.2
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Higham’s Algorithm Algorithm 3 Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

n = 500

m = 1
5
n 14.57 8.22 9 59.5 8.70 33 3.7

m = 2
5
n 12.52 5.47 8 106.2 2.89 59 7.3

m = 3
5
n 10.59 3.0 7 198.0 3.96 107 15.3

m = 4
5
n 9.24 1.10 6 535.5 1.88 296 49.3

n = 1000

m = 1
5
n 141.4 21.5 11 610.66 22.48 44 4.0

m = 2
5
n 123.51 14.7 10 986.7 16.36 72 7.2

m = 3
5
n 109.2 8.44 9 1844 10.35 130 14.4

m = 4
5
n 70.9 3.06 6 4196 4.71 296 49.3

In Table 7.3 we obtain similar results as in Table 7.1. We notice a difference in the

ratio between the iteration numbers which is clearly larger and in the distance between

the input matrix and the solution which is smaller throughout all test examples.

Furthermore, we observe more clearly now that the iteration number decreases with

m when we run Higham’s algorithm but increases when we run the Algorithm 3 where

we fix the correlations.

These results are not surprising because the number of correlations which are

allowed to be changed is the same as in the band correlation stress test when we do

not fix our correlations but is far less when fixing the correlations, thus more iterations

are required if we run Algorithm 3 and approximately the same if we run Higham’s

algorithm. This yields the increased ratio between the iteration numbers. Moreover,

since we only change the C4 block in the local stress test, less correlations need to be

changed in order to obtain to the solution than in the band stress test which explains

that the iteration number in Higham’s algorithm decreases more clearly when m

increases and the smaller distance between the input matrix and the solution.
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Table 7.4: Local correlation stress testing, Experiment 2

Higham’s Algorithm Algorithm 3 Ratio

Time ‖G−X‖
F

Iter. Time ‖G−X‖
F

Iter.

n = 300

x = 1
5
k (5.3%) 8.06 28.72 27 275.02 31.13 849 31.4

x = 2
5
k (8.9%) 8.85 39.63 30 333.49 42.32 1098 36.6

x = 3
5
k (11.2%) 9.64 45.7 33 356.29 48.4 1168 35.4

x = 4
5
k (12.8%) 10.53 49.4 36 381.74 52.2 1287 35.8

n = 500

x = 1
5
k (5.3%) 44.02 50.97 28 1362.9 53.19 853 30.5

x = 2
5
k (8.8%) 51.42 68.36 34 1558.2 71.95 1137 33.4

x = 3
5
k (11.1%) 52.14 79.2 36 1816 82.53 1336 37.1

x = 4
5
k (12.7%) 56.24 85.48 39 2012 89.10 1419 36.4

n = 1000

x = 1
5
k (5.2%) 356.6 108.3 31 12498 113.6 1111 35.8

x = 2
5
k (8.8%) 417.5 145.9 39 15515 150.3 1451 37.2

x = 3
5
k (11.2%) 430.4 166.7 42 17087 172.5 1679 40.0

x = 4
5
k (12.7%) 554.6 180.4 44 18627 186.0 1805 41.0

Table 7.4 provides a similar insight in the behaviour of our algorithm. Again, the

iteration number increases if we increase x and the ratio of the iteration numbers

does not change intensively. Furthermore, in comparison to the band correlation

stress testing (experiment 2) a clearly larger number of the ratio of iteration numbers

is obtained which is obviously caused by stressing correlations locally only.

7.4.2 Fixing Arbitrarily Chosen Correlations

In the experiment in this section, we generate a correlation matrix A using the same

MATLAB function as in Section 7.4.1 for different size n = 300, 500, 1000. Then we

choose similarly to Example 3 randomly (uniformly) 1
2
n2 times a pair (i, j) with i, j ∈
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{1, . . . , n} (recurrences are allowed) and leave both entries Aij and Aji unchanged

during our subsequent perturbation. Moreover, after the perturbation we look for the

matrix which is nearest to our perturbed matrix and has the entries Aij (respectively

Aji) for (i, j) in the set of the first x (x is to specify) chosen pairs (i, j).

We perturb our matrix in similar manner to Example 1 for all remaining pairs

(i, j) only so that a solution always exits. We generate a symmetric matrix M ∈ Rn×n

with elements from a uniform distribution in the range [−β, β] where β is given and

add Mij to Aij for all pairs (i, j) which are not chosen.

We run our algorithm with these test examples where we use different value of

β = 0.01, 0, 05, 0.1, 0.5 and different values of x. We start with x = 0 for every test

example and increase it by n2/10 5 times. If the value n2/10 is not an integer then

we round the value up by means of the MATLAB function ceil.

We report our results in Table 7.5 where we show how many iterations in our

algorithm are used for all example matrices with all different values of x and β. The

example matrices are specified by the size n. Note that we only generate a correlation

matrix and choose the pairs (i, j) when we change the size n.

Table 7.5: Fixing arbitrarily chosen correlations

Iteration Number

x = 0 x = 1
10

n2 x = 2
10

n2 x = 3
10

n2 x = 4
10

n2 x = 5
10

n2

n = 300

β = 0.01 3 4 4 4 4 4

β = 0.05 5 7 9 11 14 18

β = 0.1 7 10 13 18 23 29

β = 0.5 21 44 72 110 156 214

n = 500

β = 0.01 3 4 5 6 7 8

β = 0.05 5 7 10 13 16 20

β = 0.1 8 11 16 21 28 36
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Iteration Number

x = 0 x = 1
10

n2 x = 2
10

n2 x = 3
10

n2 x = 4
10

n2 x = 5
10

n2

β = 0.5 23 56 93 142 201 280

n = 1000

β = 0.01 3 4 5 6 8 9

β = 0.05 6 8 11 14 18 23

β = 0.1 9 14 19 26 36 48

β = 0.5 27 74 127 192 270 365

Note that between 36% and 37% of all entries of our test examples were changed by

our perturbation. Considering the results in Table 7.5, we observe that the iteration

number becomes larger when we increase x and more intensively when β is also

increased. We obtain for example an increase of the iteration number by a factor

13.5 if we compare the iteration number between x = 0 and x = 5
10

n2 for β = 0.5

and n = 1000. A further observation is that the iteration number also increases if we

increase only the value of β or the size of the matrix n.

The larger the values of β and n the further the distance from our test example to

the original correlation matrix and also potentially to the nearest correlation matrix

in the Frobenius norm. Thus more iterations are required. The less values of the

test examples are allowed to be changed (value of x) the more values are changed

back when projecting onto F after projecting onto S and hence, more iterations

are required. Moreover, many more iterations are required the larger β since more

values need then to be changed to find the nearest correlation matrix because of

the more intensive modification of the original correlation matrix. This explains our

observations in Table 7.5.

7.4.3 Example of Finger

For our last experiment, we choose a concrete example of four Asian and three non-

Asian currencies from [8] which is actually RiskMetrics data of June 13, 1997. The
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correlations are contained in the matrix

Ĝ :=




1.0 0.18 −0.13 −0.26 0.19 −0.25 −0.12

0.18 1.0 0.22 −0.14 0.31 0.16 0.09

−0.13 0.22 1.0 0.060 −0.080 0.040 0.04

−0.26 −0.14 0.06 1.0 −0.21 0.14 −0.15

0.19 0.31 −0.08 −0.21 1.0 0.22 0.10

−0.25 0.16 0.04 0.14 0.22 1.0 0.07

−0.12 0.09 0.04 −0.15 0.10 0.07 1.0




where Ĝ(1 : 3, 1 : 3) contains only the correlation between the non-Asian currencies

and Ĝ(4 : 7, 4 : 7) between the Asian currencies. This matrix is a correlation matrix

since the smallest eigenvalue is 0.518. Now we suppose that a user does not agree

with the correlation between the Asian currencies and sets all these correlations to a

blanket level of 0.85 which yields the matrix G with

G :=




1.0 0.18 −0.13 −0.26 0.19 −0.25 −0.12

0.18 1.0 0.22 −0.14 0.31 0.16 0.09

−0.13 0.22 1.0 0.06 −0.08 0.040 0.04

−0.26 −0.14 0.06 1.0 0.85 0.85 0.85

0.19 0.31 −0.08 0.85 1.0 0.85 0.85

−0.25 0.16 0.04 0.85 0.85 1.0 0.85

−0.12 0.09 0.04 0.85 0.85 0.85 1.0




.

This obtained matrix G is not a correlation matrix since the smallest eigenvalue is

−0.038. That is why we apply Higham’s alternating projections method in order to

compute the nearest correlation matrix and obtain the solution X after 35 iterations

with
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X :=




1.0 0.1838 −0.1318 −0.2514 0.1784 −0.2479 −0.1191

0.1838 1.0 0.2182 −0.1316 0.2986 0.1620 0.09092

−0.1318 0.2182 1.0 0.05607 −0.07469 0.03905 0.03957

−0.2514 −0.1316 0.05607 1.0 0.8245 0.8545 0.8521

0.1784 0.2986 −0.07469 0.8245 1.0 0.8439 0.8472

−0.2479 0.1620 0.03905 0.8545 0.8439 1.0 0.8505

−0.1191 0.09092 0.03957 0.8521 0.8472 0.8505 1.0




which has a distance ‖G−X‖
F

= 0.0491 to the matrix G. We realize that the

part X(1 : 3, 1 : 3) containing the correlation between the non-Asian currencies has

changed. However, it is not desired to change this part since these correlations are

assumed to be correct so that we apply our Algorithm 3. We set N := {(i, j) : i, j =

1, . . . , 3} so that the leading part which contains the correlations between the non-

Asian currencies remains fixed. We obtain the solution XP after 45 iterations with

XP :=




1.0 0.18 −0.13 −0.25 0.18 −0.25 −0.12

0.18 1.0 0.22 −0.13 0.30 0.16 0.090

−0.13 0.22 1.0 0.060 −0.070 0.040 0.040

−0.25 −0.13 0.060 1.0 0.82 0.85 0.85

0.18 0.30 −0.070 0.82 1.0 0.84 0.85

−0.25 0.16 0.040 0.85 0.84 1.0 0.85

−0.12 0.090 0.040 0.85 0.85 0.85 1.0




where ‖G−XP‖F
= 0.0547. We compare with Finger’s obtained matrix. He applied

his algorithm described in Section 1.5 with the following adjusting value ν = 0.7831

and obtained as solution the following matrix XF [8] with
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XF :=




1.0 0.18 −0.13 −0.27 −0.08 −0.24 −0.20

0.18 1.0 0.22 −0.10 0.27 0.20 0.19

−0.13 0.22 1.0 0.04 −0.01 0.03 0.04

−0.27 −0.10 0.04 1.0 0.81 0.87 0.81

−0.08 0.27 −0.01 0.81 1.0 0.89 0.86

−0.24 0.20 0.03 0.87 0.89 1.0 0.86

−0.20 0.19 0.04 0.81 0.86 0.86 1.0




which has a distance ‖G−XF‖F
= 0.2978 to the matrix G. Note that we rounded the

matrix XF to the second post decimal position by means of the MATLAB function

round in order to compare it with the matrix of Finger. The matrix X is rounded

to the fourth post decimal position so that the change in the values of the block

X(1 : 3, 1 : 3) can be recognized.

First we notice that the difference between ‖G−XP‖F
and ‖G−X‖

F
is only

0.0056 even though we rounded the matrix XP . Second, we observe that our matrix

XP computed by means of the Algorithm 3 is clearly nearer to the input matrix G

than the matrix XF determined by Finger. This shows that our algorithm returns

accurate results. We expect these results because our computed matrix is the nu-

merical solution of our posed optimization problem differing from the true solution

only because of rounding errors. In contrast to XP , the matrix XF is obtained by an

approach which actually finds a matrix being in the feasible set only and does not

underlie a minimization strategy.

7.4.4 Conclusion

From the numerical tests our first conclusions are as we expected that the returned

matrix has indeed the correlations which are desired to be preserved. Furthermore,

we reason that the iteration number increases if we include the further projection

onto F and that the intensity of the increase depends on how many correlations are

desired to be preserved and how far the distance between the matrix to which the
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nearest correlation matrix is desired and the nearest correlation itself is, in other

words, how intensively the original correlation matrix was modified. We noticed a

large difference in the ratio between the iteration numbers of Higham’s alternating

projections method and Algorithm 3 when we stressed the correlations locally towards

the band correlation stress.

Clearly, a further analysis is needed to understand the behaviour of the alternating

projections method in more detail when we include a further projection onto convex

sets, in particular onto the set F . It is certainly advisable to consider alternative

algorithms with a better convergence rate like the recently proposed method of Qi

and Sun in [28] for preserving correlations, in particular, for local correlation stressing

and a large size of the matrix.

We also remark here that most of time (about 95%) in all test examples is spent

on computing the projection onto S, the main part of the computational time is the

eigenvalue decomposition. The time to compute the projection onto U or F was

negligible.



Chapter 8

Concluding Remarks

Throughout the first chapters, we have investigated solving the problem of finding the

nearest correlation matrix. Based on the algorithm of Qi and Sun which converges

quadratically to the solution of this problem, we dealt with the question how we can

improve the efficiency and the reliability of this algorithm and suggested a modified

version. These modifications concern the iterative method, which we changed from

the CG method to the MINRES routine and using a preconditioner in the iterative

method. We found an inexpensive way to compute the Jacobi preconditioner. We

also changed the method for eigenvalue decomposition from the MATLAB function

eig to f08fc which uses a divide and conquer algorithm (accessing the MATLAB-

NAG Toolbox). Furthermore, we detected a problem with the Armijo rule which we

tried to avoid by implementing the suggestions in Section 4.7.1. According to our

numerical tests in Chapter 6, we conclude that we could improve our efficiency and

that our suggested algorithm is reliable and robust. We avoided the problem with

the Armijo rule and made sure that the algorithm is competitive with the alternating

projections method in terms of the accuracy.

In the second instance, we have investigated the alternating projections method,

in particular Higham’s method, which solves also the problem of finding the nearest

correlation matrix, and variations of it. We added further constraints to the problem,

more precisely, involved the option of preserving correlations during the computation

and investigated how the iteration number varies towards solving the original problem

116
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with Higham’s method. According to the tests in Section 7.4 we conclude that the

convergence depends significantly on how many correlations are fixed and how far

the distance to the nearest correlation matrix is. Furthermore, we also confirm our

remark in Section 1.5 that the alternating projections method of Higham is quite

flexible to variations since it was fairly easy to implement the further projection and

thus to consider further constraints.

For future work, the Algorithm 2 could also be extended to solving the problem in

(1.14) with further constraints, in particular, for fixing correlations. So for example

Qi and Sun [28] also propose an algorithm for finding the nearest correlation matrix

which involves the option of preserving correlations. They use in their method the

quadratically convergent algorithm (Algorithm 1) introduced here. This extended

algorithm could be an enormous improvement in efficiency towards the alternating

projections method when the nearest correlation matrix is to be computed and certain

correlations are to be preserved.



Bibliography

[1] Educational datasets. http://www.riskmetrics.com/stddownload_edu.html.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorenson. LAPACK

Users’ Guide, 2nd Edition. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 1995.

[3] M. F. Anjos, N. J. Higham, M. Takouda, and H. Wolkowicz. A semidefinite

programming approach for the nearest correlation matrix problem. Preliminary

research report, University of Waterloo, Waterloo, Ontario, 2003.

[4] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.

2nd edition 1999.

[5] Philip I. Davies and Nicholas J. Higham. Numerically stable generation of cor-

relation matrices and their factors. BIT, 40(4):640–651, 2000.

[6] Frank Deutsch. Best Approximation in Inner Product Spaces. CMS Books in
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Appendix A

Implementations

A.1 Qi and Sun’s Algorithm

1 %%%%%%% This code is designed to solve %%%%%%%%%%%%%

%%%%%%% min 0.5*<X-G, X-G>

%%%%%%% s.t. X_ii =1, i=1,2,...,n

%%%%%%% X>=0 (symmetric and positive semi -definite) %%%%%%%%%%%%%%%

%%%%%%%

6 %%%%%%% based on the algorithm in %%%%%

%%%%%%% ‘‘A Quadratically Convergent Newton Method for %%%

%%%%%%% Computing the Nearest Correlation Matrix %%%%%

%%%%%%% By Houduo Qi and Defeng Sun %%%%%%%%%%%%

%%%%%%% SIAM J. Matrix Anal. Appl. 28 (2006) 360- -385.

11 %%%%%%%

%%%%%%% Last modified date: August 17, 2006

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% The input argument is the given symmetric G %%%%%%%%

%%%%%%% The output are the optimal primal and dual solutions

%%%%%%%%

%%%%%%%

16 %%%%%%% Send your comments and suggestions to %%%%%%

%%%%%%% hdqi@soton.ac.uk or matsundf@nus.edu.sg %%%%%%

%%%%%%% %%%%%%%%%%%%%%%

%%%%%%% Warning: Accuracy may not be guaranteed !!!!! %%%%%%%%

122
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21 %%%%%%% Note that this is a Modification of Qi and Sun ’s algorithm!

f unc t i on [X,y] = cornewton_qi_sun(G)

d i sp (’ ---Newton method starts --- ’)

t0=cputime;

26 [n,m] = s i z e (G);

g l oba l b0

b0 = ones(n,1);

31

Res_b = ze ros (300 ,1);

y= ze ros (n,1);

y=b0- d iag (G); %Initial point

36

Fy= ze ros (n,1);

k=0;

f_eval = 0;

41

Iter_Whole = 100;

Iter_inner = 40; % Maximum number of Line Search in Newton method

maxit = 200; %Maximum number of iterations in PCG

46 Inner = 0;

tol = 1.0e-6;

error_tol = 1.0e-6; % termination tolerance

sigma_1 = 1.0e-4; %tolerance in the line search of the Newton method

51

x0 = y;

M = eye(n,n); % Preconditioner
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56 d = ze ros (n,1);

C = G + d iag (y);

[P,D] = e i g (C);

lambda = d iag (D);

61 [f0,Fy] = g rad i en t (y,lambda ,P,b0,n);

f_eval = f_eval + 1;

b =b0 - Fy;

norm_b = norm(b);

66 f p r i n t f (’Newton: Norm of Gradient %d \n’,norm_b)

Omega = omega_matrix(lambda ,n);

x0 = y;

wh i l e (norm_b >error_tol & k< Iter_Whole)

71

[d, f l ag ,relres ,iterk] = pre_cg(b,tol ,maxit ,M,Omega ,P,n);

%fprintf(’Newton: Number of CG Iterations %d \n’, iterk)

76 i f ( f l a g ~= 0); % if CG is unsuccessful , use the negative gradient

direction

d = b0 - Fy;

end %else was stated in the original file

slope = (Fy-b0) ’*d; %%% nabla f d

81 y = x0+d; %temporary x0+d

C = G + d iag (y);

[P,D] = e i g (C); % Eig -decomposition: C =P*D*P^T

86 lambda = d iag (D);

[f,Fy] = g rad i en t (y,lambda ,P,b0 ,n);

k_inner = 0;

wh i l e (k_inner <= Iter_inner & f > f0 + sigma_1 *0.5^ k_inner*slope)
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91 k_inner = k_inner + 1;

y = x0 + 0.5^ k_inner*d; % backtracking

C = G + d iag (y);

[P,D] = e i g (C); % Eig -decomposition: C =P*D*P^T

lambda = d iag (D);

96 [f,Fy] = g rad i en t (y,lambda ,P,b0,n);

end % loop for while

f_eval = f_eval+k_inner +1;

x0 = y;

k = k + 1;

101 f0 = f; %not included in the original file

b = b0-Fy;

norm_b = norm(b);

%fprintf(’Newton: Norm of Gradient %d \n’,norm_b)

106 Res_b(k) = norm_b;

Omega = omega_matrix(lambda ,n);

% here end statement in the original file

end %end loop for while

f p r i n t f (’Newton: function value %d \n’,f0)

111 f p r i n t f (’Newton: Norm of Gradient %d \n’,norm_b)

f p r i n t f (’Newton: Number of Iterations %d \n’, k)

f p r i n t f (’Newton: Number of Function Evaluations %d \n’, f_eval)

i = 1;

%sum(max(lambda ,0) .^2)

116 C = P’;

wh i l e (i < n+1)

C(i,:) = max(0,lambda(i)) * C(i,:);

i = i + 1;

end

121 X = P*C; % Optimal solution X*

%norm(X,’fro ’)^2

time_used = cputime - t0

%%% end of the main program

126
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%%%%%%

%%%%%% To generate F(y) %%%%%%%

%%%%%%%

131 f unc t i on [f,Fy] = g rad i en t (y,lambda ,P,b0,n)

%global P omega

%[n,n]=size(P);

f = 0.0;

Fy = ze ro s (n,1);

136 %Im =find(lambda <0);

%Ip =find(lamba >=0);

%lambdap=max(0,lambda);

%H =diag(lambdap); %% H =P^T* diag(x) *P

% H =H*P’; %%% Assign H*P’ to H

141 H = P’;

i = 1;

wh i l e (i <= n)

H(i,:) = max(lambda(i) ,0)*H(i,:);

i = i+1;

146 end

i = 1;

wh i l e (i <= n)

Fy(i) = P(i,:) * H(:,i);

i = i+1;

151 end

%compute frobenius - norm

i = 1;

wh i l e (i <= n)

f = f+(max(lambda(i) ,0))^2;

156 i = i+1;

end

f = 0.5*f - b0 ’*y;

161 r e tu rn
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% end of gradient.m %%%%%%

166 %%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% To generate the first -order difference of lambda

%%%%%%%

f unc t i on omega = omega_matrix(lambda ,n)

omega = ones(n,n);

171 %Im =find(lambda <0);

%Ip =find(lamba >=0);

i = 1;

wh i l e (i <= n)

j = 1;

176 wh i l e (j <= n)

i f abs(lambda(i) - lambda(j)) >1.0e-10

omega(i,j) = (max(0,lambda(i)) - max(0,lambda(j)))/( lambda(i)-

lambda(j));

e l s e i f max(lambda(i),lambda(j)) <= 1.0e-15

omega(i,j) = 0;

181 end

j = j+1;

end

i = i+1;

end

186

r e tu rn

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% end of omega_matrix.m %%%%%%%%%%

191

%%%%%% PCG method %%%%%%%

%%%%%%% This is exactly the algorithm by Hestenes and Stiefel

(1952)

%%%%%An iterative method to solve A(x) =b

196 %%%%% The symmetric positive definite matrix M is a
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%%%%%%%%% preconditioner for A.

%%%%%% See Pages 527 and 534 of Golub and va Loan (1996)

f unc t i on [p, f l ag ,relres ,iterk] = pre_cg(b,tol ,maxit ,M,Omega ,P,n);

201 % Initializations

r = b; %We take the initial guess x0=0 to save time in calculating

A(x0)

n2b = norm(b); % norm of b

tolb = tol * n2b; % relative tolerance

p = ze ros (n,1);

206 f l a g = 1;

iterk = 0;

relres = 1000; %%% To give a big value on relres

% Precondition

z = r; %%%%% z = M\r; if M is not the identity matrix

211 rz1 = r’*z;

rz2 = 1;

d = z;

% CG iteration

f o r k = 1:maxit

216 i f k > 1

beta = rz1/rz2;

d = z + beta*d;

end

w = Jacobian_matrix(d,Omega ,P,n); %w = A(d);

221 denom = d’*w;

iterk = k;

relres = norm(z)/n2b; %relative residue =norm(z) /

norm(b)

i f denom <= 0

sssss = 0

226 p = d/norm(d); % d is not a descent direction

break % exit

e l s e

alpha = rz1/denom;

p = p + alpha*d;
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231 r = r - alpha*w;

end

z = r; % z = M\r; if M is not the identity matrix ;

i f norm(z) <= tolb % Exit if Hp=b solved within the relative

tolerance , condition 35

iterk = k;

236 relres = norm(z)/n2b; %relative residue =norm(z) / norm

(b)

f l a g = 0;

break

end

rz2 = rz1;

241 rz1 = r’*z;

end

re tu rn

246 %%%%%%%% %%%%%%%%%%%%%%%

%%% end of pre_cg.m%%%%%%%%%%%

251 %%%%%% To generate the Jacobian product with x: F’(y)(x) %%%%%%%

%%%%%%%

f unc t i on Ax = Jacobian_matrix(x,Omega ,P,n)

256 Ax = ze ro s (n,1);

%Im =find(lambda <0);

%Ip =find(lamba >=0);

%H =diag(x);

H = P;

261 i = 1;

wh i l e (i <= n)

H(i,:) = x(i)*H(i,:); % H=diag(x)*P

i = i + 1;
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end

266 H = P’*H; %% H =P^T* diag(x) *P

i = 1;

wh i l e (i <= n)

%j=1;

%while (j<=n)

271 % H(i,j)=Omega(i,j)*H(i,j);

% j=j+1;

%end

H(i,:) = Omega(i,:).*H(i,:);

i = i+1;

276 end

H = H*P’; %%% Assign H*P’ to H= Omega o P^T*diag(x)*P)*P^T

i = 1;

wh i l e (i <= n)

Ax(i) = P(i,:)*H(:,i);

281 i = i + 1;

end

re tu rn

286 %%%%%%%%%%%%%%%

%end of Jacobian_matrix.m%%%

A.2 Implementation of Algorithm 2

%PROGRAM FOR FINDING THE NEAREST CORRELATION MATRIX

%Modified version of Qi and Sun ’s algorithm

3

f unc t i on [X,iter ,f_eval ,normgrad] = cornewton(G,error_tol ,flag2 ,

diaones ,maxitmeth ,maxit ,pre ,prnt)

% [X,iter ,f_eval ,normgrad] = cornewton(G,error_tol ,flag2 ,diaones ,

maxitmeth ,maxit ,pre ,prnt)

% finds the nearest correlation matrix to the symmetric matrix G.

% error_tol is a termination tolerance

8 % (default is length(G)*10^( -7)).
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% flag2 = 0: using for full eigendecomposition MATLAB function eig

% (LAPACK -function DSYEV).

% flag2 = 1: using for full eigendecomposition MATLAB -NAG Toolbox

% function f08fa

13 % flag2 = 2: using for full eigendecomposition MATLAB -NAG Toolbox

% function f08fc (default)

% flag2 = 3: using for full eigendecomposition MATLAB -NAG Toolbox

% function f08fd

% diaones = 0: the matrix X is not changed after

18 % the computation (default)

% diaones = 1: the diagonal is set to 1 after computing X

% diaones = 2: the diagonal is rescaled to 1 and then set to 1

% maxitmeth: is the number of the maximal iterations in the

% iterative method , (default is 200)

23 % maxit: is the number of maximal iterations in the Newton -method ,

% (default is 200)

% pre = 1: using a preconditioner in the iterative method

% (default is 1)

% prnt = 1 for display of intermediate output. (default is 0)

28

%Test input values

%Test the matrix

i f i sempty (G), error_function (5), end

33 [n,m] = s i z e (G);

i f (m ~= n), error_function (6); end;

i f (~ i s r e a l (G)), error_function (7); end;

i f ~isequal(G,G’)

%matrix not symmetric

38 G = (G + G’)/2;

end;

%Test error_tol

i f na rg in < 2 || i sempty (error_tol)

error_tol = l ength (G) * 10^( -7);

43 e l s e

i f error_tol <= 0, error_function (8), end
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end

%Test flag2

i f na rg in < 3 || i sempty (flag2)

48 flag2 = 2;

end

%Test diaones

i f na rg in < 4 || i sempty (diaones), diaones = 0; end

%Test maxitmeth

53 i f na rg in < 5 || i sempty (maxitmeth)

maxitmeth = 200;

e l s e

i f maxitmeth <= 0, error_function (9), end

end

58 %Test maxit

i f na rg in < 6 || i sempty (maxit)

maxit = 200;

e l s e

i f maxit <= 0, error_function (10), end

63 end

%Test pre

i f na rg in < 7 || i sempty (pre), pre = 1; end

%Test prnt

68 i f na rg in < 8 || i sempty (prnt), prnt = 0; end

print_function(prnt ,1); %print Newton -method starts

t0 = cputime;

73

% Determination of constants

Iter_inner = 40; % Maximum number of Line Search in Newton method

tol = 1.0e-6; %constant for the angle condition

sigma_1 = 1.0e-4; %tolerance in the line search of the Newton method

78 b0 = ones(n,1);

method = ’pminres ’;
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%method is a string which determinates the iterative method

% method = ’CG’ - Conjugate gradient method (NAG -routine)

83 % method = ’SYMMLQ ’ - SYMMLQ (NAG -routine)

% method = ’pminres ’ - MINRES (implemetation of David Silvester)

% (default)

% method = ’RGMRES ’ - restarted generalized minimal residual

% method (NAG -routine)

88 % method = ’TFQMR ’ - transpose free quasi minimal residual method

% (NAG -routine)

% method = ’BIGCSTAB ’ - bi-conjugate gradient stabilized method

% (NAG -routine)

93

%Initial values

y = b0 - d iag (G); %Initial point

x0 = y;

98 f_eval = 0;

[P,lambda] = eigdecomp(G,y,flag2 ,n);

%compute grad(theta(y))

[f0,Fy] = g rad i en t (y,lambda ,P,b0,n);

103 f_eval = f_eval + 1;

b = b0 - Fy;

grad = -b;

normgrad = norm(b);

Omega = omega_matrix(lambda ,n);

108

print_function(prnt ,2,normgrad); %print the norm of the gradient

k = 0;

% NEWTON -ITERATION STARTS

113 wh i l e (normgrad > error_tol && k < maxit)

% COMPUTE V_k *d = -grad

i f (pre)

precond = precond_matrix(Omega ,P);
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[d, f l ag ,iterk] = solver(@(x)Jacobian_matrix(x,Omega ,P,n,0),n,b,

min(0.5, normgrad),maxitmeth ,method ,precond);

118 e l s e

[d, f l ag ,iterk] = solver(@(x)Jacobian_matrix(x,Omega ,P,n,0),n,b,

min(0.5, normgrad),maxitmeth ,method ,[]);

end;

%TEST CONDITION 2 (angle condition , descent conditon)

123 i f ( f l a g == 0)

norm_d = norm(d);

i f (abs(norm_d) <= eps)

%X = computeX(P,lambda ,n,diaones);

error_function (12);

128 end;

%Test for descent direction and angle -condition

i f (-(grad/norm_d) ’*(d/norm_d) < min(tol ,normgrad))

f l a g = 1;

e l s e

133 slope = (grad)’*d;

end;

end;

% if iterative method was unsuccessful or the angle condition

% failed , use the negative gradient direction

138 i f ( f l a g ~= 0)

d = -grad;

slope = -normgrad ^2;

end

143 print_function(prnt ,3, f l ag ,k); % print which direction we use

print_function(prnt ,4,k,iterk);

%Temporary update

y = x0 + d;

148 [P,lambda] = eigdecomp(G,y,flag2 ,n);

[f,Fy] = g rad i en t (y,lambda ,P,b0 ,n); %compute F(y)

norm_x=norm(x0);
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f_eval = f_eval + 1;

153 %ARMIJO -CONDITION

% test whether accuracy problem can occur

i f (abs ((f - f0)/(1 + abs(f) + abs(f0)))/100 < eps) && (abs(slope

/(1 + abs(f0) + abs(f))/100) < eps)

%TEST convergence condition

print_function(prnt ,13);

158 i f (norm(Fy - b0)/normgrad > 0.9)

%Take negative gradient direction

d = -grad;

i f (norm(d)/(1 + norm_x)/10 < eps)

error_function (1); %warning d too small

163 break ;

end;

print_function(prnt ,15);

y = x0 + d;

[P,lambda] = eigdecomp(G,y,flag2 ,n);

168 [f,Fy] = g rad i en t (y,lambda ,P,b0,n);

f_eval = f_eval + 1;

e l s e

print_function(prnt ,14);

end

173 e l s e

%ARMIJO -BACK -TRACKING

k_inner = 0;

wh i l e (k_inner <= Iter_inner && f > f0 + sigma_1 *0.5^ k_inner*

slope)

k_inner = k_inner + 1;

178 y = x0 + 0.5^ k_inner * d; % backtracking

[P,lambda] = eigdecomp(G,y,flag2 ,n);

[f,Fy] = g rad i en t (y,lambda ,P,b0,n);% compute F(y)

i f (abs ((f - f0)/(1 + abs(f) + abs(f0)))/100 < eps) && (abs(

slope /(1 + abs(f0) + abs(f))/100) < eps)

%TEST convergence condition

183 print_function(prnt ,13);
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i f (norm(Fy - b0)/normgrad > 0.9)

d=0; %next if -condition is satisfied

break ;

e l s e

188 break ;

end

end;

end; % loop for while

193 %Check whether step is sufficiently large

i f (k_inner > 0) && (norm(0.5^ k_inner*d)/(1 + norm_x)/10 < eps)

%Take negative gradient direction

d = -grad;

i f (norm(d)/(1 + norm_x)/10 < eps)

198 error_function (1); %warning d too small

break ;

end;

print_function(prnt ,15);

y = x0 + d;

203 [P,lambda] = eigdecomp(G,y,flag2 ,n);

[f,Fy] = g rad i en t (y,lambda ,P,b0,n);

end;

print_function(prnt ,5,k,k_inner); %print the iterations number

f_eval = f_eval + k_inner;

208 end;

%UPDATE

f0 = f;

x0 = y;

213 k = k + 1;

b = b0 - Fy;

norm_b = norm(b);

%TEST whether norm of the gradient has become smaller

i f (abs(norm_b - normgrad)/(1 + norm_b + normgrad)/10 < eps)

218 error_function (1); %warning minimal value achieved

break ;
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end;

normgrad = norm_b;

grad = -b;

223 Omega = omega_matrix(lambda ,n);

end %end loop for while

i f (k > maxit)

error_function (2); %warning Maximal iteration number achieved

end;

228

iter = k;

%compute X

i f (iter == 0) && (min(lambda) >= 0)

%Setting the diagonal to 1 by our chosen

233 %starting value was

%sufficient to satisfy the stopping criterion

%and all eigenvalues are nonnegative

X = G - d iag ( d iag (G)) + eye(n);

e l s e

238 X = computeX(P,lambda ,n,diaones);

end;

%PRINT outputs

print_function(prnt ,7,f0);

print_function(prnt ,8,normgrad);

243 print_function(prnt ,9,k);

print_function(prnt ,10, f_eval);

print_function(prnt ,12,norm(G - X,’fro’));

print_function(prnt ,11, cputime - t0); %print time

248

%%% end of the main program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

253 %function for computing the solution X

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on [X] = computeX(P,lambda ,n,diaones)
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C = P’;

f o r i = 1:n

258 C(i,:) = max(0,lambda(i)) * C(i,:);

end

X = P*C; % Optimal solution X*

switch diaones

case 1 %set diagonal to 1

263 X = X - d iag ( d iag (X)) + eye(n);

case 2 %rescale diagonal to 1 and set diagonal to 1

scale = d iag (X);

scale( f i n d (scale <= 1.0e-6)) = 1.0e-6;

scale = scale .^( -1/2);

268 X = d iag (scale) * X * d iag (scale);

X = X - d iag ( d iag (X)) + eye(n);

end;

X = (X + X’)/2; %Ensuring symmetry

273

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%function for computing the eigenvalue decomposition of G+Diag(y)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on [P,lambda] = eigdecomp(G,y,flag2 ,n)

278 C = G + d iag (y);

%eigendecomposion

switch flag2

case 0

[P,D] = e i g (C);

283 lambda = d iag (D);

i n f o = 0;

case 1

[P,lambda , i n f o ] = f08fa(’V’,’U’,C);

case 4

288 [a, m, lambda , P, jfail , i n f o ] = f08fb(’V’, ’A’, ’U’, C,0,0,

int32 (1),int32(n) ,0);

case 3
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[a,m,lambda ,P,is, i n f o ] = f08fd(’V’,’A’,’U’,C,0,0,int32 (1),int32(

n) ,0);

otherwise

[P, lambda , i n f o ] = f08fc(’V’, ’U’, C);

293 end;

i f ((flag2 > 1) && ( i n f o ~= 0))

error_function (3);

[P,lambda , i n f o ] = f08fa(’V’,’U’,C);

end;

298 i f ( i n f o ~= 0)

error_function (4);

end;

303 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%function for printing warnings and errors on the screen

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on error_function(pos)

switch pos

308 case 1

warning(’Machine precision is limiting convergence.’);

case 2

warning(’Maximal iteration number achieved.’);

case 3

313 warning(’Error occured during computing an eigenvalue

decomposition , trying another method.’);

case 4

e r r o r (’Error occured during computing an eigenvalue

decomposition ’);

case 5

e r r o r (’No matrix.’);

318 case 6

e r r o r (’Matrix is not square.’);

case 7

e r r o r (’Matrix is not real.’);

case 8
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323 e r r o r (’error_tol must be greater than zero’);

case 9

e r r o r (’maxitmeth must be greater than zero’);

case 10

e r r o r (’maxit must be greater than zero’);

328 case 12

e r r o r (’Norm of the step direction too small.’);

end;

333 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%function for printing comments on the screen

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on print_function(prnt ,pos ,para1 ,para2)

i f prnt

338 switch pos

case 1

d i sp (’ ---Newton method starts --- ’);

case 2

f p r i n t f (’Newton: Norm of Gradient %d \n’,para1);

343 case 3

i f (para1 ~= 0)

f p r i n t f (’%2.0f: we use linesearch method\n’, para2);

e l s e

f p r i n t f (’%2.0f: we use Newton method\n’, para2);

348 end

case 4

f p r i n t f (’%2.0f: we use %4.0f iteration in CG\n’, para1 ,para2)

;

case 5

f p r i n t f (’%2.0f: inner -iterations %2.0f\n’, para1 ,para2);

353 case 7

f p r i n t f (’Newton: function value %d \n’,para1);

case 8

f p r i n t f (’Newton: Norm of Gradient %d \n’,para1);

case 9
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358 f p r i n t f (’Newton: Number of Iterations %d \n’, para1);

case 10

f p r i n t f (’Newton: Number of Function Evaluations %d \n’, para1)

;

case 11

f p r i n t f (’Time used: %d \n’,para1);

363 case 12

f p r i n t f (’The distance ||G-X||_F is: %d \n’,para1);

case 13

f p r i n t f (’Armijo deactivated\n’);

case 14

368 f p r i n t f (’Taking Newton -direction with step length 1\n’);

case 15

f p r i n t f (’Taking negative gradient direction\n’);

end;

end;

373

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%function for generating J(y)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

378

f unc t i on [f,Fy] = g rad i en t (y,lambda ,P,b0,n)

H = P;

f o r i = 1:n

H(:,i) = max(lambda(i) ,0) * H(:,i);

383 end

Fy = sum(P.*H,2);

%compute Frobenius - norm squared

f = sum(max(lambda ,0) .^2);

388 f = 0.5*f - b0 ’*y;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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393 % function for generating the constructed matrix M_y

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on omega = omega_matrix(lambda ,n)

omega = ones(n,n);

f o r i = 1:n

398 f o r j = 1:n

i f abs(lambda(i) - lambda(j)) >1.0e-10

omega(i,j) = (max(0,lambda(i)) - max(0,lambda(j)))/( lambda(i)

- lambda(j));

e l s e i f max(lambda(i),lambda(j)) <= 1.0e-15

omega(i,j) = 0;

403 end

end

end

408 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function for generating the preconditioner

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on c = precond_matrix(Omega ,P)

PS = P.^2;

413 c = sum(PS.*(PS * Omega) ,2); %L_k = W_k*Q_k , v_ii = q_i^l_i

c( f i n d (c <= 1.0e-6)) = 1.0e-6;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function for solving our linear system V_y d = -grad

418 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on [d,ifail ,iterk] = solver(fun ,n,b,tol ,maxitmeth ,method ,

precond)

i = 0;

i f ( strcmp(method ,’CG’))

%initialize the solver

423 i f i sempty (precond)

[lwreq ,work ,ifail] = f11gd(method ,’N’,int32(n),tol ,int32(

maxitmeth),eps ,0,int32(min(10,4)),int32(maxitmeth),’norm_p ’,’2’,

’weight ’,’N’,’iterm’,int32 (1));
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e l s e

[lwreq ,work ,ifail] = f11gd(method ,’P’,int32(n),tol ,int32(

maxitmeth),eps ,0,int32(min(10,4)),int32(maxitmeth),’norm_p ’,’2’,

’weight ’,’N’,’iterm’,int32 (1));

end;

428 irevcm = int32 (0); d = ze ros (n,1); v = b;

wh i l e ((( irevcm == 0) || (irevcm == 1) || (irevcm == 2)) && (ifail

== 0))

[irevcm , d, v, work , ifail] = f11ge(irevcm , d, v, ze ro s (n,1),

work , ’lwork’, int32 (120+5*n));

i = i + 1;

433 i f (( irevcm == 1) && (ifail == 0))

v = fun(d);

end;

i f (( irevcm == 2) && (ifail == 0))

v = d./ precond;

438 end;

end;

[iterk] = f11gf(work , ’lwork’, int32 (120+5*n));

end

443 i f ( strcmp(method ,’SYMMLQ ’))

%initialize the solver

i f i sempty (precond)

[lwreq ,work ,ifail] = f11gd(method ,’N’,int32(n),tol ,int32(

maxitmeth),eps ,0,int32(min(10,4)),int32(maxitmeth),’norm_p ’,’2’,

’weight ’,’N’,’iterm’,int32 (1));

e l s e

448 [lwreq ,work ,ifail] = f11gd(method ,’P’,int32(n),tol ,int32(

maxitmeth),eps ,0,int32(min(10,4)),int32(maxitmeth),’norm_p ’,’2’,

’weight ’,’N’,’iterm’,int32 (1));

end;

irevcm = int32 (0); d = ze ros (n,1); v = b;
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wh i l e ((( irevcm == 0) || (irevcm == 1) || (irevcm == 2)) && (ifail

== 0))

453 [irevcm , d, v, work , ifail] = f11ge(irevcm , d, v, ze ro s (n,1),

work , ’lwork’, int32 (120+6*n));

i = i + 1;

i f (irevcm == 1) && (ifail == 0)

v = fun(d);

end;

458 i f (irevcm == 2) && (ifail == 0)

v = d./ precond;

end;

end;

[iterk] = f11gf(work , ’lwork’, int32 (120 + 6*n));

463

end

i f ( strcmp(method ,’RGMRES ’))

%initialize the solver

468 m = 3;

lwork = int32 (101 + n*(m+3) + m*(m+5));

i f ( i sempty (precond))

[lwreq , work , ifail] = f11bd(method , ’N’, int32(n), int32(m),

tol , int32(maxitmeth), eps , 0, int32(maxitmeth),lwork ,’norm_p ’,’

2’, ’weight ’,’N’,’iterm ’, int32 (1));

e l s e

473 [lwreq , work , ifail] = f11bd(method , ’P’, int32(n), int32(m),

tol , int32(maxitmeth), eps , 0, int32(maxitmeth),lwork ,’norm_p ’,’

2’, ’weight ’,’N’,’iterm ’, int32 (1));

end;

irevcm = int32 (0); d = ze ros (n,1); v = b;

478 wh i l e ((( irevcm == 0) || (irevcm == 1) || (irevcm == 2)) && (ifail

== 0))

[irevcm , d, v, work , ifail] = f11be(irevcm , d, v, ze ro s (n,1),

work , ’lwork’, lwork);
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i = i + 1;

i f (irevcm == 1) && (ifail == 0)

v = fun(d);

483 end;

i f (irevcm == 2) && (ifail == 0)

v = d./ precond;

end;

end;

488 [iterk] = f11bf(work , ’lwork’, lwork);

end

i f ( strcmp(method ,’BICGSTAB ’))

%initialize the solver

493 m = 1;

lwork = int32 (100 + (2*n + m) * (m + 2) + n);

i f ( i sempty (precond))

[lwreq , work , ifail] = f11bd(method , ’N’, int32(n), int32(m),

tol , int32(maxitmeth), eps , 0, int32(maxitmeth),lwork , ’norm_p ’,

’2’,’weight ’,’N’,’iterm ’, int32 (1));

e l s e

498 [lwreq , work , ifail] = f11bd(method , ’P’, int32(n), int32(m),

tol , int32(maxitmeth), eps , 0, int32(maxitmeth),lwork , ’norm_p ’,

’2’,’weight ’,’N’,’iterm ’, int32 (1));

end;

irevcm = int32 (0); d = ze ros (n,1); v = b;

%min(precond)

wh i l e ((( irevcm == 0) || (irevcm == 1) || (irevcm == 2)) && (ifail

==0))

503 [irevcm , d, v, work , ifail] = f11be(irevcm , d, v, ze ro s (n,1),

work ,’lwork’, lwork);

i = i + 1;

i f (irevcm == 1) && (ifail == 0)

v = fun(d);

end;

508 i f (irevcm == 2) && (ifail == 0)

v = d./ precond;
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end;

end;

[iterk] = f11bf(work , ’lwork’, lwork);

513 end

i f ( strcmp(method ,’TFQMR’))

%initialize the solver

lwork = int32 (100 + 10*n);

i f ( i sempty (precond))

518 [lwreq , work , ifail] = f11bd(method , ’N’, int32(n), int32(n),

tol , int32(maxitmeth), eps , 0, int32(maxitmeth),lwork ,’norm_p ’,’

2’,’weight ’,’N’,’iterm’, int32 (1));

e l s e

[lwreq , work , ifail] = f11bd(method , ’P’, int32(n), int32(n),

tol , int32(maxitmeth), eps , 0, int32(maxitmeth),lwork ,’norm_p ’,’

2’,’weight ’,’N’,’iterm’, int32 (1));

end;

irevcm = int32 (0); d = ze ros (n,1); v = b;

523

wh i l e ((( irevcm == 0) || (irevcm == 1) || (irevcm == 2)) && (ifail

== 0))

[irevcm , d, v, work , ifail] = f11be(irevcm , d, v, ze ro s (n,1),

work , ’lwork’, lwork);

i = i + 1;

i f (irevcm == 1) && (ifail == 0)

528 v = fun(d);

end;

i f (irevcm == 2) && (ifail == 0)

v = d./ precond;

end;

533 end;

[iterk] = f11bf(work , ’lwork’, lwork);

end;

i f ( strcmp(method ,’pminres ’))

i f ( i sempty (precond))

538 [d,ifail ,iterk] = pminres(@(x)fun(x),@(x)x,b,tol ,maxitmeth , ze ro s

(n,1));
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e l s e

[d,ifail ,iterk] = pminres(@(x)fun(x),@(x)(x./ precond),b,tol ,

maxitmeth , ze ro s (n,1));

end;

end;

543

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%function for generating the Jacobian product with d: V_y d

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

548 f unc t i on Ax = Jacobian_matrix(x,Omega ,P,n,ep)

H = P;

f o r i = 1:n

H(i,:) = x(i) * H(i,:); % H = diag(x)*P

end

553 H = Omega .* (H’ * P); % H = M o P^T* diag(x) *P

H = P * H; %%% Assign H*P’ to H = (M o P^T*diag(x)*P)*P^T

%Computing the diagonal elements

Ax = sum(P .* H,2) + ep*x;

A.3 Implementation of Algorithm 3

f unc t i on [X,iter] = APfix(A,tol , f l ag ,maxits ,n_pos_eig ,w,fun ,prnt)

%NEAR4 Nearest correlation matrix.

3 % X = NEAR4(A,TOL ,FLAG ,MAXITS ,N_POS_EIG ,W,PRNT)

% finds the nearest correlation matrix to the symmetric

matrix A.

% TOL is a convergence tolerance , which defaults to 16*EPS.

% If using FLAG == 1, TOL must be a 2-vector , with first

component

% the convergence tolerance and second component a tolerance

8 % for defining "sufficiently positive" eigenvalues.

% FLAG = 0: solve using full eigendecomposition (EIG).

% FLAG = 1: treat as "highly non -positive definite A" and

solve
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% using partial eigendecomposition (EIGS).

% FLAG = 2: same as FLAG ==1 except uses LAPACK ’s bisection

code.

13 % N_POS_EIG (optional) is the known number of positive

eigenvalues of A.

% W is a vector defining a diagonal weight matrix diag(W).

% FUN(Z) is a function changing entries of Z to those

entries which are

% desired to be preserved in the output matrix X (default

% FUN=@(Z)Z)

18 % PRNT = 1 for display of intermediate output.

%

% By N. J. Higham , 13/6/01.

% Reference: N. J. Higham , Computing the nearest

correlation

% matrix ---A problem from finance. IMA J. Numer. Anal.,

23 % 22(3) :329-343, 2002.

i f ~isequal(A,A’), e r r o r (’A must by symmetric.’), end

i f na rg in < 2 || i sempty (tol), tol = l ength (A)*eps *[1 1]; end

i f na rg in < 3, f l a g = 0; end

28 i f na rg in < 4, maxits = 100; end

i f na rg in < 6 || i sempty (w), w = ones( l ength (A) ,1); end

i f na rg in < 7 || i sempty (fun), fun=@(x)x; end;

i f na rg in < 8, prnt = 0; end %1

33 n = l ength (A);

i f f l a g >= 1

i f i sempty (n_pos_eig)

[V,D] = e i g (A); d = d iag (D);

n_pos_eig = sum(d >= tol(2)*d(n));

38 end

i f prnt , f p r i n t f (’n = %g, n_pos_eig = %g\n’, n, n_pos_eig), end

end

X = A; Y = A; Z=A; b=ones( l ength (A) ,1);
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43 iter = 1;

rel_diffX = inf; rel_diffY = inf; rel_diffXY = inf; grad=inf;

rel_diffXZ = inf;

rel_diffZ = inf;

dS = ze ro s ( s i z e (A));

48 w = w(:); Whalf = s q r t (w*w’);

%rel_diffX rel_diffY rel_diffXY

wh i l e max([ rel_diffX rel_diffY rel_diffXY rel_diffXZ rel_diffZ ]) >

tol (1)

Xold = X;

R = X - dS;

53 R_wtd = Whalf .*R;

i f f l a g == 0

X = proj_spd(R_wtd);

e l s e i f f l a g == 1

[X,np] = proj_spd_eigs(R_wtd ,n_pos_eig ,tol(2));

58 e l s e i f f l a g == 2

[X,np] = proj_spd_bisect(R_wtd ,n_pos_eig ,tol);

end

X = X ./ Whalf;

grad=norm( d iag (X)-b,inf);

63 dS = X - R;

Zold = Z;

Z = proj_values(Z,fun);

Yold = Y;

68 Y = proj_unitdiag(Z);

rel_diffZ = norm(Z-Zold ,’fro’)/norm(Z,’fro’);

rel_diffXZ = norm(Z-X,’fro’)/norm(Z,’fro’);

rel_diffX = norm(X-Xold ,’fro’)/norm(X,’fro’);

73 rel_diffY = norm(Y-Yold ,’fro’)/norm(Y,’fro’);

rel_diffXY = norm(Y-X,’fro’)/norm(Y,’fro’);

i f prnt
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f p r i n t f (’%2.0f: %9.2e %9.2e %9.2e’, ...

78 iter , rel_diffX , rel_diffY , rel_diffXY)

i f f l a g >= 1, f p r i n t f (’ np = %g\n’,np), e l s e f p r i n t f (’\n’), end

end

iter = iter + 1;

83 i f iter > maxits , e r r o r ([’Stopped after ’ num2str(maxits) ’ its.’

]), end

X = Y;

% X, pause

end

88

%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on A = proj_spd(A)

%PROJ_SPD

93

i f ~isequal(A,A’), e r r o r (’Not symmetric!’), end

[V,D] = e i g (A);

A = V* d iag (max( d iag (D) ,0))*V’;

A = (A+A’)/2; % Ensure symmetry.

98

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on [A,n_pos_eig_found] = proj_spd_eigs(A,n_pos_eig ,tol)

%PROJ_SPD_EIGS

103 i f ~isequal(A,A’), e r r o r (’Not symmetric!’), end

k = n_pos_eig + 10; % 10 is safety factor.

i f k > l ength (A), k = n_pos_eig; end

opts. d i sp = 0;

[V,D] = eigs(A,k,’LA’,opts); d = d iag (D);

108 j = (d > tol*max(d));

n_pos_eig_found = sum(j);

% [n_pos_eig sum(j)]
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A = V(:,j)*D(j,j)*V(:,j)’; % Build using only the selected

eigenpairs.

A = (A+A’)/2; % Ensure symmetry.

113

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on [A,n_pos_eig_found] = proj_spd_bisect(A,n_pos_eig ,tol)

%PROJ_SPD_BISECT

118 i f ~isequal(A,A’), e r r o r (’Not symmetric!’), end

k = n_pos_eig + 10; % 10 is safety factor.

i f k > l ength (A), k = n_pos_eig; end

%[V,d] = eig_big2(A,k,tol(1) /100); % Call mex file. 100 = safety

factor.

[V,d] = eig_mex(A,k,tol(1) /100);

123 d = d(1:k);

j = (d > tol(2)*max(d)); n_pos_eig_found = sum(j);

i f n_pos_eig_found > n_pos_eig f p r i n t f (’>>> ’), [n_pos_eig

n_pos_eig_found], end

A = V(:,j)* d iag (d(j))*V(:,j)’; % Build using only the selected

eigenpairs.

A = (A+A’)/2; % Ensure symmetry.

128

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on A = proj_unitdiag(A)

%PROJ_UNIT

133 n = l ength (A);

A(1:n+1:n^2) = 1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f unc t i on A = proj_values(Z,fun)

138 %PROJ_VALUES

A = fun(Z); %(X,F,A);


