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Abstract

Image Reconstruction Electrical Impedance Tomography
W.R. Breckon

This thesis is concerned with Electrical Impedance Tomogaphy (EIT), a medi-
cal imaging technique in which pictures of the electrical conductivity distribu-
tion of the body are formed from current and voltage data taken on the body
surface. The focus of the thesis is on the mathematical aspects of reconstruct-
ing the conductivity image from the measured data (the reconstruction prob-
lem). The reconstruction problem is particularly difficult and in this thesis it
is investigated analytically and numerically. The aim of this investigation is to
understand why the problem is difficult and to find numerical solution meth-
ods which respect the difficulties encountered. The analytical investigation
of this non-linear inverse problem for an elliptic partial differential equation
shows that while the forward mapping is analytic the inverse mapping is dis-
continuous. A rigorous treatment of the linearisation of the problem is given,
including proofs of forms of linearisation assumed by previous authors. It is
shown that the derivative of the forward problem is compact. Numerical calcu-
lations of the singular value decomposition (SVD) are given including plots of
singular values and images of the singular functions. The SVD is used to set-
tle a controversy concerning current drive patterns. Reconstruction algorithms
are investigated and use of Regularised Newton methods is suggested. A for-
mula for the second derivative of the forward mapping is derived which proves
too computationally expensive to calculate. Use of Tychonov regularisation
as well as filtered SVD and iterative methods are discussed. The similarities,
and differences, between EIT and X-Ray Computed Tomography (X-Ray CT)
are illuminated. This leads to an explanation of methods used by other au-
thors for EIT reconstuction based on X-Ray CT. Details of the author’s own
implementation of a regularised Newton method are given. Finally the idea of
adaptive current patterns is investigated. An algorithm is given for the exper-
imental determination of optimal current patterns and the integration of this
technique with regularised Newton methods is explored. Promising numerical
results from this technique are given. The thesis concludes with a discussion
of some outstanding problems in EIT and points to possible routes for their
solution. An appendix gives brief details of the design and development of the
Oxford Polytechnic Adaptive Current Tomograph.
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Abstract

W.R. Breckon

This thesis is concerned with Electrical Impedance Tomogaphy (EIT), a
medical imaging technique in which pictures of the electrical conductivity dis-
tribution of the body are formed from current and voltage data taken on the
body surface. The focus of the thesis is on the mathematical aspects of recon-
structing the conductivity image from the measured data {the reconstruction

problem).

The reconstruction problem is particularly difficult and in this thesis 1t Is
investigated analytically and numerically. The aim of this investigation is to

understand why the problem is difficult and to find numerical solution methods
which respect the difficulties encountered.

The anzalytical investigation of this non-linear inverse problem for an elliptic
partial differential equation shows that while the forward mapping is analytic
the inverse mapping is discontinuous. A rigorous treatment of the linearisation
of the problem is given, including proofs of forms of linearisation assumed by
previous authors. It is shown that the derivative of the forward problem is
compact. Numerical calculations of the singular value decomposition (SVD)
are given including plots of singular values and images of the singular functions.
The SVD is used to settle a controversy concerning current drive patierns.

4

Reconstruction algorithms are investigated and use of Regularised New-
ton methods is suggested. A formula for the second derivative of the forward
mapping is derived which proves too computationally expensive to calculate.
Use of Tychonov regularisation as well as filtered SVD and iterative methods
are discussed. The similarities, and differences, between EIT and X-Ray Com-
puted Tomography (X-Ray CT) are illuminated. This leads to an explanation
of methods used by other authors for EIT reconstuction based on X-Ray CT.
Details of the author’s own implementation of a regularised Newton method

are given.

Finally the idea of adaptive current patterns is investigated. An algorithm
is given for the experimental determination of optimal current patterns and
the integration of this technique with regularised Newton methods is explored.
Promising numerical results from this technique are given.

The thesis concludes with a discussion of some outstanding problems in
EIT and points to possible routes for their solution. An appendix gives brief
details of the design and development of the Oxford Polytechnic Adaptive
Current Tomograph.
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Chapter 1

Introduction

The Way that can be put into words
Is not the Elernal Way;

The name that can be named

15 not the eternal name.

LS m
Lad L zZu

1.1 Electrical Impedance Tomography

£

of the inside of a body by making electrical measurements at its surface. The
image reflects the variation in conductivity or impedance within the body.
The main application of EIT considered in this thesis is as a medical imaging
technique for use in research and diagnosis. There are other applications and
proposed applications of EIT to which much of this work is equally applicable.
These include geological studies, non-destructive testing, arc} aeology, and in-
dustrial process monitoring. Certain species of weakly electric fish also use
electrical location to hunt their prey and avoid obstacles in dark or murk

Electrical Impedance Tomography (EIT) is a technique for creating an image

3
“y

1,

water.

1.2 Impedance Measurement In Medicine

Impedance measurements have been used in several areas of medical diagno-
sis without actually attempting to image the impedance distribution. These

fa—



fall under the general heading of itmpedance plethysmography [89]'. Measure-
ments of the impedance of the thorax have been used to assess intrathoracic
fluid content with a view to diagnosis of cardio-pulmonary diseases such as
pulmonary oedeama, pleural effusion and pnuemothorax. These studies have
been predominantly qualitative, rather than attempting to quantify intratho-
racic volume changes. Thoracic impedance has also been used to monitor
respiration - a technique called Impedance pneumography . A pair of strip
electrodes, one on the neck and another on the upper abdomen, have been
used to measure blood volume changes in the major arteries during the car-
diac cycle. A crude model has been used to give an approximate measure
of cardiac output. Electrodes attached to the head have been used ‘o study
cerebral haemodynamics, in particular, Tarassenko [89] applies this technique
to the newborn.

1.3 Medical Imaging

An image of a cross section of the body is clearly a useful aid to medical di-
agnosis, treatment and research. There are several methods of Tomographic
Imaging® which achieve this. In all these methods, energy is applied to the
body in the form of a field or wave. This interacts with the tissues and the
effect is measured. The first, and most widely known example, is X-Ray Com-
puterized Axial Tomography {CAT or CT scanning). In this case, collimated
X-Rays are directed at the body from a large number of different directions
within 2 fixed plane. The attenuation of the X-Rays by the body is measured.
An image of the attenuation function is then calculated by a computer (re-
consirucied) and the result displayed on a screen. A detailed Mathematical
treatment of the reconstruction problem for X-Ray CT can be found in [44,72].
The other main methods of tomographic imaging used are Ultrasound, Nuclear
Magnetic Resonance and Emission Computed Tomography. In Ulirasound an
ultra high frequency sound wave is applied to the body. This may either
be used as an ‘echo sounder’, similar to those used on ships, in which the
delay between the emitted and reflected pulse is used to give a measure of
depth, or as a true tomographic imaging technique similar to X-Ray CT. In
Nuclear Magnetic Resonance (NMR) Imaging the patient is subjected to a
strong static magnetic field. The rotation axes of the protons (Hydrogen atom
nuclei) within the tissues take up a preferred orientation. If an alternating
field is applied the protons will precess about the direction of the field. Some
of the protons will absorb energy and be re-oriented. The energy absorbed
by the proton is re-emitted when the field is removed. This signal depends

'References may be found at the end of the thesis, starting on page 136.
*From the Greek Topoo — slice. Hence tomography is imaging slices.
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on the chemical environment of the proton. Spatial information is derived by
changing the static magnetic field. An image of the tissues can then be recon-
structed from these signals. In Emission Computed Tomography radioactive
substances are introduced into the body. The radiation emitted from these
substances passes through tissues and is measured using an array of suitable
detectors. The two main methods of Emission Computed Tomography are Sin-
gle Photon Emission Computed Tomography (SPECT) and Positron Emission
Tomography (PET). In SPECT the decay of the radicactive substance results
in the emission of a single photon of gammma radiation which is detected by a
'gamma camera’ consisting of an array of collimators and detectors mounted
on a moveable gantry. Different projecton angles can be obtained by move-
ment of the gantry. In PET the anihilation of an emmited positron results in
a pair of photons with opposite momentum. These photons are detected by an
annular array of detectors. In Emission Computed Tomography it is the con-
centration of the radio isotopes which is imaged, rather than the attenuation
of the radiation by the tissues.

There are many variations on these methods, different scanning geome-
tries and reconstruction algorithms. Each method has both advantages and
disadvantages. X-Ray CT can achieve very high resolutions and produce ac-
curate three-dimensional images, but this involves subjecting the patient to
X-Rays. NMR scanners deliver high resolution and probably involve less risk
to the patient than X-Ray CT but they require magnets capable of creating
uniform fields of very high strength. This kind of equipment is expensive and
physically large. Due to long relaxation times of protons NME. scanning is
inherently slow. This makes real-time studies difficult. Emission Computed
Tomography also involves large and expensive scanners. The resolution of
Emission Computed Tomography systems is relatively low (of the order of
5mm) and scan times long (of the order of 15 minutes). However, the advan-
tage is that the images are related to physiological processes rather than tissue
structure. Ultrasound is relatively inexpensive and small, it is also safe and

able to distinguish between soft tissues.

1.4 Description of EIT

Tn EIT an electric current is applied to the body via electrodes in contact with
the skin. The current passes through the body and the resulting potential
differences on the skin are measured. An alternating current is used, as a direct
current would cause polarization of ions within the tissue. For sufficiently low
current densities (below 1 mA/cm? [82]) tissues are Ohmic conductors. The
reactive component of tissue impedance is typically 100 times less than the
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resistive component at frequencies between 1kHz and 200kHz.

Body tissues show a wide range of variation in resistivity, as can be seen
in Table 1.1. In particular soft tissues can easily be distinguished on the basis
of impedance.

Tissue Resistivity {Qlem) | Comments

Cerebro-spinal fluid 65

Blood 150

Grey matter 250

White matter 500-700

Bone 1006-2000 | newborn
10000 | adult

Muscle 200 | transverse
1000 | longtitudinal

Fat 2000

able 1.1:
literature.

Some measurements of resistivity of human tissues taken from the
See [89, p122] and [11] for detailed references. Published sources
differ by a factor of up to twe.

An Impedance Tomograph is essentially an elaborate Ohm meter. It ap-
plies currents and measures voltages. A number of electrodes are stuck to the
skin of the patient and these are connected to the tomograph by leads. The to-
mograph has one or more current sources and one or more digital ‘volt meters’
(an analogue to digital converter — ADC). These are often connected to the
electrode leads via a multiplexer, which is an electronic switch. This allows the
same current source or ADC to be applied to any electrode. The tomograph
is driven by a computer, either 2 dedicated microprocessor or external ‘host’
computer, which instructs the machine which patterns of current to apply and
which voltages to measure. The measurements made are passed to the host
computer which calculates an impedance image consistent with the measure-
ments. The data collection phase can be made very rapid. It is possible to
collect data at the rate of 23 frames-per-second which is the rate required to
produce the illusion of continuous motion to a human observer. Higher rates
may be achieved using parallel hardware. If reconstruction algorithms and
hardware can match this speed EIT will be capable of following, for example,
the cardiac cycle, in real-time. This fast data collection rate is a potential
advantage for EIT over the methods discussed in the previous section. The

problem of fast image reconstruction is addressed in this thesis and in [17].

An EIT system also has the potential advantages of low cost and small
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physical size. The electronics required can be buillt in a box the size of a desk
top computer for a few thousand pounds. A reasonably powerful host com-
puter is required. The speed and memory capacity of the computer required is
dictated by the size of data set collected, the accuracy required and the desired
reconstruction rate. However, the cost of computer processing power is cur-
rently decreasing exponentially with time, so cost of the host computer need
not be a limitation in the long term. It must be emphasised that the speed and
size of NMR, CT and ultrasound scanners continues to improve and it i1s not
clear in the long term whether EIT will show a significant advantage in this
respect. One difference that will always remain between the various techniques
is that they image different physical properties of tissue. As there is no partic-
ular relationship between the speed of sound and the electrical conductivity of
a medium, Ultrasound and EIT will produce different images in general, and
hence different clinical information. In this sense different imaging techniques
may be regarded as complimentary rather that competing.

The main limitation on an EIT system is the resolution. This 1s limited by
the size of the voltage data set collected which is determined by the number
of electrodes. Typical systems under development still use only 32 electrodes.
If EIT is to compete with other imaging modalities on the basis of resolution,
vastly more electrodes will have to be used. The resolution and accuracy of
the images is also constrained by the ill-posedness of the problem. This means
that large improvements in the measurement accuracy are required to produce
small improvements in the accuracy of the image. This, coupled with the
inherent difficulty in making electrical measurements on anything as awkward
and variable as the human body, means that EIT is difficult. Even if EIT
cannot be developed to provide accurate high resolution images, it nevertheless
has a useful role to play. All the techniques which use electrical impedance for
physiological measurement could be improved by a more accurate knowledge
of the cause of the impedance changes measured. lmpedance tomography
provides this information.

1.5 Brief History

The story starts several millennia ago with the evolution of fish which use
electrical location. It is debatable whether this actually constitutes imaging.
Presumably they interpret the impedance changes directly — however I doubt
if this worried them unduly. The geologically motivated studies of Langer {57,

58] and Slichter [84] in 1933-36 provide possibly the earliest indications that

Homo sapiens were endeavoured to probe their environment using electrical
current. These treated the essentially one dimensional problem of determining
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the depth and conductivities of horizontal layers in the earth.

The first papers on the use of electric current for medical imaging appear
in the late 1970s. Henderson and Webster [43] put forward the idea of an
‘Impedance Camera’. This stands in the same relationship to impedance to-
mography as radiography does to CT. The idea was to create an approximately
uniform electric field — forcing the current paths to be as straight as possible
using ‘guard electrodes’. This was seen as analogous to the straight paths of
X-Rays. As in X-Ray radiography, a transmission image was created. The
method was tested using a system with an array of 100 active electrodes and
40 guard electrodes which was used to produce a transmission xmage of the hu-
man thorax. Price [75,76] in 1979 advanced the idea of ‘Electrical impedance
tomography (ICT): A new CT imaging technique’, (since then there has always
been disagreement on what to call this method). Price realised that & num-
ber of different ‘projections’ were needed for true tomography and also note
the insensitivity of exterior voltage measurements to conductivity changes i
the interior. He advocated the use of guard electrodes to make the ‘beam o
current’ have parallel stream lines — this would enable the use of a CT-like
reconstruction algorithm.
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Schomberg [81] also assumed that reconstruction could be achieved using
X-Ray CT techniques. The analogy with X-Ray CT at this stage was both a
useful insight and a distraction. As is made clear later in this thesis the for-
ward projection in EIT (that is the determination of voltages resulting from a
given current pattern @pphea at the surface of an object with given inhomo-
geneous conductivity) differs from its analogue in X-Ray CT in two important
respects. It is non-linear, and even when linearised it is not a generalised
Radon transform (in the sense of Gel'fand et ol [31]). The fact that the
forward mapping is not a Radon transform is manifested in the argument by
Bates, McKinnon and Seagar [4]. They point out that a rotated cosine pattern
of current, which produces a uniform field in a homogeneous two-dimensional
disk, will produce the same boundary voltage profiles for a circularly symmet-
ric conductivity distribution as a homogeneous one of a suitable conductivity.
This means that an approach based on X-Ray CT will not succeed. Con-
tinuing this New Zealand tradition Seagar produced an excellent thesis [83)
focusing mainly on circularly symmetric distributions on the disk. He showed
that these could be reconstructed using data derived from a Fourier basis of
currents, thus including the information found to be missing in [4]. He used
Newton’s method to perform the reconstruction, recognising the non-linear
character of the problem.

It is perhaps surprising then that in the early 1980s the first group to pro-
duce an in vivo tomographic impedance image used a reconstruction algorithm
based on a back-projection argument derived by analogy with CT [11]. This



group, based at Sheffield and headed by Barber and Brown, used a sixteen
electrode system with a single constant current source and single ADC. The
current pattern used was to drive across adjacent pairs of electrodes, voltages
being measured between other adjacent pairs. In contrast to the ideas put
forward by Tasto and Schomburg [90], who advocated back-projection along
current stream-lines, Barber and Brown back-project between equipotential
lines. Despite the lack of theoretical justification this method produced recog-
nisable images which the group have continued to refine and develop using the
same basic technique. Some justification for this technique, formulated in a
tighter mathematical framework, was given by Santosa and Vogelius [80] but
this did not appear until 1988.

Apart from the question of algorithms there were two main controversies
in the impedance imaging community in the early toc mid 1980s. The first was
whether to apply current and measure voltage or to apply a fixed voltage and
measure current. Kim ef e/ [51] built a machine which could apply multiple
voltages and measure currents. Yorkey [96] also built such a system but with
only one constant voltage source. The use of these systems, as far as the
author is aware, was restricted to studies on phantoms and not applied to
patients. Brown in [20] give the rationale for the choice made by the Sheffield
group to apply current and measure voltage. The main reason is the presence
of contact impedance on the electrodes. Brown advocates making what he
calls four electrode measurements, rather than two electrode measurements
thus eliminating the need to make voltage measurements on current carrying
electrodes.

The second area of controversy was in the area of which current patterns
(or indeed voltage patterns) to use. The Sheffield group firmly advocated their
two current drives in adjacent positions while others, such as Tarassenko [89]
advocated driving opposite pairs. Others still, such as  Kim [53], advocated the
use of guard electrodes to straighten current patterns, an idea which by the mid
1980s was distinctly unfashionable. Parallel to these developments by med-
ical physicists and engineers, mathematicians were working on the problem,
largely unaware of the medical applications. The main question addressed
was uniqueness of solution, that is whether a conductivity distribution can
be uniquely determined by boundary measurement. The earliest attempt to
address this question was by one of the ‘grandfathers’ of partial differential
equation theory, A.P. Calderon . He delivered a paper [22] in 1980 which is
sornething of a legend in the literature of impedance tomography — it is very
difficult to obtain as the proceedings of that Brazilian conference are nowhere
to be found. It exists therefore mainly in the form of second or third generation
photocopies of what appears to be an early draft. He considered the unique-
ness problem and derived a formula for the derivative of a particular forward



mapping and proved that this derivative was injective. Calderon’s motivation
for studying the problem appeared to be electrical prospection. In the circles
of the American Mathematical Society the uniqueness problem for EIT was
colloquially referred to as ‘the Calderon problem’. Uniqueness theorems were
proved by Kohn and Vogelius [55] in 1985 and Sylvester and Uhlmann [87]
m 1987. Later refinements of these results were published by Ramm [77] in
1988. It was probably 1986 before the American mathematicians working in
this area became aware of the medical applications.

Development of reconstruction algorithms up to about 1986 proceeded
largely in isolation from the mathematical community. They contipued to
be inspired by the many different techniques used X-Ray CT. The idea of
sensitivity matriz occurred to many investigators. This is a matrix of coefi-
cients which relate the change in measured voltage (or current) to 2 localised
change in conductivity. Opinions differed as to how to calculate this matrix
and what to do witk it. Some calculated the matrix by a perturbation tech-
nique [53,89], others used a more sophisticated approach, either based on a
discrete resistor network [96] or on a continuous model for fields such as that
used by Yamashita and Takahashi [94], Nakayama et al [95] or Murai and
Kagawa [67]. These methods will be derived in a uniform context in Chap-
ter 3. Both Kim and Tarassenko used the sensitivity matrix in apparently ad
hoc variations on the iterative methods used in X-Ray CT. These boih owe
something to what, in the tomography literature, is referred to as Algebraic
Reconstruction Technique (ART)(see [72] for details) and in the nurnerical
analysis community as the method of Kaczmarz [49,72]. New variations are
still published on this theme, for example the recent work of Kotre [56]. The
sensitivity matrix, however formed, is ill-conditioned with respect to inversion,
as will be shown in Chapter 5. Iterative algorithms, if halted short of conver-
gence, have a regularising effect [88], which explains the success of the methods
used by [53,89,56]. If a direct solution technique is employed, some explicit
regularisation must be used, such as Tikhonov regularisation or truncation of
singular function expansion. Both these methods have been applied. In [94]
2 single linear system was solved using Tikhonov regularisation. A segmented
body model was used but no iteration was attempted. Murai and Kagawa [67]
used the singular value decomposition. Yorkey [96] compared these methods
and found the direct approach using Tikhonov regularisation best.

The first European workshop on EIT was held in Sheffield in 1936 [19].
This was the first large gathering of EIT enthusiasts from around the world. A
particularly challenging paper was delivered by Isaacson [37] who advocated a
completely different approach to the current patierns to be used and extended
the idea of Seagar [83] of using a Fourier basis of currents. Isaacson advocated
using current patterns which are eigenfunctions of a certain operator. This



had more in common with the discredited idea of guard electrodes than the
fashionable four electrode measurement schemes and the idea was met with
a certain amount of scepticism. Nevertheless, the group, based at Rensselaer
Polytechnic Institute (RPI), New York, proceeded to build a system capable
of applying this type of current pattern [74] which has now produced in vivo
images of the human thorax.

1.6 EIT at Oxford Polytechnic

Nothing has yet been said of our own role in the development of the subject.
The EIT project at Oxford Polytechnic started with Tarassenko joining the
institution in 1985. He had completed 2 DPhil Thesis [89] under Rolie at
Oxford University and the John Radcliffe Hospital. The results of his thesis
indicated the feasibility of using EIT to detect cerebral haemorrhage in the
newborn. This work was continued at the John Radcliffe Hospital by Mur-
phy [68]. Tarassenko realised that EIT reconstruction was an inverse problem
which could be of interest to mathematicians. This challenge was taken up by
Pidcock. The present author joined the group in September of 1988.

It was clear to the author from the outset that finite element modelling
would be important, and that the problem was non-linear and ill-posed. Some
kind of regularisation would be needed together with an iterative technique [12,

13).

The authors initial studies were into the ill-posedness of the linearised
inverse problem. The results of these were presented in [14] and in more
detail in Chapter 5. This work led to reconstruction algorithms which worked
successfully on computer simulated data [15]. The adaptive current techniques
of Isaacson [47] were an exciting development and led to an investigation of
how such techniques could be used in conjunction with iterative reconstruction
algorithms. These gave very promising initial results which were presented at
the Second EC workshop on EIT [16]. At that meeting Murphy and Breckon
started a collaborative venture to pursue these promising numerical results and
build an Adaptive Current Tomograph. There was at the time only one such
machine in existence, that at RPIL. The machine, called OXPACT1 [69,70], 1s
still under development and much has been learnt from its design.

Tn 1988 the team was joined by Paulson who has contributed significantly in
two essential areas. He implemented both the finite element forward modelling
code and several linear solvers for the inverse problem on a multi-processor sys-
tem using Transputers, both of which constituted ground-breaking work in the
use of Transputers, let alone EIT [17]. This points the way to the possibility of
using non-linear full matrix techniques for real-time reconstructions. Paulson
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has also investigated more accurate modelling of the boundary conditions at
the electrode-skin interface, extending the work of Cheng [24]. An accurate
forward model incorporating these more sophisticated boundary conditions

will no doubt become essential for improved accuracy in reconstructions.

Our hope is now to design and build 2 second EI Tomograph, learning from
the experience gained with OXPACT1. Our aim is to make a system of taking
measurements on several planes of electrodes in order that adaptive techniques
can be tried in three-dimensions, further it is hoped that this machine will be
able to be used for clinical trials.

1.7 Structure of this Thesis

In Chapter 2 a review is given of the mathematical technigues and notations
used later in the thesis. This chapter contains no original mathematics. How-
ever the discussion of the choice of space for the conductivity is new. In
particular the problem of choosing a Hilbert space in which the set of feasible
conductivities is an open set has not been addressed before, neither has the
problem of evaluating the conductivity on the boundary. Chapter 3 extends
the work of Calderdn on calculation of the derivative of the forward mapping.
This leads to a rigorous justification of the linearisations employed by other
authors. The linearised problem is presented in both a direct and integral
form, and the connection with the inverse scattering problem briefly explored.
Chapter 4 gives details of the finite element method used to solve the for-
ward problem and calculate the derivative matrix numerically. Two factors
which make EIT reconstruction particularly difficult are the non-linearity and
ili-posedness of the problem. While the non-linearity was exhibited in the
Taylor series of Chapter 3, the ill-posedness is explored in Chapter 5. Two
original analytical proofs of ill-posedness are given. These have not previously
been published. A numerical study of the singular value decomposition of the
derivative is presented. Details of singular values have already been published
by the author, but contour plots of the singular functions have not previously
been exhibited.

In Chapter 6 reconstruction algorithms are discussed. The reconstruction
problem is formulated as a minimisation problem and an example of a two-
dimensional contour plot of the objective function is given. A formula for
the second derivative of the forward mapping is derived. Regularised Newton
methods are discussed in detail and this leads to an analysis of reconstruction
algorithms employed by other authors. It is seen that they all approximate to
some form of regularised Newton method. In particular methods based on an
analogy with X-Ray CT are explored. The author’s own implementation of a
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regularised Newton method is then presented. An investigation of the effect of
data errors is reported and the problems of applying the positivity constraint
discussed. Chapter 7 explores the use of adaptive current techniques. An algo-
rithm is given for the calculation of a set of optimal currents for measurements
of a given precision. A reconstruction algorithm is presented which integrated
the adaptive measurement technique with Newton iterations. Finally an alter-
native point-optimal measurement system is suggested. Chapter 8 concludes
the thesis with a discussion of directions of further work.
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Chapter 2
Mathematical Preliminaries

And he who is versed in the science of numbers cen tell of the regions of

o

weight and measure but cannot conduct you thither.

Kahlil Gibran

2.1 Introduction

The study of Electrical Impedance Tomography is by necessity interdisci-
plinary. It requires a collaborative effort between medical physicists, medical
engineers, electronics engineers, computer scientists and mathematicians. In-
ternational workshops in this field {such as those reported in [19] and [21]) have

emonstrated how fruitful such collaborations can be, but also highlighted the
difficulties in communicating across the cultural divide between those trained
in different disciplines. While this thesis resides firmly within the discipline of
applied mathematics it is hoped that it will be of some use to workers in the
field of EIT whose background is less mathematical.

This chapter aims to summarise notations, methods and models used later
in the thesis and to indicate where further details may be found. The author
would dearly love to write a tutorial on the mathematical prerequisites for
EIT but that would be inappropriate to include in a doctoral thesis as well as
impossible to achieve within the limits of time available. It is hoped that such
information as is given will go some way to widening the possible audience for
this work.
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2.2 Regions

The physical domain under consideration is a region of space consisting of a
material of variable electrical conductivity. The word ‘space’ here means two-
or three- dimensional Euclidean space: R? or R®. Conditions will be placed
on the region, which will be called (1, to ensure that standard results about
solutions of partial differential equations may be used (see [36] and [29]). The
region will be a bounded, open, simply connected set. (Simply connected —
connected with no ‘holes’}. The boundary of the region, denoted by 99, will
be assumed to be smooth {although this condition can be weakened to include
corners [36]). In the medical context {I will be a2 human body and 9Q the
surface of the skin.

2.3 Current and Voltage

Before giving more detailed mathematical definitions let us consider the model
for electrical conduction in a body which is given to us by Maxwell’s equations.
Suppose that the electrical potential (voltage) at a point z in 0 is u(z). It
is assumed that the body is an Ohmic, isotropic conductor. The conductivity
at a2 point z is v{z). The tissues of a human body vary in conductivity (see
for example [20] for a table of experimental results). Some tissues, such as
muscle, are actually anisotropic [20]. Nevertheless the simplifying assumption
of isotropy will be made throughout this thesis. The effects of anisoiropy on
EIT have not yet been investigated, although Kohn and Vogelius [54] exhibit
two anisotropic distributions which cannot be told apart using EIT. From
Ohm’s law the current density is a vector field J given by

J = —yVu.
If there are no electrical sources within {1 then by Gauss’s Law
V-J=20

and hence

V-yVu=20 (2.1)

in Q1 (see for example [60]). In this case Gauss’s Law is the equivalent of
Kirchhoff’s Current Law for a continuum. FEquation 2.1 is fundamental to
the study of EIT. It is therefore convenient to introduce a notation for the
differential operator involved:

Lyu=V - yVu.
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If there are electrical sources within {0 then Equation 2.1 becomes
8 — 9 7Y
- LrT'll =g (.9.3}

where ¢ is the current source density. For known ~ {and q) Equation 2.1 (and
Equation 2.3) are second order elliptic partial differential equations for u. For
known u (and ¢) they are first order hyperbolic partial differential equations

for ~.

In EIT an electric current is applied to Q. If n is the outward unit normal
to O and j i1s the flux density of the current applied to 89 then

}’. = uT - I (24)
on 9. The operator Vy, takes the normal derivative of a scalar feld. As the
normal only exists on 90 the function Vyu is only defined on 80 although u
is defined on 1. Thus Equation 2.4 becomes:

J=—7Vqu. (2.5)

To find the actual current I passing into an area A C 97 one takes the integral
of the current density:

r=[7.
JAJ .
Note that where no explicit references to the space varizble z is made in an

integral the surface or volume measure dV or dS will be omitted.

As EIT is a non-invasive technique the voltage resulting from the appli-
cation of this current can only be measured on the surface of the skin. The
restriction of u to 9§ will be denoted by usp.

2.4 Simple Examples

2.4.1 VUniform disk

At this stage it will help to have a concrete example. Let D denote the unit
disk in the plane D = {(z,y)|z? + y* < 1}. We will assume that it consists of
a material which has conductivity v = 1. Equation 2.1 then becomes

Au =0 (2.6)

where A = V - V is the Laplacian operator!. Equation 2.6 defines u as a
harmonic function. The real and imaginary part of any complex analytic

*Using A. instead of V7 is a kind of mathematicians shibboleth but it also has the
attraction that its inverse (an imfegral operator) can be written as A~!. It also carries
connotaticns of the Laplace-Beltrami operator which is defined independently of coordinate
systems and thus makes sense on curved manifolds.
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function f(z) satisfys this equation where the complex variable z = z +1y. An
xample of this is f(z) = 2" for any positive n and u(z,y) = R(z+:y)". Given
that the real and imaginary parts of f both represent valid potentials, let us
now assume that complex potentials exist, on the understanding that real and
imaginary parts actually represent separate potentials. We may then write
u, = {2 4+ 1y)" or in polar coordinates u,(r,8) = r"e™?  Using the principle
of superposition (that is the linearity of A) any linear combination of these
solutions is also a solution. For sufficiently rapidly decaying coefficients ¢

oo
u(r,8) = > eprre (2.7}
k=

will also be a solution (the rate of decay of coeflicients gets special attention in
the next section). The voltage on the boundary is easily calculated by setting

-

r=1:
fo_)
N ik6 5 an
v(8) = > epe™. (2.8}
k=0

‘The current density j on the boundary can be calculated by differentiating the
right hand side of Equation 2.7 with respect to r and setting r = 1:

i0) =5 kepe®. (

=1

]
Ne)
e

If the Fourier coefficients ¢; of v are known then u can be found at any point
in the disk from Equation 2.7. Equation 2.9 gives 5 whose Fourier coefficients

are ke, Conversely if the Fourler series for 7 1s known the ¢; can be found by
simply dividing by k.

2.4.2 Concentric Anomaly

Perhaps the simplest example of a non-homogeneous conductivity is the
concentric anomaly, known colloguially as the ‘blob in the middle’. This is the

M

radially symmetric, piece-wise constant conductivity distribution

\_ o forr<yp ;
’7(7’59}*{ 1 forp<r<i (2.10)

The solutions of Equation 2.1 are given in [47]. If the current density on the
ve

boundary is given by j(8) = 3202, cke'®® then for r > o

0 2k, —2k
ooy cpl—ppr k_ik6 .
u(,,é’) = ";E:WT € {211)
where ;
O’——.
= — 2.1
u o1 (H.i2/9
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2.5 Partial Differential Equations

Equation 2.1 is a second order partial differential equation (pde) for u. Pro-
vided « is bounded above and below, which means physically that there are
no perfect conductors nor perfect insulators in the region, the equation is
bounded and elliptic. The exact assumptions made about v will be discussed
in the next chapter. A space of functions must be chosen in which to represent
the electrical potential u. The most general assumption is that u lies in the
space of tempered distributions or ‘generalised functions’ as described in [29]
or [78]. Derivatives of all orders are defined for distributions so Equation 2.1
certainly makes sense, however additional assumptions must be added so that
the pdes involved have unique solutions. For this the notion of a Sobolev space
must be 1ntroduced.

2.5.1 Sobolev Spaces

The idea of a Sobolev space is intuitively simple. A {generalised) function f
lies in the Sobolev space H* if 8°f/8z° is in L? for all multi-indices? o with
la] <k, that is

jf’ 107710212 < oo, forall a| < k.

Thus the condition that a function lies in H* is a smoothness condition. When
it is necessary to make the domain {1 of f explicit one writes H¥(Q). It is
possible to define Sobolev spaces based on LF for p 3£ 2. These are not Hilbert
spaces and as an inner product will be needed in this thesis for the definition
of singular functins the case p # 2 will not be used. The Sobolev space H* is
a separable Hilbert space with norm || - ||x given by

e
w
-
o~
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where (0% f){z)} = 8°f/0z%. The definition just given applies for k a non-
negative integer, however it is useful to generalise this notion further to include
any real number. For functions defined on all of B" this can be done elegantly
using Fourier transiorms. The relationship between the Fourier Transform and
derivative of a funciion is

(7)) = (2mi6)* fig) (2.14)
?A multi-indez o is an ordered set of non-negative Integers @ = (oy,a9,...,a,). This

rovides a convenient notation {or expression involving partial derivatives. In this notation
P E ]

loj=ay+os+ - +e, and £ = ——y—TL——
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where f is the Fourier Transform of f and « is any multi-index. A function is
said to be in H*(R") when (27ri£)°f(€) € L? P‘”} for any o with |o| < s. This
definition applies for all real s. The norm || ||, on H*(R") is given by

Wl =11+ if!"’)’”f(é)l{m» (2.15)

When s is an integer this formula gives a norm equivalent to the one given
above in Equation 2.13. The definition of H*(Q) for a bounded domain 0
is more technical. The approach taken by Lions and Magenes in [63] is to
define the Sobolev spaces for integer s by Equation 2.13 and then define the
intermediate spaces by interpolation. Other approaches are possible and each
gives a different insight into the nature of these spaces 2,

The negative order Sobolev spaces have an important interpretation as dual
spaces. If X is a Banach space then X~ is the space of scalar valued continuous
linear operators on X, that is X~ = L{X, R). As an analogy, it is helpful to
think of the finite dimensional version: if X is thought of as a space of column
vectors then X~ is the space of row vectors. Usually 2 Banach space and
its dual are completely different spaces although in a Hilbert space the Riesz
representation theorem [1] gives a correspondance - for any o € X* there is
an ¢ € X with o{z) = {(a,z). For this reason it is customary to think of the
elements in X~ as functions and by a standard abuse of notation use the same
symbol (-, ) for the dual pairing as the inner product and write (o, z) = o(z).
The negative order Sobolev spaces can either be defined by =% = (F*)*, orin
the case of the Fourier transform definition, such non-convergent Fourier series
only have meaning when multiplied by a smoother function and integrated, so
the duality is included in the definition.

One more word about duals, if A : X — Y is a linear map between
Hilbert spaces, there is a notion corresponding to the transpose for matrices,
the adjoint operator A* defined by

<é*y7 g:)X = (,ye ACC}Y

o~
Do
Yok
h
N

forallze X andye VY,

It may be helpful to consider the Sobolev norms in terms used by electronics
engineers. In these terms it becomes a very natural and familiar concept. The
distribution f 1s thought of as a signal in the spatial rather than temporal
domain. The H* norm {|f}|, is then the rooit-mean-square (r.m.s.) of the

3The author’s favorite is || /|2 = [,(1 + A)*2f which works for any manifold on which
the Laplace-Beltrami operator is defined (any oriented Riemann manifold). The beauty of
this definition is that it has no reference to local coordinates and yet it incorporates the
geometry of the space. To calculate {1+ A)’ one diagonalises using the eigenfunctions of A
which on the circle are the Fourier basis and on the sphere are the spherical harmonics.
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Figure 2.1: The frequency spectrum of functions in the Sobolev spaces H*(R)
for various s. Note that it is only the asymplotic behaviour of the frequency
specirum which matters.

filiered version of f. If s is positive a high pass filter is used amplifying the
higher frequencies according to an s-th power law. If s is negative a low pass
filter is used, attenuating the higher frequencies according tc an inverse |s|-th
power law. The space H* consists then of all the signals with finite r.m.s. size
when filtered in this way (see Figure 2.1 .

Complete discussion of Sobolev spaces may be found amongst the references
[29],178],]36],]93] and [63] but their more important properties will be discussed
here.

If ¢ > t then for & compact domain H° C H*'. The inclusion mapping
(sometimes called an embedding) has a property explained later in Section 2.6:
it is 2 compact mapping. A particular case of this embedding tells us that

H*C H°=1IL? foralls >0 (2.17)

which means that distributions in a Sobolev space of positive order are also
functions in the more conventional sense. If a distribution lies in a Sobolev
space of negative order however, it only has physical significance when multi-
plied by a conventional function {‘test function’) and integrated over its do-
main. The negative order Sobolev spaces are the home of exotic beasts like
the so called '‘Dirac delta function’ once thought to be a purely mythological
animal. In one dimension, for example, the delta distribution 8, centered at
the point p on the real line R just fails to make it into H™/2(R). In fact it is
easy to deduce from the fact that & is constant that ég € H™Y2"¢(R) for any
e > 0 (see Figure 2.1).
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The partial derivative operator 8% is & continuous map
8% H® — HF (2.18)

provided || < k. The result means intuitively that differentiation reduces the
smoothness of a distribution.

The traditional notion of smoothness is that a function f is in CF if 8°f
exists (in the conventional sense) and is a continuous function whenever |a| <
k. Sobolev’s lemma bridges the gap by guaranteeing that for an n-dimensional
domain §1

H*(Q) c CHQ), whenever s > k + n/2. (2.19)

In particular taking k = 0 functions in H*({}) are continuous provided s > n/2.

Continuous functions defined on © have natural restrictions tc 951, How-
ever this is not g@neLa lly true even for functions in L?{(Q?) as these are not
defined on a subset of {1 with measure zero. The Sobolev theory provides us
with a condition for the existence of a natural restriction map. The restriction
map (or trace operator) 7 : C%) — C% ) extends to a continuous map

7 H () — H*72(00) (2.20)
provided s > 2. This says intuitively that one half & degree of differentiability
is ‘lost’” when one restricts to the boundary. A sketch illustrating intuitively
how a function may be less smooth when restricted to the bounc}ary of its

dormain is given in Figure 2.2

2.5.2 Boundary Conditions

For a partial differential equation to have a2 unique solution, boundary condi-
tions must be imposed. The two most commonly occurring boundary condi-
tions are Dirichlet conditions and Neumann conditions. A Dirichlet condition

is imposed by specifying the value of the function on the boundary whereas a
Neumann condition is a specification of the normal derivative. In the case of
the eﬁiptis: equation L,yu = s the natural Neumann condition is —vVgu = j
for some distribution j. Physically then, a Dirichlet condition corresponds to

3]

E!'

cwfjmg the voltage on J{1 whereas a Neumann condition corresponds to
:pecnymg a current density on OfL.

From physical considerations we see that if a certain pattern of vo ges 18
established on 9%1 then a current will flow through &2 and a potential u will be
established. One might achieve this by connecting constant voltage sources to
electrodes on 8§1. The current drawn from, or sunk into, the voltage sources
would then be determined by the resulting current density j. Conversely one



Figure 2.2: Skeich of e function defined on the half-plane. It is differeniiable

at every point in the interior but fails to be differenticble on the boundary B.

could attach constant current sources (and sinks) to establish a current density
j over 8§k This would give rise to a potential v in ) and v on 0. However,
with this arrangement there are two important points to note. Firstly that
Kirchhoft’s law applies and so

l'r ; >
{1 =20. 2.21
Jon” .

R

This means we can only apply Neumann conditions which satisfy this restric-
tion. Attempts to violate Kirchhoff’s law by setting current sources to an
impossible 7 results in a ‘fight’ between the current sources in which they de-
part from their ideal behaviour. Secondly is that electric potential must always
be measured with respect to some reference level, usually called ‘earth’. If one
simply specifies j the current sources will ‘float’ at some unknown average
voltage. In practice one can earth some point in @, usually a special earth
electrode on 8§1. The voltage at this earth electrode can be adjusted to any
convenient level. The simplest assumption mathematically is that the average
voltage on Ol is zero

:0 m.n
fgnv (2.22)

which matches the condition placed on the current density. In a physical
system any surplus current due to mismatch in the current sources will flow
to earth via the earthed electrode.

Given that Equations 2.21 and 2.22 will be assumed throughout this thesis,
it will be a useful convention to replace the usual Sobolev spaces H*(99) of
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functions on the boundary by the subspace in each orthogonal to constants —
that 1s the subspace of functions with average zero.

The physical situation shows that we cannot specify both current and volt-
age at the same point. We can however specify the current on a subset S C 98}
and voltage on its compliment J{1 — S. Such a mixture of Dirichlet and Neu-
mann data is called mized boundary data. A set of boundary data will be called
suffictent when it uniquely determines v in §2. It is convenient in EIT also to
refer to a set of boundary data as complementary , to a second set when the
subsets on which the Dirichlet and Neumann data are defined are reversed.
In the particular case that § = @ it may be assumed that the complementary
data satisfies the average voltage zero condition Equation 2.22.

2.5.3 Weak formulation

The operator L., defined above is a second order differential operator. Looked

t another way L.u = 0 is a first order partial differential equation in . It is
useful to eliminate this occurrence of derivatives of v so that less smoothness
need be assumed for the conductivity. It is alsc convenient to find a formulation
in which only first derivatives of u occur.

If v is any smooth test function then
Vo (oyVu) = vLlou+ Ve Vu. (2.23)

Integrating, applving the Divergence Theorem and using Equation 2.3 yields

s

jasz vyVau = jg Vv Vu — /Q vq. (2.24)

If we assume that either v]|sg = 0 or YV u = 0 then Equation 2.24 becomes

f vV - Vu :f vg (2.25)
Q Q

The truth of 2.24 for all smooth v {possibly just those which vanish at the
boundary) is a priori a weaker assumption than the truth of Equation 2.2 for
u € C*Q) and ¢ € C°(§1). Moreover it is for a more general class of functions.

Defining D : H'(}) x H'({1) — R (called the Dirichlet form) by
D(v,u) = jg yVv-Vu (2.26)

and writing (-,-) for the dual pairing between H*(Q) and H!({}) the weak
form Equation 2.25 becomes

D(v,u) = (v,q). (2.27)



Here v and v are distributions in A (1) and the source density ¢ is in ().
If we wish to apply boundary conditions to Equation 2.27 then one simple re-
stricts D to the space X x X where X C H!(Q2) is the set of distributions
satisfying the appropriate boundary condition. For example the Dirichlet prob-
lem is represented by X = Hj(Q1) = {u € H'(Q)]7u = 0} and the Neumann
problem by X = H3(00) = {u € HY(Q)|7Vau =0, fo 7u = 0}.

Before going further let us look at the physical background to the Dirichlet
form. The first thing to notice is that its units are those of power density,
that is the power dissipated per unit volume. When a current flows through
a resistive medium power is dissipated through Ohmic beating. In a discrete
circuit this would be V?/R. The total power dissipated would be equal to the
energy input. Taking v = u, Equation 2.27 is the continuum version of the
discrete V?/R = JV. Physically the simultaneous presence of two potentials
u and v on {1 is not possible, but a knowledge of D(u,u) for all u is sufficient
to determine D(v, u} for all u and v by application of the polarisation identity

D{v,u)= ~(D{v+u,v+u) — D{v—u,v — u)) (2.28)

which holds for any bilinear function.

In {his section only Equation 2.3 has been discussed rather than the source
free version Equation 2.1. In addition only zero Neumann and Dirichlet
conditions have been discussed. Fortunately the two kinds of problem are
interchangeable. Suppose as above X is the space of potentials satisfying
the desired (possibly mixed) bourndary conditions. Now let f € H'(Q) be
any function which agrees with the boundary data. The problem of solving
L.(u— f) =0 for u with trivial boundary conditions on v — f, that is 7{u— f)
is zero on S the sel where voltages were defined, and YVy(u — f) is zero on
the complement of S, is equivalent to the same trivial boundary value problem
for L u = ¢ where the source density is given by ¢ = —L_f. For this to work
the only restriction which must be imposed on the boundary conditions is
that they agree with some function in H*(Q). The weakest hypotheses which
guarantee this are j € H™Y/%(80) and v € HV/*(50).

2.5.4 Existence , Uniqueness and Continuous Depen-
dence

Existence and uniqueness of a solution, and the continuous dependence of that
solution on the given data, are the Holy Trinity of properties which mathe-
maticians seek to prove before they decide a problem is well posed. In the
case of elliptic partial differential equations much work has been done in this
area and conditions which guarantee these three properties can be found in
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the literature (see [29,36,63,93]). The conditions can be stated for the weak
formulation Equation 2.27 in terms of restrictions on the Dirichlet form D. A
Dirichlet form D is said to be bounded if there is a constant C such that for
allue HY(Q)

Cllull} 2 D(u,u), (2.29)
and coercive when there are constants ¢g,c; so that for all u € H'(Q)
D(u,u) 2 arljulli + collullg. (2.30)

In the literature hypotheses are made on < to ensure that D is bounded and
coercive. A sufficient condition is v € L*=(Q) {that is v < C for some C) and
~ > ¢ > 0 for some constant ¢. This property will be called properiy C. As
the domain {1 is bounded L™= C H° so property C makes sense in any Sobolev
space of positive order. However, to be useful property C must be stable, that
is, when a distribution with this property is perturbed slightly, the property
still holds. In H°(Q)) this is not the case. A stronger topology* is needed.
Clearly the subset of C°%({1) satisfying property C is an open set. By Sobolev’s
lemma (Equation 2.19) H*() C C°(Q) for s > n/2. For a two dimensional
domain §1 we can take the space of conductivities to be the subset of H1¥¢((})
satisfying property C, where € > 0. Without any danger of confusion this set
will be denoted, also, by C.

Physically property C is simply that the conductivity is bounded above
and below — that is the medium is neither perfectly conductive nor perfectly
insulating at any point.

We now rejoin the standard theory of elliptic pdes armed with our bounded,
coercive Dirichlet form D : X x X — R. First define the weak version of the
operator L., which will be called by the same name but is now a mapping
from X to the dual space X*. If v € X then we define L,u = h € X~ where
{{h,v} = D{u,v). The Lax-Milgram Lemma (see [29, 7.19]) guarantees that
L., has 2 bounded, linear, inverse G : X* — X such that for all s € X* and
veE X

{v,s) = D(v,Gs). (2.31)
The existence of this mapping GG, the Green’s operator, tells us that the

boundary value problems under consideration do indeed have a unique solution
depending continuously on the data (in this case s).

2.5.5 Transfer Impedance

The systern under observation in EIT can be thought of as a ‘black box” which
takes a current density j and returns a boundary voltage v. From the work in

“A stronger topology being one with more open sets.

23



the preceeding section we can deduce that there is a continuous linear mapping
from H~'2(8Q) to H'/?(60) taking j to v. The usual name for the thing one
multiplies the current by to get the voltage is ‘resistance’. To retain the link
with this far simpler incarnation of Ohm’s law, the current to voltage mapping
will be denoted by R, so R,j = v. The Dirichlet problem alsoc has a unique
solution depending continuously on the data, so we deduce that R, has a
bounded inverse. This map R, is the transfer function of the black box hence
the name transfer impedance operator. If one were able to make a complete
set of measurements one would know R, and the reconsiruction problem for
EIT would be to invert the map v + HA,. Some interesting properties of R,
can be found in [47]. In particular the map v — R, is monotone in the sense
that if v > +2 then for all j we have (j, R, 5} < (7, R, j). Thisis a fancy way
of saying if the resistance is increased more power is dissipated!

2.6 Compact Linear Operators

Infinite dimensional spaces will occur frequently in this thesis. These will be
spaces of functions representing conductivities, currents and voltages. Linear
transformations between such spaces, such as the transfer impedance operator
. will also feature. It is worthwhile to pause briefly to ask why it is neces-
sary to consider infinite dimensional spaces as we can only ever make finitely
many measurements and we can only manipulate finite dimensional vectors
on a digital computer. There are many answers to this, perhaps the most
compelling being that our physical models (on a macroscopic scale ignoring
quantumn theory) assume that space is a continuum and that physical quanti-
ties are defined everywhere. When we describe a physical situation in terms of
a finite number of parameters we seek to do sc in such a way that the discrete
approximation to the continuous ‘reality’ can be made arbitrarily accurate by
increasing the number of parameters. If we understand the behaviour of the
continuous model we can then be assured that the behaviour of the discrete
approximation will tend to that as the number of parameters increases,

Linear mappings between infinite dimensional Banach spaces such as H*
and C* can differ alarmingly from their finite dimensional cousins. For exam-
ple they may not be continuous. Those which are continuous are also called
bounded. If A: X — Y is a linear map between Banach spaces X and ¥ then

A 1s bounded when its linear map norm given by

H AR
1 Allxy = sup Azlly
reX HS’.NX

is finite. For the finite dimensional case of X = R®)Y = R™ a linear map A
is a matrix and [|A]l% y is the maximum eigenvalue of ||A7 Al
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Amongst bounded linear maps the class of compact mappings share most
of the properties of mappings between finite dimensional spaces. A mapping
is compact * when it takes closed sets in X to compact sets in Y. Details of
the properties of such mappings can be found in books o functional analysis
such as [78, page 98]. Intuitively a compact mapping can be thought of as one
which loses information. Compact subsets of an infinite dimensional space can
be thought of as rather small and flat - to illustrate this, the closed unit ball in
a Banach space is only compact if the space is finite dimensional (see [78, page
17]). Thus a compact mapping ‘squashes’ the closed unit ball into a ‘smaller’
set. Such a mapping is likely to be hard to undo - a fact at the very heart of
impedance tomography as will be shown in this thesis.

The space of bounded linear maps between Banach spaces X and Y will
be denoted L(X,Y). For A € L(X,Y) the following facts about compactness
will be useful later (from [78, Theorem 4.18):

1. If the dimension of the range A(X) is finite then A4 e compact.

2. If A is compact and A(X) is a closed subset of ¥ then the dimension of
A(X) is finite.

3. 'Y = X and A is compact then the multiplicity of any eigenvalue of A
is finite.

4. If X is infinite dimensional and A4 is compact then 4 has no continuous
inverse,

5. 'Y = X, B is bounded and A is compact thes AB and BA are also
compact.

What was stated above about compact mappings being hard to undo is
vindicated by 4. A compact mapping may have an inverse but it will not be
continuous. Suppose one has a physical system with state space X and one
can only make measurements on the system by observing a function y € ¥
where y = Az and A is compact. One cannot deduce the state z reliably
even if A™' exists for any error in y could produce an arbitrarily large error
inz=A"'y. A similar situation arises if the state = is controlled by y = Az
— here 2 small error in the ‘setting of the controls’ y can produce arbitrarily
large variations in the state z. This is the phenomenon called ill-posedness to
which we shall return .

It is important to remember that the compactness of a mapping depends
on the norms used to measure distance in its domain and range, just as the ill-
posedness referred to above depends on how one measures error. The choice

*Sorne times also called completely continuous.
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of spaces used tc represent the physical quantities such as current, voltage
and conductivity is {ar more than merely a mathematical nicety so that the
theorems work. An ill-posed problem may be made well-posed by choosing a
different norm, for say the state space, because this new norm is ‘blind’ to the
error made in inverting the mapping. Two functions may be close in the H~!
norm and yet far away in terms of H'. In such a case one must look at the use
to which the answer will be put. If it is important to get the high frequency
components of the state correct then H' may provide an appropriate norm

whereas the H™! norm suppresses higher frequencies.

An example of this can be given using the transfer impedance operator.
It forms the basis of one argument given for applying current patterns and
measuring voltages in EIT, rather than the reverse. 8. Most EIT systems
which have been constructed use constant current sources to specify Neumann
conditions while voltages, Dirichlet conditions, are measured. Two notable
exceptions are the systems described by Kim in [53] and Yorkey in [96] which
use constant voltage sources and measure current. The most general condi-
tions on boundary current density j and boundary voltage v which guarantee
finite power dissipation are j € H~1/2(80) and v € HY2(80). The transfer
impedance operator is then a bounded map R, € L{H‘“‘f?{ﬁﬁ),f{"»"z(@ﬂ)}
with a bounded inverse. However once one has passed to a discrete set of
measurements it is debatable whether these fractional Sobolev norms are the
natural norms to use, and they are certainly not trivial to calculate. Suppose
then that one seeks a comparison using the humble L* (root-mean-square)
norm. Since L*{0Q) = H®(60) and H-Y?(80) D H®(GQ) > HY*(60) one
can consider the transfer impedance operator R, resiricled to H°(50) as a
map in L{H°(8Q}, H/?(69)). By composing this mapping with the compact
embedding of H/2(8Q) in H°(8N) we obtain an R, & L{H®(8Q), H*(80))
which is compact by 5 above. By 4 R, does not then have a continuous
inverse. We would be unwise, therefore, to atiempt to control the current
pattern by setting voliages as a large L? error may result. On the other hand
we may specify the currents to whatever L? precision our apparatus allows in
the confidence that the voltages will vary continuously.

Compact mappings often occur as integral operators A : L?(Q) — L2(Q)
defined by

(4N=) = [ K(z,9)e(v)dy (2.32)
The function X is called a kernel and if it satisfies
[ r 12 )
| 1Bz y)dedy < oo (2.33)
0452 ’

SThis example was suggested by a remark made by David Isaacson at the Arst EEC
workshop on EIT in Sheffield, 1986
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it is called a Hilbert-Schmidt kernel. In this case the operator (called

a Hi}beri-Sch dt operalor) Is a compaa mapping. If an orthonormal basis

{é,}is chosen for L*(f1) then A has an infinite matrix representation (ai;)
e

Gi; = <¢1A¢J> (234>
Since
1 SJ/ Kz y)*dzd 2.35)
Z}a.}i ngz LT YA Y ( 5}
an alternative test for 2 Hilbert-Schmidt kernel is that
S el < oo (2.36)
£

Using the example of the the homogen#ow unit disk, the transfer impedance
operator By : H%(3D) — H®(3D) has a convenient matrix representation
with respect to the standard Fourier basis. It is simply the diagonal matrix
Cpm = 6nm Which clearly satisfies Equation 2.36 and therefore R, is a Hilbert-
Schmidt operator. The kernel in this case is the relevant Green’s function.

2.7 Calculus in Banach spaces

et
P
sy

his section non-linear maps between func uc:r spaces and their calculus will
be briefly reviewed. Details can be found in [28] or [1]. e

of such objects studied in this work will be maps which take vor,au»vthh
distributions to voliages on the boundary. This will be made more explicit
later. For the moment a general map F : X — Y between two Banach
spaces will be considered. In fact, the most important example of such a map
occurring in this thesis will only be defined on an open subset U C X, soin
thiscase F': U — Y.

2.7.1 Derlvatives and Order of Convergence

The Fréchet derivative of F at a point z in U is denoted by DF,. It is a
bounded linear map DF, : X — Y which gives the best affine approximation
to F at z in the sense that

. F{z+h)— F(z)—-DF.(h)

Im —

ko LAl

= 0. (2.37)

When DF, exists F'is said to be differentiable at z. When D F} is continuous as
a function of z we say F is continuously differentiable, or F' E CHX,Y). The
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second derivative at z is a bilinear map D?F, : X x X — Y. If et K — Y

is defined by G.(z) = DF.{(a) for any a € X then the second derivative of F
is defined using the derivative of G:

D*Fi(a,b) = D(GL).(b). (2.38)

The function F is said to be twice differentiable at z when D?F, exists. Higher
derivatives are defined similarly. When the Banach spaces in question are the
familiar R™ and R™ the Fréchet derivative, when represented as a matrix in the

tandard basis, is simply the Jacobian matrix. Letting ¢; be the i-th standard

basis vector in R™, and F; the components of F in B® we have
/8F, 8F. 8F,\
5 <1 L2 Eey
E’FJ@ = { == Emy oty e b 5{239
=\&) K@l“g’ OQg‘? ’ §$°; ' )

The mairix of the second derivative is the Hessian:

?5}‘; ?F Ay
DQFS{&;?%}“—‘—'{IA@“‘ 7’5} ﬁz?a.ggmﬁgﬁ‘\“
\C/’Zgéxj 0z,02; 6’35533']

(2.40)

In discussing approximation using derivatives it is convenient to use the
concept of order of convergence. The Landau symbol o(k") provides a useful
potation 7, it stands for any map defined in a neighbsdmomd of the origin of

a Bapach space X satisfying

Thus Equation 2.37 becomes

F(z + R} = F(z) + DF.(k) + o{h). (2.42)
2.7.2 Taylor’s Theorem
If 2 map F is in C7(U,Y) then Taylor's Theorem states that for any z € U
there is 2 neighbourhood V of the origin 0 € X such that for h € V
1 1
a0 BY L )2 LY I i ; Y
Flz +h) = F(z) + DF(R) + 5D Fu(h, k) £+ D7 Fy(h, -, B) 4 ofi")
(2.43)
The right hand side of Equation 2.43 is called the Taylor Series of order r of F
at z. Taylors Theorem has a converse — any map which can be represented as
"There 35 a related and more common notation using . A function f(h) = O(h™)
whenever there are constants M and C such that [|Al] < M = |f(A)|/]]A RlIT < C. Clearly

O(R™+1) = ofh7).



& sum of symmetric k-linear maps {for £ < r) plus a term o(h") is in C7(U, Y’}
and the series is its Taylor series (see [1, page 92]). This method, as we shall
see Jater, provides a convenient way of calculating derivatives. A map F which
has continuous derivatives of all orders is called smooth, in that case one writes
F e C=(U,Y). When a smooth map is equal to its infinite Taylor series, that
is the limit of the right hand side of Equation 2.43 as r — oo, it is called
analytic and one writes ' € C¥(U,Y").
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Chapter 3

Linearisation

3.1 Introduction

The original statement of the linearisation of the forward problem appears in
Calderdn [22]'. In this chapter, Calderdn’s techniques are used and elaborated
upon to give linearised forms of the forward problem both in its direct and
integral form. Calderdén’s result is extended to give a ‘Neumann conditions
constant’ formulation. All proposed algorithms rely on some form of lineari-
sation and yet the approximations used are not always justified. With this in
mind the subject is treated in some detail here. We find, reassuringly, that
they are all simply the Fréchet derivative of appropriately defined forward
mappings.

3.2 Approach

If the conductivity = is perturbed to v + 6y and yet one form of sufficient
boundary data for u is kept constant, the complemerntary boundary data will
change. For example, if & current density 7 is applied, resulting in 2 potential
u, that 1s Loyu = 0, with —yVyu = j on 99, then when « is changed to
¢

—(v + 6v)Va(u + éu) = j. The voltage difference on the boundary ujsg wi
be the data we measure in an attemnpt to detect this conductivity change so
we want a formula for du in terms of &+ (the reverse would be too optimisticl),
neglecting bigher order terms in év. This is achieved by writing §u as a series
in 6y and truncating after the linear term. This series involves the linear
operators Lg., which depends on 67 in a linear way and G, which is the inverse

sat

! Although this legendary Brazilian conference paper is somewhat hard to find
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of L,
next section and may in subsequent sections be daunted by manipulations of
differential and integral operators as though they were numbers. In that case
it may be helpful to think of them as matrices, as they would be if we passed
to some discrete approximation to the operators.

The reader, if unfamiliar with functional analysis, may care to skip the

3.3 Choice of Space for

The standard theory of elliptic partial differential equations (such as that
presented in Gilbarg and Trudinger [36]) requires the coefficients of the partial
differential equations to be in L*=({}) which is a fairly weak assumption. To
guaraniee boundedness and coercivity of the operator L., we certainly need v to
be bounded above and away from zerc, C > v > ¢ > 0 (almost everywhere).
In the following results we will need to be able to evaluate ||v|snll, that is
we need to estimate the magnitude of the conductivity on the bounéazy, In
L*(€)) there is no natural restriction mapping as &{1 is a set of measure zero.
While L*=(1) contains relatively ‘nasty’ funciions it has an extremely strong
convergence criterion. We would certainly be unwise to compare images on
the basis of their L™ distance — any two images could be made arbitrarily far
apart in the norm by changing one pixel.

Natterer {71] suggestis that the appropriate norm with which to compare
two dimensional images is H'/?, This space just fails to include the character-
istic functions of domains with sui"ﬁczently regular boundaries. The weighting
of high frequency terms (or if you like, the inclusion of the 1/%’}1 denivative)
weights edges more strongly than the simple L? norm and this is consistent
with the importance of edges in medical images. In a2 Sobolev space of posi-
tive order, condition C is sufficient to guarantee boundedness and coercivity.
Stability of condition C is required in this c‘zapuex as the standard theory of
calculus in Banach spaces assumes functions to be defined on open sets. As
stated in Section 2.5.4, this stability can be guaranieed by v € HZ+(02), for
€ > 0.

In this chapter a bounded restriction operator will be needed. This corre-
sponds to the existence of a natural trace operator in Sobolev spaces. As we
have seen in 2.5.1 the space H*((}) has a natural trace operator 7 : H*(Q}) —
He™1/2(80). U we require v]sqn to be in H°(951), then that too would point to
using v € H*(2) for s at least 1/2.

In a space of functions with a trace operator one can think of the function
as being the sum of an interior component and a boundary component. This
can be seen algebraically using the first isomorphism theorem of linear algebra.

The kernel of 7 is the set ker 7 = {y € H*(Q)|ry = 0} = H3(Q2). This is a



(b)

Figure 3.1: A sketch designed to give the impression of (a) v, and (b) 7s.

closed subspace of H°({}) so has an orthogonal complement Hi ()t = {c €
H* () {e,y) = 0, for all v € H(Q)} which is naturally isomorphic to the
image H*Y?(3Q) of 7. The space H*(§1) can therefore be decomposed into a
direct sum

H*(Q) @ Hy (W)t = H(Q) @ H/?(69). (3.

(5]
P
s

To simplify notation let C denote the space of conductivities O = H2(81), the
interior component by Co = H*(Q1) and boundary by (5 = H*—1 2(0%1) which
will be identified with H§(Q1)*. The decomposition of a particular conductivity
~ will be denoted by v = ~,+~v5. To visualise these components, one can think
of 7, as being a function which vanishes on 91 but, as far as the smoothness
restriction allows, it agrees with v on the interior of (1. Conversely, v, agrees
with v on 981 but, as much as an H*(2) function satisfying that condition can,
it vanishes in (0 (see Figure 3.1).

The open subset of C' consisting of those functions satisfying property C
will be denoted by C.
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3.4 Direct Form

In thie section the Fréchet derivative of the potential as a function of con-
ductivity is calculated. First a number of inverse operators are defined as

follows:
GP : HF'(Q) — HY(Q) (3.2)

is the inverse of L. : HE(Q) — Hy (). Since the Dirichlet problem
Lou=ag, ulan = 0 (3.3)

has a unique solution, G is well defined and the spaces have been chosen so
that it is bounded. Similarly,

G HZHQ) — Hy() (3.4)
solves
Lou=s, ~FVpu =0, /8 u=40_0, (3.5)
Q
where HL () is the kernel of ¥Vy in H*(£2).
In addition we will need the mapping
GYE HTH30) - HY(Q) (3.6)
which solves ihe inhomogeneous Neumann problem
f_,,ru == G} 'yvnu = fz, ! U = 0 (37)

S0

In estimating the norm of L, which depends linearly on 7, the following
lemma will be used.

Lemma 3.1 ||L.llx x> < |lllc where X is either Hy or HY end X* is Hy
or H}
N

Froof
g | 0Ll

H‘E7E§X° = sup
S weX CH? ”wlihn

| foqwyVu-n — [pyVw - V|

= 5sup

weX HwHH!

= sup [V‘Vu}-‘?u [l
weX 140

< Ayllelullas

We are now ready to prove the following theorem:
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Theorem 3.1 If Lou =0 and L.s,{u + du) = C and the Dirichlei or Neu-

mann data for v and u 4+ éu agree then
Lgu+ L,bu = o(b7) (3.8)
For the Neumann consiant case we alse have
64V pu + YVnbu = o). (3.9)

The forward mapping defined by F(7) = u (which solves a given Neumann or
Dirichlet problem) is in O%(C, H'}. For the Dirichlet case
¥ /

DF(7)6y = —GZ Lsyu (3.10)
and the Neumann case
DF(y)6y = =G Lyju — GI P 6y Vqu (3.11)

Proof

In all cases we have

o~
(%)
fot
[ V]
pa———g

L.,+5~,(u + (53‘.1.} = f,-'féu‘ -+ fz,g»ﬁé —+ Lgﬁ.éu =0

First consider the Dirichlet conditions constant case dulsn = 0. Applying
G = G to Equation 3.12 gives

(1 +GLsyjbu=—-GLsu (3.13)

Using standard series we have, at least formally,

fu=S (~GLs)Fu (3.14)
k=1
which converges for ||GLs,|| < 1. Using Lemma 3.1
IGLe,ll < G- ol (3.15)
so convergence can be achieved by requiring
1
Hovlle < =3 (3.16)

NG

{(the norm used for linear operators being the standard linear operator norm).
The above series constitutes a Taylor series {for ' since, as Lg, is linear in &7,
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the k" term is a k-linear symmetric map in &y (see 2.7.2). In particular we
have

DF(y)éy = —-GPLsu (3.17)
and
Le,u+ Lybu = o(d7) (3.18)

as claimed. It can readily be seen that F'is C'* as the higher derivatives can
be extracted from the Taylor series.

In the Neumann constant case we will treat the two components of Ca @ C,
separately writing v = 7, + s as the sum of the components. The two partial
derivatives can be calculated separately. In addition to the equation

Lgqu+ Lbu+ Lgbu=20 (3.19)
we have its boundary equivalent
(v 4+ 67)Va{u+ bu) =vVau. (3.20)

To calculate 8F /3y, we assume évjsn = 0. The boundary condition now
reduces to vV gpéu = 0 and the proof proceeds as before in Equations 3.13-3.16
with G = G'f:’ and we have

bu = Z{ Gl Lgy)u (3.21)
and thus aF
5%5% = ~Gl Ls, . (3.22)

On the other band GF/Jvs can be calculated by assuming that v = 0 in
o -
the interior §). This leads to

Lbu=0 (3.23)
and
FVndu = —bvaVau — dvsVydu. (3.24)

The proof proceeds in a similar way to the interior case. Applying Qfs
N . \
bu = G2 Bl—b75Vnu — 6v5Vnbu) (3.25)
and rearranging we obtain

(14 GlPEy:Vn)bu = —GYB6v:Vu. (3.26)

(@8]
[S4]



Using standard series as before we have, at least formally,

(=GE P65V 0 ) u (3.27)

o

e

Il
)8

k=1

which converges for ||GNBé~3Vy|| < 1 which is ensured by ||6v5]] < 1/(]|GY2||-
1¥V!]). Again, by Taylor’s Theorem we have the derivative

oF .
by = ——~G§’Bé7“7§u (3.28)
U%a '
and the result
v Vau + 7Vnbu = o(b7s). (3.29)
From the chain rule
DF(v)6y= =Gl Lg,u — GLB6vVyu. (2.30)

From the converse to Taylor’s Theorem in 2.7.2 we see that F' € C=(C, H*).
=

The proofin the Neumann case can be simplified by defining a new operator
which combines GV with GZ.

- ~ - ot - 0 e L

Define L, : H* (O} — HRH{Q) & HY#(90) by

—.":.,u = (L';, “"Yvnu)- ( ‘

Lo
(]
fared
St

This is has a continucus inverse G, given by
Glg,7) = GNg + GM75. (3.32)

The Neumann case is now like the Dirichlet case with

k=1
and
SF(,)}gf}, — _.'?;f}ffj&yu_ \{334)

In both cases F is equal to its Taylor expansiorn in & neighbourhood of ~
and is therefore an analytic mapping (this was pointed out by Calderdn for
the particular case ¥ = 1). This indicates that the forward mapping could
hardly be better behaved. However, it is the inverse of this mapping which is

required for FIT reconstruction and, as we shall see, that is not nearly as nice.
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3.5 Interpretation as a source
The essential result of section 3.4 is that to first order we can assume
V o AVéu = =V - §7Vu. (3.35)

One interpretation of this is that the perturbed field du is ‘caused’ by a distri-
bution of current sources —V - 6vVu. Equivalently, one could say that adding
2 source field g = V-§7Vu would cancel the effect of changing the conductivity

by &7.

An interesting case to consider is to take 6y = &, the Dirac delta distribu-
tion at a point p. We will assume that v € C*(1) and that p is not a critical
point of u, that is Vu(p) # 0. For simplicity we will take 4 = 1. The source
term is now —V§, - Vu which is a dipole with dipole moment |Vu(p)| oriented
in the direction of the current vector at p. The perturbation éu to first order
is then the electric field associated with the dipole. The function bulaq is the
point response of the system (up to first order). In optics this would be called
ihe point spread function. In contrast to ideal optical systems the response is
position dependent, falling off dramatically as p gets further from the bound-
ary. The field from a dipole is asymptotically (2u cos§)/r?. Here p is the
dipole moment, r the distance from the dipole and 6 the angle relative to the
dipole orientation. In this case g = |Vul, which is, at best, constant and typi-
cally decreases away {rom 852. Hence we find Houlaallpiran) = O(1/p*) where

— dist(p, #0). This means that the ability of an EIT system to detect a small
object of high conductivity contrast will fall off, at best, proportionately to
the inverse square of distance from the boundary.

3.6 Integral Form

Tt is useful to re-formulate the linearised problem in an integral form. In Chap-
ter 4, the finite element method will be used to represent the electric potential
and to solve the forward problem. In the finite element method differential
equations are formulated as variational problems, which are equivalent to the
weak form of the differential equation. Since this is essentially an integral
formulation it will be advantageous to express the linearised conductivity-to-
voltage mapping as an integral operator.

First notice that for any V with L,V = 0 and any U (U and V in H(Q) )
T (UAVV) =4V -V (3.36)
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and so using the divergence theorem

VAVal = [V VUL (3.37)
an 4
From above
Leu+ Lybu = o(éy) (3.38)

where Lou = Liys(u + éu) = 0 and 9Vou = (v + 67)Vy(u + 6u). Choose
any w with L,w = 0 then

V- w(yVu + vVu) = vVw - Véu + 67V w - Vu + o(6v). {3.39)

Applying the divergence theorem

7

Fa
jm w{yVabu + 6yVgu) = jﬁ TVw-Véu + 6vVw - Vu +o(éy).  (3.40)
Since L,w = 0 we know that

- SuyVaw = j;}’yv&s -Vw (3.41)

and using the boundary condition yVéuVy, + 67 VuVy = o{6y) the result is
f [ . ‘
oa buyVpw = — ]ﬂ EYVw - Vu + o(by). (3.42)

Notice the negative sign. If current is kept constant and the conductivity
increased, more power will be dissipated.

Let us now consider the implications of this formula for the reconstruction
process. One has some initial estimate of the conductivity 4 and wishes to
correct this using the best linear approximation. Some known current patterns
7i are applied to the surface of the body 0§). Measurements of voltage u; are
made between various electrodes. Since measurement is an averaging process
over the electrode we will assume that the measurements are of the form

I/;',sz Uik (3.43)
a6

where wy is characteristic of the geometry and electrical properties of the
electrode pair k. We have an ¢ priori model of the body with conductivity

v which we compare with the real body which has conductivity v + §~. The
discrepancy between the two is measured by the data

§Vig = / Suiw
a5z

P
(5]
35
s

—
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We then solve the Neumann problem L,w = 0 subject to Vaw, = wi. To
find a linear approximation to the conductivity error v we solve the system
of linear equations

(6853

§Vip = —/ §Vwy - Vs (3.45)
0

In this formulation the Neumann conditions were kept constant. As we
have seen in Chapter 2, this is the most useful formulation for impedance
measurement for both theoretical and practical reasons. For completeness,
we must compare this to the problem investigated by Calderdn in which the
Dirichlet conditions were fixed and a difference of Neumann conditions (that
is boundary current densities) measured. In ths case the boundary conditions
ate j = —yVyu and

87 = —6(7Vau) = 6yVau + 7Vynéu (3.48)

assuming now that dujzq = 0. This leads to the result

7

j w(YVaw) = ?57‘\711) -Vu + o(by) (3.47}
30 JE

which does not have the minus sign as the power dissipated will increase if the
voltage is held constant and the conductivity increased.

3.7 Operator Form

14 will be helpful in subsequent chapters to include the operators R, and foB
in the integral form of the derivative. In this case let ' : € — L{H~!/? HW?)
be the map F(v) = R,. In this case DF,(év) is the limit of the difference of
transfer impedance operators. To obtain the matirix for such an operator we

choose a basis j1, 72, ... of currents then
(i DE(87)5) = — [ 679(GYE5) - V(G Z;e), (3.48)
The properties of this operator are discussed in more detail in Chapter 5.

3.8 Translation to Inverse scattering prob-
lem

Although this approach is not explored fully in this thesis it is worth noting
that there is a correspondence between the identification problem for the con-
ductivity by boundary measurement and the problem of finding an unknown
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refractive index from similar data. The correspondence is formalised in the
following lemma (stated in [54]).
Lemma 3.2 If w = ~"%u and n = —A~Y?/4Y? then
V- -4Vu=0<¢ Aw+qw =0. (3.49)
Proof
Vu = —wy M2Uy/2 + 40w
V-4V = V.- (Vw412 T~/2)
= TV Vw2 -y 0|V 4 — wy TPy )2
0
=
val? V2
0 = Viw+ (! — Jw
which is equivalent to
Viw 4+ qw =0 (3.50)
where . o
VA Vi A -
7= T s = T (3.51)
4y 27 1/
&

In the new formulation, the function to be identified 5 appears with no
derivatives. The identification problems for v and 5 are closely related : » can
be deduced from v by definition and given 7 we must solve the elliptic p&fhi&.}_
differential equation

A 4yt = g,

o~

3.52)

This equation has a unique solution given sufficient boundary data for v, for
example, if v is known on the boundary. This leads to another formulation of
the linearized system to be solved to identify 4. Define

Lyw=Aw+nw (3.53)
H

and G, the inverse of £, : H — Hy' then

Theorem 3.2 If F(n) = w where w solves Lyw = 0 then DF,(én) = —C, (énw).
Proof
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Assume

Logsn(w+oéw)=10 (3.54)

that 1s
Alw + bw) + (n+n)(w+dw) =0 (3.55)

hence
(Ly — én)bw = —bnu. (3.56)

Applying G, to both sides we get

(1 — Gpén)bw = —Gpénuw (3.57)
and as before ¢
S = — Z(Qﬁérg Vilyw (3.58)
3=1

As a corollary we have

Corrolary 3.1 A first order approzimation to the inverse problem is o find
g én consistant with the Fredholm equation

Sw = —G,{éqw) (3.60)
z)dz

or defining g, by (g"’f}(x) = fo gn(xs y)f

if _gn‘izs ?)57?@}19{3)} dy

Jyes

(6w)(z)

e
LR
(5]
ood

g

Identifying the coefficient 1 may be of interest in itself, It is hard io
understand the physical significance of this quantity (its units are per area)
but it mnay never the less be a useful quantity to image. Onpe can see {rom its
relation to the conductivity that it will yield an edge enhanced version of the
conductivity image, the Laplacian operator being an edge detector. One may
want to recover v from 7 in a quantitative study. This would be reasonable as
the mapping taking 7 to v is a smoothing map. The reverse however would
result in an amplification of noise inherent in the diflerentation process. In
Sobolev space terms, 7 € H* means that v € H**2
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3.9 Historical Note

Both the integral and direct forms of formula for the derivative appear without
proof in the EIT literature. The iniegral form can be traced to Geselowitz [32]
and was well known in Japan, being cited by Nakayama et al [95] in 1981,
Sakamoto and Kanai [79] in1983 and by Murai and Kagawa [67] in 1985.
Both Murai and Kagawa and Nakayama et al were also aware of a discrete
version relating to resistor networks. In 1986, at the first European Workshop
on EIT, Yorkey and Webster [97] described how the derivative matrix could
be calculated using a discrete formulation. None of these authors gave or
referred to a2 mathematical proof that the integral formula for the derivative
was correct. Yamashita and Takahashi [94] give a matrix series derivation.
Breckon and Pidcock [13] state that the derivative formula could be deduced
rigorously as an extension of the work of Calderon [22].

The direct form exhibits itsell in the correct assumption by Barber and
Brown [5} that the term Ls,6u could be neglected to first order although
no justification is given. It also appears in Yorkey’s compensation method
(see [96] and Section 4.7).



Chapter 4
Finite Element Modelling

The Buddha, the Godhead, resides guii@ as comforiably in the gears
f

of a mo"omcgclf iransmission or the circuits of a digital compuier
as at the top of a mountain or in the petals of a lotus flower.

Robert Pirsiz, Zen and the Art of Motorcyucle AMaintainance
) J Y

4.1 Choice of Forward Modelling Technique

All methodc roposed for EIT reconstruction require some method of caleulat-
ing the polentia 1 , or at least the electric fleld £ = Vu, from given sufficient
boundary con d tions and conductivity. Analytical methods for solving these
field equations are restricted to simple conductivity distributions. While do-
mains with irregular boundaries {at least in two dimensions) can be handled to
some extent by analytical methoés using conformal mapping techniques, this
is far from easy. The restriction on the complexity of the conductivity makes
analytical methods useful only for calculating an initial approximation to the
potential from a simple first guess for the conductivity. An example of this is
the Barber-Brown [5] method. If one wishes to starl {from a more elaborate
initial guess, or iterate after a first approximation to the conductivity has been
calculated, it is necessary to use a numerical technique.

The two most readily available numerical methods for solving partial differ-
ential equations are the Finite Element Method {FEM) and the Finite Differ-
ence Method (FDM). In the FDM the potential is approximated by its values
at the nodes of a regular rectangular mesh. In the FEM the domain is de-
composed into irregular polyhedra or polygons (called finite elements) and the
potential is approximated using finite element basis functions to interpolate
between specified nodal values. The basis functions are polynomial within the

43



elements and the resulting approximation space is thus piecewise polynomial.
It can be shown that the FDM is a special case of the FEM with a particularly
simple mesh. The FEM has the advantage that irregular elements can be fitted
accurately to the boundaries of irregularly shaped domains — such as human
bodies. Also the size of the elements can vary within the domain to enable the
fields to be calculated with greater accuracy in some regions. This is useful,
for example, to give better accuracy in a region of higher field strength such
as that near an electrode. The FDM has the advantage that the regular grids
are easy to generate, the programs easier to write, and the results are easier to
display. Another advantage is that fast general purpose multi-grid solvers are
readily available for simple regular meshes but not for the more complicated
finite element meshes.

Neveriheless, it was decided from the outset to use the FEM in this work.
The use of this meithod bhad a precedent in EIT research in the work of
Tarassenko [89] and also of Kim [52]. The later works of Yorkey [96,97] also
use the FEM which has now become a {familiar tool in the EIT reconstruction
field. Following Tarassenko we choose to use the Finite Element Library of
Greenough and Robinson [39] now distributed by Numerical Algorithms Group

£,

b2

Theory of the Finite Element Method

4.2.1 Preliminaries

It seems appropriate here to give a brief summary of the aspects of the finite
element method pertinent to this work. For a more detailed treatment the
reader is referred to the exiensive literature on the subject including works
written specifically from an Engineering, Physics or Mathematics standpoint.
Readers should choose a reference which appeals to their own perspective. For
the mathematically inclined, Strang and Fix [85] and Zienkiewicz [99] were
found to be particularly useful. For an introduction to the practicalities of
writing finite element programs Greenough and Robinson [39, Vol 1] serves as
a practical guide to methodology as well as a user’s guide for the NAG Finite
Element Library.

The essence of the Finite Element Method is to find the closest approxi-
mation to the solution of the weak form of a differential equation which lies
in an finite dimensional approximation space of certain piecewise polynomial
functions. This approximate solution can be found by solving a system of
linear equations, the number of equations being equal to the dimension of the
approximation space. In the case of the equation L,u = ¢ (with ulsn = 0)
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the equivaleni weak form 1s
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Ja

~Vu - Vuw —qu) =10

o~

for all test functions w. If Dirichlet boundary conditions are to be imposed

{hen the class of test functions is restricted to those which satisfy the boundary
condition. Neumann conditions —yVgu = j are imposed by replacing ¢ by
g+ f for any [ satisfying the Neumann condition —yVgf =7 with L, f =0.
Integration by parts leads to the formula

r \ ro.
I;’ (vVu-Vw—gquw) = ]’ wJ.
Ja Jaq

Neumann conditions can thus conveniently be thought of as (current) sources
localised at the boundary whereas ¢ represents interior sources. An approxi-
mation space can now be chosen in which to represent u.

4.2.2 Approximation Space

nsions will be polygons, typically triangles or quadrilaterals (see Fig-
ure 4.2.2), and in three dimensions could be ‘bricks’ (irregular cuboids) tetra-
hedra or triangular prisms. Each element has a number of nodes which include
the vertices of the elements and possibly other points which may be interior
or on the boundary. Bach element must be non-degenerate in the sense of no
coincident faces being parallel. Also, the partition of the domain into elements
must be consistent, meaning that if a node lies on a face of more than one el-
ement it must be a node in both elements. A basis for the approximation
space is formed by first considering 2 single element. The element is given a
local coordinate system in which it is symmetrical. An example of a triangular
element is illustrated in Figure 4.2.2. The local coordinates in this case are
£ = (£,£). A local basis consists of a set of polynomials N:(£),..., N,(&) in
the local coordinates where n is the number of degrees of freedom associated
with the element. To emphasise that a local basis function belongs to & par-
iicular element e it will be denoted by Nf. In simpler elements the number
of degrees of freedom will be the same as the number of nodes in the element
and in ihis case we have N;(£7) = &;; where £j is the coordinate of the st
node. A function f(£) can then be approximated by (&) = 27, FEHYN(E).

=1

-

The term element will be used to describe both the geometric shape, and the
shape together with its basis functions. Higher order elemments may have extra
degrees of freedom associated with derivatives of f. If the first r derivative
were represented at each node, then the number of degrees of {reedom would
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Figure 4.2: A three noded triangular element in the local coordinate system.



be nr and the local basis N;;(£),1 <¢<n,0 <7 <r. The approximation to
f(&) would then be

Fo=%3

/-\

);; ‘ J(E)’ (4.1)

For the three-noded triangular element shown in Figure 4.2.2, the basis
functions the basis functions are the first order polynomials

Ni(&) = a; + &6 + e

{

o
I8
%)

——

For a finite e%meat mesh M the approximation space S{AM) is given by
span{Ntle € M,1 < i < ne)}. The local basis functions are chosen so that
the first r derwa‘s*ves agree on the faces of the elements. This guarantees
that S{(M) C C7(Q1) and & will be piecewise constant and, as {1 is compact,
bounded. Thus S{(M) C H’H’Q) {(Note that Sobolev’s Lemma (see 2.5.1)
guarantees that any function in C7 is also in Hrtn/?=¢ For n = 2 this just
fails to show that S(M) C H™(Q), but that for n = 3 it tells us that
actually S(M) C H™5-¢(Q) for some € > 0). As stated in Chapter 2, we are
assuming that the power dissipated is finite and the weakest condition which
guarantees this (at least within the L? framework) is v € H'(§}). This suggests
using C%Q)) elements to approximate the potential. For algorithms where the
direction of the electric field is used explicitly it would be more appropriate to
use (1) elements.

The essential quality of a scale of approximation spaces is that they refine in
such a way as to guarantee an arbitrarily accurate approximation. With finite
elemnent spaces there are two distinct methods of refinement. The mesh itself
can be refined reducing the size of the elements or the order of the polynomials
used can be increased increasing the number of degrees of freedom per element.

The convergence of the finite element approximation ¢ to the solution u of
a second order elliptic pde as the maximum element radius % and the degree
of the polynomials used k > 1 can be summarised in a formula given in [85]:

“u m ’—“ k4+i-s 3
ol =" (43)

where s is non-negative. As a pavticuiar example, let us consider a finite ele-
ment space using three-node, triangular elements of order E =1 such as those
in Figure 4.2.2. In this case, the L? error in the finite clement approximation
to the potential has order of convergence O(h*) as s = 0. The error in the
gradient of the solution, as measured by the norm I1-1l1, 1s only O(h). No*?

« 1 21

that the left hand side of Equation 4.3 is the relative error, compared with the
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the Sobolev k + 1 norm of the actual potential. The inequality can be applied
locally to show that in a region where any of the first £ + 1 derivatives of u
are large, however the absolute error |ju —

1

£
L
y

|« will be larger.

4.2.3 The System Matrix

The finite element equivalent of the operator L. is called the system mairz.
It is simply & representation of the Dirichlet form in the finite element basis.
If A is the systern matrix then

W
pN—

ahe = f§ ~VN; - VN, (4.

To calculate the system matrix it is necessary to calculate the inner product
J 1%

{ the gradients of the basis functions and perform the integration. The usual

23

approach is to treat each element in turn changing variables to the local co-

j”

ordinates £. It is necessary, therefore, {0 calculate the Jacobian J = 0€/dz.
The element mairiz for the element e is then A® where
at, = f A(JVNE) - y(JUNE) (det J) = d¢. (4.5)
>3

The integration is typically performed numerically using a quadrature rule.
The system matrix is then assembled from sums of the element matrices.

The system matrix inherits the properties of the Dirichlet form — it is
symmetric and positive definite. In the finite element basis it is also banded —
that is entries in the matrix more than b away from the leading diagonal are
zero; here b is called the semi-bandwidth. The bandwidth is determined by the
numbering of the nodes and is equal to the maximum difference in numbers
of nodes within the same element. This banded structure can be exploited
to speed numerical inversion of the system matrix and to reduce computer
memory requirements. Analytically, the bandedness is due to L., being a local
operator.

To represent the trivial Neumann conditions problem
Lou=gq, YVau =10 (4.6)

in finite element form, v and ¢ must be represented as vectors of nodal values
u and g, then

4.2.4 Application of Boundary Conditions

Boundary conditions can now be applied to Equation 4.7. For Neumann con-
ditions this is very similar to the continuous case. To apply the condition
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—~Vypu = 7 a function f is found with —yVyf = j and the trivial Neu-
mann problem for s = L.f is solved. Finding such an f is very simple in
the finite element representation — it is simply a vector f supported only at
boundary nodes. In the finite element representation, Neumann conditions
are simply sources at the boundary. Dirichlet conditions can be applied by
one of two methods. The first is simply to eliminate the components of u
corresponding to boundary nodes where the potential is known. This is very
straight-forward when the boundary condition is zero — that line in the linear
equation is simply deleted. For more complicated conditions it can destroy
the banded structure of the system matrix. The other way commonly used is
the Payne-Irons ‘big spring’ method. Details can be found in [39].

&

1vities

4.3 Specification of Conduct

ks

Previous authors using finite elements to model the potential in EIT (for ex-
ample Yorkey [96] and Tarassenko [89]) have modelied the conductivity as
piecewise constant on elements. While it is reasonable to approximate the
conductivity distribution of the body as piece-wise constant by assuming that
the individual organs are homogeneous it is not possible to make organ bound-
aries lie only on the boundaries between elements without a pricri knowledge
of the positions and shapes of the organs. As this information is not available
it would be necessary to include the positions f the elements as free variables
to be fitted to the observed rneasurements. That path may well prove fruitiul
but it is not the one investigated in this thesis.

The basis functions in the finite eiemwﬁ model used to calculate the po-
tentials were already available and have useful properties for approximating
the conductivity. In addition the assumption that the conductivity lies in a
given finite element space is a form of regularisation for ill-posed problems (see
Natterer [73]). In this thesis the assumption for the analytical work has been
v € C C HM?*(Q). It is necessary to ask how this assumption is related to
the representation of «y in a finite element space. Let us consider the particular
case of a two dimensional domain with piece-wise linear elements. The first
derivatives of the nodal basis functions for this finite element space will be in
H'/?¢ a5 they are characteristic functions of domains with sufficiently regular
boundaries {(as shown in [71]). We can conclude that the nodal basis functions
themselves lie in H3?7¢, For any ¢ < 1/2 this is consistant with the assumed
smoothness of the conductivity.

Another issue associated with the approximation space used for the con-
ductivity is the stability of boundedness property (more especially property
C as the mesh is refined. A result which sheds some light on this topic (and
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indeed why the FEM works at all!) is the inverse estimate of Suli [86]. If
v € H}(R*) and vy, is its finite element approximation in a finite element space
of piece-wise linear elements with radius &, then

[[onllon < C'log 1/hlfoallz;. (48)

This shows that the upper and lower bounds of the finite element approxima-
. 1

tion cannot be controlled by a bound on the H* norm. However the growth

of the upper or lower bounds will be at worst logarithmic in the element size.

4.4 The NAG Finite Element Library

When faced in 1985 with the question of how to write a forward modelling
program for EIT the following considerations were important:

¢ A capability for solving two and three dimensional problems was re-
quired,

e

¢ A solver must be incorporated in a larger EIT reconstruction program.

¢ Both Neumann and Dirichlet boundary conditions may need to be ap-
plied.

e An interface with Fortran 77 was required to facilitate use of other nu-
merical software libraries.

®»

A large selection of element types was needed.

-

The NAG finite element library [39] satisfied these criteria. The library
consists of a collection of Fortran subroutines which perform fairly low level
operations, such as mairix arithmetic, basis function calculation, calculating
quadrature points, system matrix assembly and solution of linear equations.
There is also a set of example programs illustrating the use of the library to
solve specific (two dimensional) problems. These examples illustrate the data
structures used to represent the finite element mesh and the system matrix,
and algorithms for matrix assembly and solution. The library contains no
mesh generation, node numbering or graphical display routines.
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4.5 Implementation of the Forward Modelling
Program

4.5.1 History of fuprob

A flexible forward modelling subroutine called fwprob has been implemented
using the NAG Finite Element Library. This code has evolved considerably
over its four years of life. The first version was implemented on a PRIME
minicomputer in early 1986. It was ported to an Apolic Domain workstation
in 1987 and then again to Sun 360 in 1988. Later the same year it was
transferred to a Sun 386i. This version has now been ported by Paulson to a
Transputer system which uses the Sun 3861 as a host [17]. Paulson’s version,
written in Parallel FORTRAN, uses concurrent programming technigues to
effect a considerable increase in speed.

4.5.2 Choice of Language

With the benefit of hindsight, the use of 2 more modern programming lan-
guage than Fortran 77 would have been an advantage. In particular, more
flexible data structures {such as'structures in C or records in Pascal} would
have made the representation of finite element meshes much clearer. Also it is
the nature of finite element programs that objects (for example elements) have
both data and operations associated with them. This suggests that an object
criented programming approach would be advantageous. An expedient choice
of programming language at the time of writing would be C++, combining the
features of Fortran essential to the numerical analyst such as adjustable array
sizes and double precision arithmetic, with facilities for object oriented pro-
gramming. In an effort to retain the portability of Fortran while adding some
extensions (such as included source files and global constants) the standard
Unix macro package m4 is used as a pre-processor for all code.

4.5.3 Program Details

In the documentation for the NAG-FEL [39, Vol. 2,3.2], an example pro-
gram is given to solve a second order elliptic partial differential equation in
divergence form, with Neumann and Dirichlet boundary conditions. This was
used as a starting point for the development of fwprob. The first modification
needed was to allow for a conductivity specified in the finite element space,
rather than as a function given in terms of the global coordinates. Further
modifications have been mainly concerned with increasing the speed of execu-
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tion. Those readers wishing to understand the detailed workings of fwprob are
recommended to read [39, Vol. 2,3.2] so as to understand the programming
conventions and methodology used.

It was found that using the example program assembly of the system matrix
took significantly longer than the solution of the linear system. This was due
to the large number of arithmetic operations and subroutine calls required to
calculate the quantities

sle,i 7, k) = Jj' NEVNE - VNE (4.9)

for each element e € M. These quantities depend only on the mesh and not
on the conductivity or boundary conditions and thus can be calculated once
for z given mesh and stored. Subroutine precalc calculates the array s

e

The first call to fwprob assembles the system matrix. It then calculates the
Choleski factor of this matrix and solves for the potential given the boundary
conditions described in the arrays bdend and bval. On subsequent calls if the
system matrix is unchanged the logical variable recalc can be set to false,
and fwprob simply assembles the right hand side rhs {which is the array
representing the source term ¢) according to the boundary conditions and
performs forward and back substifution.

4.5.4 Trouble Shooting

5

It seems worth recording some of the most common conditions which can
cause the routine fwprob to fail, as these will no doubt alse be encountered
by others implementing finite element programs for EIT. The most common
error message generated comes from the Choleski factorisation routine CHOSOL
indicating that the system matrix is not positive definite. The most commen
cause for this is that the infimum of the conductivity is too small. This is
the numerical equivalent of a violation of condition C. The smallest feasible
conductivity will depend on machine precision, but an insulating region can
represented by this value.

A second possible error is that the boundary conditions are specified in-
correctly. If no Dirichlet conditions are specified, the matrix will have a rank
deficiency of one and again will not be positive definite. The trivial Dirichlet
condition of ‘earthing one node’ can be specified by deleting the column in the
systern matrix corresponding to that node. Other Dirichlet conditions can be
included using the Payne-Irons technique.
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4.6 Mesh Generation, Numbering and Re-
finement

While regular meshes on rectangular domains are trivial to generate, circular
domains present something of a problem. The program rmesh generates three-
noded triangular meshes for a circular domain. The input to the program is a
sequence of decreasing radii r; and numbers of nodes n; on the concentric cir-
cles. The numbers of nodes must satisfy k(n; — n;21) = n; for some integer k.
The algorithm reduces the number of triangular elements in successive concen-
tric annuli by collapsing every &' element to a radial line (see Figure 4.2.2). As
stated in Equation 4.3, the relative accuracy of the finite element approxima-
tion depends on the maximum radius of the elements. If a uniformly accurate
approximation is required the size of the elements must decrease in proportion
to the size of the first two derivatives of u on the element, as measured by
Hullgr2(e). Ideally the mesh would be ‘tuned’ to a particular set of boundary
conditions. Supposing that the conductivity were uniform, a current pattern
of j = cos k6 would have §%u/dr? = (k — 1)r*"2coskf ( for k > 2). In this
case uniform approximation would be guaranteed by an element radius given
by h(r) = Cr?> %, As a general principle, the elements should be smaller near
the boundary.

The program rmesh initially generates nodes ordered lexicographically in
the polar coordinates : {(ry,8;) < (ry,6;) <= (r; < rp)or(r; = rpandé; < 6;).
This produces a semi-bandwidih equal to n, + 1, where n; is the number of
nodes on the boundary. To reduce the bandwidth of the system matrix the
nodes were re-ordered according to the ordering (z1,y:1) < (22, 12) < (2, <
zy) or (z1 = z; and y; < yy), that is lexicographically in (z,y). This ordering
reduces the bandwidth by a factor of up to «, the ratic of circumference to
diameter. Because the nodes in these circular meshes do not ‘line up’ along
lines of constant y a few changes in this numbering scheme may be required
to minimise the band width. Paulson has written a version of rmesh which
swops pairs of nodes to achieve this.

The boundary of a cross section of the human body is not circular (see
Figure 4.3). However it is relatively smooth and has an approximate axis
of symmetry (left-right). In the Sobolev theory of derivatives, smoothness
1s reflected in rapidity of decay of the Fourier transforrn. We can expect
therefore that a Fourier series for the surface shape of a (star-shaped’) body

cross-section, represented as r(f) = Zf:,a cxe*?, to be economical. That is,

'Siar-shaped is used here in the mathematical sense of there being one point which can
be connected to all others by a line lying within the body. We will leave the impedance
Jocation of truly star shaped bodies to fish!
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Figure 4.3: A cross section of the human chest

the error in our approximation will decrease rapidly with increasing . For
such shapes we can easily modify the circular mesh generation program to
provide reasonably regular meshes provided their deviation from a circle is not
too extreme. The author has produced a version of rmesh which replaces the
concentric circles with curves whose radial coordinate is given by a Fourier
series.

It is useful to have the capability to refine an existing finite element mesh for
two reasons. One is to verify the experimental stability of the approximation
scheme as A — 0. This applies both to forward modelling and to inverse
problem solution. The other reason is that it is desirable to represent the
conductivity on a coarser mesh than the potential, in such a way that the
finer mesh is a regular refinement of the coarser. The mesh for the conductivity
should have no more nodes than there are independent degrees of freedom in
the voltage measurements. On the other hand, the mesh for the potential needs
to represent the potential acurately near the boundary where the field strength
is high. The requirement that the mesh for the potential is a refinement of that
for the potential facilitates the calculation of the conductivity at the nodes of
the potential mesh, as required by fwprob.

A mesh refinement program was written which divides each triangular el-
ement into four smaller triangles, all similar to the original. This ensures that
the radii of the elements decrease uniformly with increasing number of ele-
ments. This is the most obvious way to refine a mesh and its disadvantage is
that it multiplies the number of elements by four. Therefore the number of
elements increases exponentially. Ar algorithm with a linear increase would
be useful.

The mesh refinement code refine is somewhat more complicated than one

[t
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might expect. The algorithm is as follows:

input old mesh
foreach element do
calculate global coordinates of new nodes
add new nodes to list of nodes
add new elements to element topology array
if newboundary nodes are created then
add them to list of boundary nodes
enddo
sort nodes lexicographically in (x,y)
remove redundant nodes from list of nodes
remove redundant nodes in list of boundary nodes
outpul newmesh

Of these steps the addition of boundary nodes was most difficult requir
case-by-case analysis of which original nodes were on the boundary. mhe
boundary nodes will have slightly incorrect coordinates and can be moved
radially to fit the boundary.

mng a
new

4.7 Numerical Calculation of the Derivative
Matrix

In subsequent chapters the derivative of the forward mapping DF, will be
required. This matrix, sometimes called the ‘sensitivity matrix’ has ben cal-
culated by 2 number of other workers in the field. Kim [52] and Tarassenko [89]
use z ‘perturbation technique’, that is they use a finite difference approxima-
tion to the derivative

Fly+6v) - F(v)

DF.(87) =~ T :

o,
J
ot
f]

p—

These matrices were used in various ways to give approximate linear recon-
struction algorithms. The disadvantage of such a perturbation technique 1s
that a different finite element system must be solved to calculate F(vy + év)
for each conductivity change 6. This requires inversion of a different system
matrix each time. The cost of this technique would be prohibitive, except
in the case where the derivative matrix is precalculated for a given initial
guess v for the conductivity and only one linear step is required. The integral
formula for the derivative 3.45 gives a more efficient method of calculating
DF, numerically. Only one system matrix need be assembled and its Choleski
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actors calculated. All the potentials required in the derivative can then be
calculated. Furthermore, the integrals of inner products of potential gradi-
ents required in 3.45, can be calculated readily from the stored coefficients
S(e,z,7,k) of Equation 4.9.

Yorkey [96] [97] calculated the derivative by a similar method. He also used
another method in which the finite element model was replaced by a discrete
resistor network. He then derived a discrete version of the integral form of
the derivative using something he calls the ‘compensation theorem’. The idea
is to calculate what change is required in an interior resistor to compensate
for a change in voltage at the boundary. This is, in fact, a discrete version
of the interpretation of Lsu as a source (see Section 3.5). Yorkey reports
that superior results were obtained in reconstructions using the compensation
method.

In the author’s own calculations of DF, using the finite element method,
it has been found that there are many possible pitfalls for the unwary. The
most difficult part was ensuring that the boundary conditions for the measure-
ment fields were correct. It was easy tc calculate the derivative of a forward
problem with a slightly different set of measurements from those intended. To
detect human error, two methods were used for verifying the subroutine (called
calder?) which calculates the derivative matrix. The first was to perform the
lengthy calculation of the derivative by the perturbation method Equation 4.10
and verify that the result converges to the matrix calculated by the integral
formula. This served to verify that the routine calder had indeed calculated
the derivative of the particular forward mapping used in the program. Another
much quicker test exploits the fact that

DF,(1) = f Vwy - Vui = [ wwy (4.11)
2 aa
(in the notation of Section 3.8) which provides a check on the row sums of the
derivative matrix.
A possible reason for Yorkey’s finding is that it may have been easier for

him to get the details of the boundary conditions correct using the discrete
formulation — the two forms should be equivalent.

2A pun of CALculate DERivative and CALDERSn.



Chapter 5

I1l-posedness of the Inverse
Problem

A monk asked Joshu, a Chinese Zen master:

‘Does a dog have the Buddhe-Nature or not?’

Joshu answered ‘Mu.*

Traditional Zen Koan.

5.1 Ill-posedness

Given a general map F : X — Y, for Banach spaces X and Y consider
the problem of solving the equation F(z) =y whern y is known and we seek
z. Hadamard [41] defines such a problem tc be well-posed if it satisfies the
following conditions:

o

1. A solution exisis.

o)

. The solution is unique.

3. The inverse mapping is continuous.

A problem is ill-posed if any of the above conditions is violated. Solving
F(z) = y for z is often called an inverse problem although this term is rather
1-defined itself. It is usually applied when the problem of evaluating F', that

1Joshu’s answer, meaning neither ‘yes’ nor ‘no’ indicates that the question was
inappropnate.



is the forward problem is a classical or at least well known problem, for which
it 1s known that /' exists and is continuous. The term inverse problem is
also usually reserved for those problems which are ill-posed in the sense of

Hadamard.

As an example, solving Poisson’s equation would not generally be consid-
ered an inverse problem, even though it does involve inverting the Laplacian.
On the other hand, determining v in Equation 2.3 from a knowledge of the
transfer impedance operator R,, it would generally be agreed, is an inverse
problem. In this thesis the term ‘the forward problem’ generally refers to the
problem of evaluating the mapping F{v) = R,. Sometimes, more precisely,
it will refer to a semi-discrete problem F(v) = (R,j,) for some finite set of
currents j; or to the discrete problem F(v) = ({x, 7+}) where the y; are a set
of measurement functions — such as the characteristic functions of electrodes.
In the discrete problem the date are simply a matrix representation of the
transfer impedance operator, that is a transfer impedance mairiz.

5.2 Existence of an Inverse

Following the Hadamard conditions, the first question to ask is whether F~1
exists, where F here is the continuous mapping F(v) = R.. For a mapping
to have an inverse it must be injective and surjeciive. If F were surjective
all linear éperators in L{H~Y2 H'/?} would be possible transfer impedance
operators for some v € C. This is plainly not the case. Firstly, to qualify as 2
bona fide transfer impedance operator, R € L{H /%, H'/?) must be invertible.
Secondly the restriction of R to H® must be self adjoint and positive definite.
Thirdly certain restrictions on the relationship between the maxima and min-
ima of j and R,j must apply (see [12]). However, we may simply restrict our
attention to the range R(C), that is assume that we already have a genuine
transfer impedance operator for at least some . There is an obvious practi-
cal problem bere that if we have measured the transfer impedance operator
it will have some error and therefore no longer be in the range. Ignoring this
difficulty for the moment, let us turn to the existence of F~! on the range :
F~1: F(C) — C. Restated, this is the injectivity of ' : Do two conductivities
produce the same transfer impedance operator?

This question was unsolved when the author began working on the project
in autumn of 1985, but results were soon published in the literature. Kohn and
Vogelius [55] answered the question in the affirmative for piece-wise analytic
conductivities. Later Sylvester and Uhlmann [87] proved the same result for
smooth conductivities {in fact their proof holds in a certain weighted Sobolev
space). The technique used by Sylvester and Uhlmann hinges on proving
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that there are solutions of Equation 2.1 which have similar properties to the
Calderon fields described below but for a2 more general conductivity, These
fields have the right asymptotic properties for the inverse scattering problem
discussed in Section 3.7 to be solved.

A more recent result of Ramm [77] proves the result for v € H*(Q). The
proof given here is more satisfying by virtue of its simplicity. The result hinges
on proving that the set {Vu - Vv}, where u and v range over all the H*(Q2)
solutions of L u = 0, is complete in H°(Q1). This result also depends on the
Sylvester and Uhlmann fields. These special fields only exist in dimension
greater than or equal to three, so they do not apply to the two dimensional
case.

The discrete, finite data version of the problem may or may not have a
unique solution depending on how the discretisation and data set are chosen.
The existence of a solution may also be in question if the data have some error,
or the representation chosen for the conductivity is not sufficiently general.
To some extent these difficulties can be addressed by choosing the best fitting
solution satisfying some additional criterion such as a least norm condition.

5.3 Continuity of the Inverse

In a discrete problem the most interesting aspect of ill-posedness is the viola-
tion of the third Hadamard condition that the inverse is not continuous.

In the case of the EIT reconstruction problem with complete data it is
known that the inverse exists. The condition that the inverse is not continuous,
can be expressed for the EIT inverse problem thus: thereis a bound M > 0
suck that given any accuracy € > 0 there is a conductivity perturbation é with
|6l > M such that ||F(y+68)— F(7)l] < e. That is, there is an arbitrarily large
& such that whatever the accuracy of cur measurements we cannot distinguish
between v and v + & by boundary measurement.

Whereas the existence of F~? has received much attention in the literature,
very little has been said about its lack of continuity, although Alessandrini [2]
proves that it has some weaker form of continuity. In a special case, it is simple
but instructive to construct an example to show that F~*' is not continuous.

Theorem 5.1 For the case of §8 = D, the unit disk, the forward mappin
7 3 3 }Up g
F:C C H®— L(H™Y? H'Y?) given by F(vy) = R, has no conlinuous inverse.

Proof

(@3]
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To prove this theorem it is sufficient to find a sequence v, € € © H° such
that {|yx — 1]| = const > 0 and yet R,, — R; — 0. The construction of such a
sequence 1s based on the observation that the distance of an object from 9D
has a greater effect on its detectability using boundary measurements, than
does its conductivity contrast. Let '

. I Rr 1/kE<r<1 /
v(r, 6) = { k+1, 0<r<1/k (5:1)

then clearly |y — 1{jo = +/7. The norm ﬂ&}ii(;{_;p iy 18 the maximum
eigenvalue of RIR,. In this case, the spectrum of R, is known (see Sec-
tion 2.4.2) and

k] .—2
; P — prpk 5 re oy
Ry — Bill = 1+ ppk—2 -t (9.2)
where y; = k/{(E+2) — 1 as k — co. Now
Yim ppk % =0 (5.3)
R O0
so we have
lim |[By, — Rylf = 0 (5.4)
as desired. &

The same theorem works for smoother conductivities. To prove the result
in H?® for s > 0 it is necessary to comstruct a sequence of smooth ‘bump’
functions with similar properties to ;. Rather than calculating the spectrum
for these smooth conductivities it is sufficient to ‘sandwich’ them between the
piece-wise constant functions used above and use the monotonicity property
of F' (see Figure 5.1). Let 4% be a smooth function with 4vks2 2 Y& 2 i then
by monotonicity Ry, ,, > Ry, > R,,. Now

e — Ul > 1 — I >l — Ul = 7 (5.5)
and
k‘iim R; - Ry = kiim R, -R;, =0 (5.6)

So the following theorem has been proved:

Theorem 5.2 For the case of Q = D, the unit disk, the forward mapping
F:CCH — L(H™Y?* H'?) given by F(y) = R, has no continuous inverse.
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Figure 5.1: The smooth function 4 sandwiched between piecewise constant

conductivities.

This theorem captures something of the essence of why the EIT reconstruc-
tion problem is ill-posed. Small objects in the centre are very hard to detect
however big their conductivily contrast. Another way to think of this is that
the Greens operator GP which solves the Neumann problem for Equation 2.1
is a smoothing operator. It is hard to get high frequency components in the
current pattern to propagate into the centre. This means that information
about conductivity gradients in the centre is difficult to obtain.

5.4 The Linearised Problem

An affine approximation to the mnverse problem Is to solve

F(y + &v) = F(v)+ DF(a), (

(94
3
et

e

for «. Then o is an approximation to 6. This problem will be referred
loosely as ‘the linearised problem’. More specific information can be obtained
sbout the conditioning of the linearised problem than the original non-linear
problem. However the relationship between the ill-posedness of the linear and

O

non-linear problems is not straightforward. If the afline problem were well-
posed for some 7 and the range of the derivative DI, were closed, the mnverse
function theorem would guarantee that F' was invertible in a neighbourhood
of F(7) and the inverse is differentiable (and hence continuous). The fact that
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F~!is not continuous indicates that the range of F is not closed or that DF,
1s not invertible for any . On the other hand, knowledge that the continuous
afhne problem is ill-posed tells us little about the conditioning of the non-linear
problem.

Theorem 5.2 gives an example which shows that F~! is discontinuous at
some point. This leads one to suspect that this is generally the case. It would
be satisfying to prove that F' was a compact mapping, however no proof of
this i1s known to the author. However it is proved in Theorem5.3 that DF; is
compact.

If the conductivity space is discretised as well as the measurements, the
derivative 1s a matrix. If the matrix is invertible then the inverse function
theorem guarantees that the discrete F' will also be invertible. However the
invertibility of a matrix with accurate data and exact arithmetic does not
imply that that the linear system can be inveried for real data using a fixed
precision computer. One must look at measures of the conditioning of the
linear system.

5.5 Singular Value Decomposition

In this section the linearised problem is studied in detail. The key question
is: To what extent 1s the derivative of the forward mapping inveritble? Equiv-
alently one could ask How ill-posed is the linearised inverse problem? The
main tool used to pursue these questions is the Singular Value Decomposition
(5VD){35]. Let us briefly review this technique.

If X and Y are separable Hilbert spaces and A : X — Y is a bounded
linear map then a Singular Value Decomposition of A is a set {¢y € X, €
Y, € Rlk € N} where the {¢;} forms an orthogonal basis for X and {¢;}
forms an orthogonal basis for ¥ satisfying

Agr = Mty

Atby = Ao

The ¢, and o, are called right and left singular functions and the Ay singu-
lar values. In the case where X and Y are finite dimensional the singular
functions may be called singular veciors. This extends the concept of an or-
thogonal eigensystem from symmetric operators to general operators between
completely different spaces. For example it does not make sense to talk of the
eigenfunctions of a linear map between a space of conductivities and a space of
voltages since the two cannot be compared. The existence of an SVD can be
deduced by applying standard spectral theory to the map A: X @Y — X @V
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defined by
(z,9) = (A9, A2).

In particular, a compact operator has an SVD. Again a particular case of this
situation is wheo X and Y are finite dimensional. An SVD, when it exists,
is unique up to ordering of the singular functions and their singular values,
and the sign of the singular values. By convention the singular values are
chosen to be non-negative and the singular functions are ordered so that the
corresponding singular values are decreasing.

Let us consider the finite dimensional case where A can be represented by
a matrix. The SVD gzves immediate access to some zmsoruam numerical paf

rameters of A. In particular, the norms ||A|| = max; Af , ||4 “j = 1/ min; A?
and the condition number x(A) = |[|A]|||A7H]]. For svstefn of linear equations
Az = y the condition number measures the accuracy to which the system

may be solved. The value of £(A) is always at least one and a large condition
number indicates that the equations will be difficult to solve accurately. If A
is well scaled one can expect to be able to calculate z to within an accuracy
of k — |log, k(A)| base-b digits on a machine wi ith k-digit base-b arithmetic
(See Doagerra [26]). Another more geometric characterisation of the condi-
tion number is that it measures the relative distance to the set of singular
matrices [35]:

k(A) = inf

o
[oha
on

e

It is important to emphasise that the condition number, like the SVD, is
dependent on the norm used.

In general the SVD provides a basis in which the operator A is diagonalised.
That is, introduce the (possibly infinite) matrix representation of A in the basis
¢y for X and ¢ for ¥V is

= [6;; M-

One may compare this situation with differential operators, which can be di-
agonalised using the Foumer transform (FT). Indeed the SVD provides us with
ap extension of the FT, the singular function transform SFT. If z € X and
y € Y the (left and ) SFTs are given by {z,¢x)x and (y, ¥r)y.

In linear signal pfocessing one deals, in the main, with systems which
are governed by pseudo-differential operators, that is, systems whose transfer
function can be diagonalised using Fourier transforms. The SFTs are the
Fourier transform and inverse Fourier tramsform. In this context, a band-
limited signal is a function with a compactly supported FT. A filieris a pseudo-
differential operator and its frequency response the ordered singular values.
The impulse response of a system is the response to a delta distribution input.
In image processing similar techniques are used. The time varying signal is
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rep lacad by an image considered as a function of two spatial variables. Images

can be band-limited and one can apply spatial filters (the Laplacian operator
for example acts as an edge enhancer). The response of an imaging system to a
point image, that is a delta distribution, is called the point spread function {see
Section 3.5 for an example of the point spread function for an EIT system).

In a more general linear system these Fourier transform techniques can be
extended using the singular value decomposition. Given a function s : R¥ — R
one can filter the transfer function A by defining

S(A) X — Y’ S\A,\} = TS//\\;{N]C @kxid)x

e

k

o
E:JY
Mo

N

A linear inverse problem, such as the reconstruction problem for a tomographic
imaging system, involves the identification of z € X from a knowledgeofy € YV
using the relation Az = y. Typically our knowledge of v is not complete. It
may be known that the error e in y satisfies |leljy < e. This gives a corre-
sponding uncertainty in = which can be understood in terms of the SVD. Let
M be the smallest integer such that a4y < €. Define the SFT of z as

= <¢ka3>}§-

then we have no information about apry1, @priz.... Put another way we can
reliably deduce the component of z lying in the span of the first M left singular
functions. The SFT of y,8: = (¢, y)y contains useful information but the
components fi for k > A contain none. If we decide to increase the accuracy of
our systern by making more linearly independent measurements, this will only
add useful information if the new measurements have non—trlvxal components
in the span of 5, ..., ¥as. The most economical set of measurements to collect
would be By, ..., Bm. Later in this chapter an example is given of this in the
context of data collection in EIT.

The decreasing sequence { Az} measures the maximum amount of informa-

P
s 2

tion which can be gained by adding an additional measurement. The function
M(e) =maximum k with A; > € measures the number of identifiable degrees
of freedom in z for a given measurement error in y. The SVD therefore sum-
marises the information loss in the transfer mnbtlon or the tll-posedness of the
inverse problem. The following two cautions must be observed in its interpre-
tation. The SVD depends on the norms (and hence the inner products) used
on the spaces X and Y. Different norms will result in differently conditioned
problems. For example adding higher order derivatives or differences in the
norms (that is going to a higher order Sobolev space) will typically result in
a less ill-posed problem. This is the result of applying an a priori smoothness
condition on the solution. The second C"W*’ioa 1s that it is not sufficient to

look at the decay of the singular values to determine the ill-posedness of the

64



problem. One must also ascertain whether the question asked (such as: Has
this brain got a haemorrhage?) can be answered when projected onto the first
M singular functions.

5.6 Calderon Fields

One example where it is possible to calculate explicitly the SVD of the lin-
ecarised Forward problem for EIT is afforded by using certain fields devised by
Calderén. To construct these fields take a vector w € R". Let w™ € R" be

: 3 (R 1 N . 1
any vector orthogonal to w with lw} = |lw|. The vectors (4 = 7{aw+ w*) and
(_ = 7(iw — w*) € C™ now have the properties that (§ =0, (& + (- = 2mw
and ( - (_ = —27%|w[*. The Calderén potentials are now defined as

us(z) = e=*

These are complex solutions of Laplace’s equation:
Aur = 0.
They also have the particularly useful property that
Vu, - Vu. = —2r?|w|?e?mee.
Now consider the particular EIT forward problem with
AVpu = YValy

and

Vv = 7Vgau_.
One small point which deserves clarification at this point is that the potentials
are now complex. How can one apply complex boundary conditions? The
sitnple answer is to apply real and imaginary parts separately and then combine
the resulting measurements. The data measured are

do{7) = f uyVnv
a0
for each w. The derivative D{(d,) at 7 =1 is given by

£
c 2 |2 2rwer
D(d,)oy = — } by Vuy - Vu_ =27 i{ Sylw|?e® ™" dz.
Extending év by zero outside €1 we can consider the above integral to be over
all of R™. This yields the Fourier transiorm



This has diagonalised the linearised forward mapping and, provided care is
taken to define which spaces and norms are used, constitutes the SVD.

A Hilbert space is required for an SVD. The space used by Calderdn,
L=(Q), will not do. A first choice might be L*(€2). This space is spanned
by the Fourier basis {€*™*} and the Fourier {ransform is a unitary auto-
morphism. We would be measuring the distance between pictures using the
L% norm which is frequent practice in medical imaging although its use is
questioned [71] and it is justified usually by convenience. The space of mea-
surements is parameterised by w € R". As {1 is bounded it is possible {possibly
after a change of scale) to use the discrete Fourier transform and w = k € 27,
This corresponds to extending év periodically. The data consists of sequences
arameterised by n-tuples of integers. If we take the L*{) norm on the con-
uctivity and the L?*(Z") norm on the data, the mapping is unbounded as it
tands. Restricting the domain to HZ(S1) but using the L*(Q) norm results in
a densely defined mapping. The SVD of this mapping 1s:

[ PRse}

w

¢£{$> 827;:: T
Vim = Okm
}‘k 27\'!_&!2

The data space is somewhat artificial as it is would not be possible to col-
lect data in this form. Consideration of this point will be deferred while the
conditioning of this map is investigated.

Taking a finite subset of the data, §0(dy)é7, for [k] < N yields a matrix
with condition number N? and the conditicning of the problem worsens with
increasing number of measurements. However in this case the situation is not
t0o bad. The higher frequency components become easier to find.

\

A different formulation would be {0 take the conductivity space as HZ(S1).
Recall that this space is the closure in H?(R") of the set of smooth functions
supported on @, and in particular these distributions vanish on 8{. This
amounts to assumjﬁg that the conductivity has not changed on the boundary.
The change in mean conductivity is also invisible to this mapping as 5:7@) is in
the kernel. Taking the conductivity space now to be H3(§1) modulo constants
with the norm ||f|I> = Tiezn |k?f(k) (which is equivalent to the standard
norm) the set {|k|?¢****} froms an orthogonal basis and a set of left singular
functions where the singular values are all now 1. The linearised forward
mapping is now an isometry between these spaces and is thus well conditioned
with respect to inversion. The derivative D(dy) : HZJconstants — L*(Z7)
is now an injective map with closed range and the inverse function theorem
guarantees that D(d;) is invertible in a neighbourhood of v =constant. This
is a weaker result than the uniqueness theorems of Sylvester and Uhlmann [87]
but it is worth noting for its simplicity and intuitive appeal.
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For the case of non-constant 4 and domains of at least three dimensions,
Sylvester and Uhlmann [87] give an analogue of the Calderon fields. For { € C7
such that ¢ - ¢ = 0 they show there are solutions of L,u = 0 given by

= (v(e)) 7= (1 + Rz, () (5.10)

\,/

where the function R satisfies
HR(, Ollp=(q) — 0 as as |(] — o0, (- (¢ =0. (5.11)

It can be seen that as the pati& frequency gets large, these tend to the
Calderon fields. The result of Ramm [77] relies on the act that for ~

5

the gradient of R has the same as asymptotic property

HVR(-, Ol — Oas [{| = o0, (- (=0 (5.12)

>

5.7 Fourier Series for Calderon Fields

It is interesting to calculate the Fourier Series for the Calderon flelds at the
boundary. As the linearised inverse problem is well posed with Calderon data
'+ would seem that one could measure Fourier data and synthesise the Calderon

data from it. In this secton € is taken to be the unit disk D C R*.
Let w = (a, f) € R*, and consider a point ¢ = (cosf,sinf) € 0. We have
Uy = ecx(-_i:alnﬁ+icosi9)+ﬁ(:§cosﬁ+£sin6‘) {5}?))

e e T
= lie®he (5.14)
o AYE

= 3 (ta F 5)__ Fikf 5 15)
= 3. (5.15)

which 1s the Fourier series for u..

pued

An important observation about Equation 5.15 is that to synthesise the
Calderdon data for any spatial frequency w from Fourier data, one needs the
Fourier data of all frequencies. Put simply, band-limited Fourier data can not
be translated to perfectly band limited Calderon data and reconstructed to give
a band limited conductivity. This is a fundamental limitation of émpedance
imaging. Limits to spatial resolution in the measurements (principally th
finite number of electrodes) lead to a degredation of all spatial frequency com-
ponents of the reconstructed conductivity.

Suppose that one can only apply band limited current patterns — that 1
we can only specify the first K frequency components up to a premxoq €. We
can then calculate @, to the same accuracy provided |w| < /N where N is such
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that N® /K1 < e This indicates that the number of frequency components of
&~ which can be calculated accurately is N(K) = YK The ratio of number
of frequency components of év which can be recovered from data limited to
the first K frequency components is N( K )/K, which tends to zero as K goes
to infinity.

This argument, although admittedly rather loose, shows the difficulty of
synthesising Calderon data from Fourier data and gives some insight into the
ill-posedness of the inverse problem. To increase the number of frequency
components of the conductivity recovered to a certain accuracy one has not
only to increase the number of frequency components of the data applied, but
also to increase their accuracy.

5.8 * Ill-posedness of Linearised Problem

In this section the ill-posedness of the linearised problem is proved. More
precisely, the derivative is a compact mapping:

Theorem 5.3 ? Let F: C — L(HY(8Q)) be F(y) =R, and A= DF,: C —
L{HY(0%)) then A is compact.

Proof

Define K1, € H°({1) by
Kiy=~V(GYF5) - V(GYFj)) (5.16)

where 71, 72... are the eigenfunctions of K, with eigenvalues A; > Ay > ...
The range of A is contained in L.(H%(8Q)) the set of compact operators
between H°(0{)) and itself. This space is naturally isomorphic to the ten-
sor product H°(80) ® H°(8S)) when the former is given the Frobenius norm
(I|R|]* = trace(R"R)). The inclusion L (H°(0Q)) — L(H®(dN)) is continuous
so it is sufficient to prove 4 : H°(Ql) — H®(0Q) ® H°(9Q) is compact. The
proof continues by showing that A is a Hilbert-Schmidt operator:

S [ K2, < RS IGNE GG ol (5.17)
kg 7% k¢
but
Gmg]k = GDBRyjr = AxﬂDB]k (5 18)

2This theorem is dedicated to the man sitting next to me, on an airliner above Arizona,
on my birthday in 1988. Without the sheet of paper he gave me this theoremn might not
have been recorded as the margin on the in-flight magazine was too small.

n
[08)



Name Number of Nodes | Number of Elements | Type of Elements
rmesh 73 112 3 node triangular
wlimesh | 305 544 3 node triangular

Table 5.1: Finite Element meshes used for calculation of derivative matriz

Letting ||GPP|| = C we have

72 212  ~DB; 1|2 DB - |12 RPN
S [ KEe < SRHIGTIE NG (5.19)
I3 kLt

2 2 2 [ 0\\ gf“—‘ 2)
2 TNy 2 14 C Y 4 = \
S C HVHS_};__;AK}€ SC H’YHG %ZA,{T;} %L}\g} <D?‘£§/

k£ Nk /N g /
which is finite, by the compactness of R, {see Section 2.6). =

The compactness of the derivative shows that the linearised forward map-
ping is not continuously invertible. The theorem of Ramm ([77]) shows that
the set {Kj .} is complete in H® and the derivative is injective, so it
an inverse, but that inverse is not cont inuous.

does have

The proof of Theorem 5.3 relies on the compaciness of the transfer imped-
ance operator. R Lkal that this is only true because we chose to measure cur-
rents using the G-order Sobolev norm. Had we chosen the much less stringent
~1/2-th order norm the situation may have been different. This would allow
us to apply very ‘spikey’ current patterns which would still be less smooth
even after the smoothing treatment by G™Z. This would make the linearised
problem better posed.

=9 Numerical Calculation of SVD

5.9.1 Implementation

The derivative matrix was calculated using the finite element method described
in Chapter 4. Two meshes were used (see Table 5.1) O‘uh discretisations of a
two dimensional unit disk. They were created using *he program round as de-
scribed in Section 4.6. The singular value decomposition was calculated using
the Fortran subroutine dsvdc from the Linpack library [26]. It is imporant to
use a purpose designed SVD routine rather than using a general purpose eigen-
value routine applipd to ATA Hé]. This avoids amplifying truncation errors
in the calculation of the product ATA. The time taken to compute the SVD



m
i

his prohibited the
use of significantly finer meshes with the computing resources available (the
Sun workstations). Finer meshes could be tackled using parallel processing

hardware [10] but this was not attempted.

is O(n®) where 7 is the largest dimension of the matrix.

5.9.2 Results and Interpretation

As anticipated, the decay of the singular values is rapid. For wimesh the
Jogarithm of the singular values is given in Figure 5.2. These results were for
sixteen point electrodes. The current patterns driven were trigonometric, the
current at electrode ! (for 0 < n < 15) being given by

cos k(7 /8)!

(
I=1 sin k(x/8)l 5.21)

p—

where k ranges from 1 to 16 for the sine terms and 1 to 15 for the cosine.
The voltage measurement data set taken was designed to be symmetric with
respect to rotations mapping electrodes toelectrodes. Hence the reference level
used was the average of the voltages over all the electrodes for that current
pattern. If the voltage at electrode ! for current patiern k was vy then the
measurements used were

16
Vie = ik — ) Vik. (5.22)
1=0

This scheme gives the exact measurement fields the same sixteen-fold symme-
try as the potentials. The derivative matrix, and hence the singular functions,
will inherit this symmetry. Deviations from this are possible in the numeri-
cal results as the mesh itself will not have sixteen-fold symmetry. This can
be used as a check on numerical results. The first 30 singular functions are
shown in Figure 5.3. Some particularly interesting later examples are shown
in Figure 5.4.

Computation times on a Sun workstation were approximately 15 minutes
elapsed for rmesh and 2 hours for wimesh. Meshes or measurement schemes
resulting in larger matrices were found either to cause the SVD routine not
to converge or not to be feasible within the limits of memory available. The
accuracy of the singular functions and values were checked by application of
the matrix A to each singular function. The error ||Ady — Ap1by|| was less than
1 % 10719 in all cases where the SVD was successfully computed.

On a logarithmic scale (Figure 5.2), the singular values decay faster than a
linear function. This indicates decay of order O(e™#") for p a polynomial of
degree two or more. This indicates extreme ill-posedness of the inverse prob-
lem. By contrast the inverse problem for X-Ray CT has singular values which
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A2 AC 6C 85

)

WIMESH, 16 point electrodes

ure 5.2: Logarithmic singular values (log,q), for wimesh

decay with an order O(1/+/n). The other noticeable feature is the pattern of
‘jumps’ in the values. This phenomenon is not completely understood, and
perhaps will not be until an analytic form for the singular value decomposition
is found. However some qualitative understending of the phenomenon can be
obtained by comparing the jumps with patierns of the singular functions.

LT

As a general principle, conductivity perturbations further from the bound-
ary result in smaller voltage changes. This explains the observation that those
singular functions whose maxima and minima are closer to the centre corre-
spond to smaller singular values. The first singular function consists mainly of
conductivity changes near the electrodes — clearly this results in the largest
voltage changes. Singular functions 2-16 represent conductivity changes with
increasing orders of rotational symmetry (see Figure 5.5). The possibility for
orthogonal {unctions of this type is exhausted by singular function 17 which
exhibits a dramatic change with structure in the centre. This corresponds to
the first jump in the singular functions. The pattern continues with singu-
lar functions which have rotationally symmetric structures towards the centre,
the order of symmetry increasing until the next dramatic change from singular
value 39 to 40, when the order of symmetry again decreases in favour of the
structure appearing still closer to the centre.
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The first 80 singular functions.
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Figure 5.4: A selection of later singular funciions.
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5.10 Polar or Adjacent?

Nothing has been said yet of the influence of the current patierns used on the
SVD. The main effect of varying the current patterns, provided a complete
set of data is taken, is to alter the singular functions, the overall decay of
the singular values persisting. The singular functions reflect the differing sen-
sitivity of current patterns to conductivity changes where the field strength
is greatest. One particular special case of interest is current patterns using
pairs of electrodes, as these have been the most widely used in practical EIT
systems. Authors who advocate the use of pairs of drive electrodes differ as to
which configuration is best. Barber and Brown [5] advocate driving adjacent
electrodes, approximating a dipole current source, whereas Tarassenko [89] ad-
vocates driving a polar configuration, in which opposite electrodes are driven.

Certainly one factor in choosing which measurements to make is the number
of linearly independent measurements possible with a particular measurement
scheme. A useful way to look at this is to study the rank of the derivative
matrix A. In real life, with measurement error, we are not concerned so much
with the exact rank of the matrix, but the effective rank for a given precision
of measurement. That is, if two rows of the matrix are linearly dependent to
within measurement precision the measurements corresponding to those rows
contain no different information®. The effeciive rank of A to precision ¢ may
be defined as the number of singular values greater than ¢.

Let us study first the exact rank of A. For clarity we will consider €1 to be
the disk in R?, although this is not essential. We envisage a system with IV
equally spaced electrodes, numbered 0 through to N — 1. Let us suppose that
current is driven through electrode k to electrode k + p, for 0 <k < N — 1.
We call p the offset. We can then measure the voltage difference Vi; between
electrodes k + 7 and k+ 7+ 1, for 0 < 7 < N — 1 { electrode numbers will
be assumed to be reduced modulo N). These N? voltage measurements are
not linearly independent: two types of dependency exist in all cases except
the special case of p = N/2 where N is even which is considered below. Now
taking vi; to be the absolute voltage at electrode k + 7, with respect to some
fixed reference potential, then Vi; = vy; — vx ;41 and we have

N-1
Z Vi; = Uko — Vk1 + U2 — Uka + -+ Up N1 — Vko = 0 (5.23)
3=0
for 0 < k < N — 1. This gives IV independent linear equations relating the
voltage measurements.

3The concept of linearly dependent to within measurement precision must be treated
with extreme caution as it is not an equivalence relation

-
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The second type of linear relation comes from what in the Electrical Engi-
neering literature is called the Reciprocity Theorem [32], and in mathematics
is the fact that R, is self adjoint. In electrical terms assume that a current /; 1s
passed between a pair of electrodes A; and B; and the voltage V) is measured
between an identical pair of electrodes A, and B,. A current I is then applied
to A, and B, the voltage V, between A, and B, satisfies

E/EIQ:%,I;- (

(&5

24)

It follows that if we assume that we have identical electrodes, and that a
constant current source is used across the drive elecirodes we have

P
. PN
> Vet = Vigp = 0. (5.25)

i=0
This is because the voliage between electrode j and j + p is the sum of the

voltage differences between intermediate adjacent electrode pairs. For 0 <
k < j < N — 1, the equations in 5.25 are independent of each other giving
N(N —1)/2 equations.

The N? possible measurements satisfy, therefore, N+ N{N-1)/2 relations
leaving
N*—N—N(N-1}/2=N(N-1)/2 (5.26)

independent measurements, in particular 120 for the case of N =16

An interesting exception to this is the particular case where N = 2M is
an even number and one is driving opposite electrodes — that is p = M. In
this case we have the symmetry relation Vi; = —Vigaj+ar for each & and
j. Now amongst the N? variables we have N?/2 relations of symmetry, M
sum relations from Equation 5.23 and only M (A — 1}/2 reciprocity relations
from Equation 5.25 which are independent of each other. This is because
Equation 5.25 is equivalent to the same equation with & and j replaced by
k+ M and j + M. The total number of independent measurements is

N* - N2 - M- M(M-1)/2=M(BM -1}/2. (5.27)

For the example N = 16 this works out at 92. The number of independent
voltage measurements, the row rank of A, will be the rank of A provided the
discretisation of the conductivity allows sufficient variation.

This consideration, the reduction in the number of independent measure-
ments for the polar drive configuration led Tarassenko [89] to choose a ‘near-
polar’ arrangement in which current is driven between electrodes which are
one electrode away from being opposite. This certainly increases the row rank

of A by 28 but there is cause for suspicion. If polar electrodes were slightly
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misplaced would this result in a dramatic increase in the number of indepen-
dent measurements ? Intuition would indicate not. Barber and Brown made
a different choice. Given that polar electrodes give less information go to the
other extreme and use adjacent drive pairs. Tarassenko argued that near po-
lar drives result in higher current densities in the centre of the body where
the sensitivity is lowest but the interest greatest. Barber and Brown argue
adjacent drives give better reconstructions with their algorithm.

The SVD reveals something of resolution to this conflict. A plot of the
Jogarithmic singular values of A for all possible values of the offset p was
made (see Figure 5.6). It was found that the singular values were nearly
indistinguishable on the graph for offsets between 1 and 6. The graph indicates
2 super linear decay followed by a dramatic decrease at 120, the expected
exact rank. In contrast, the polar drive configuration with offsei 7 resulted in
a sharp decrease in the singular values at 92, again the expected exact rank.
However the ‘knee’ in the curve at 92 is already below a relative error level
of 107¢, which is beyond any practically achievable accuracy. We conclude
that the additional relations between the measurements for the polar drive
configuration are irrelevant in a practical system.
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Chapter 6

teconstruction Algorithms

... the Game was so far developed that it was capable of ezpressing
mathematical processes by special symbols and abbreviations. The
players, mutually elaborating these processes, threw these absiract
Jormulas at one another, displaying the sequences and possibilities
of their science.

Hermann Hesse, The Glass Bead Game

6.1 Introduction

In this chapter algorithms are studied for solving the EIT reconstruction prob-
lern numerically. The non-linear problem is ill-posed and its linearisation is
ill-posed. It is necessary to regularise to produce a well posed problem. The
only thing one can do with an ill-posed problem is to ask a different, well-posed,
guestion. Just as Joshu by replying ‘Mu’ rather than ‘Yes’ or ‘No’ caused his
student to see the question of a dog having or not having a Buddha-nature
in a completely different light. Typically our search for a more appropriate
question will involve returning to the source of the problem. For example the
person who asked the ill-posed question. In EIT the original ill-posed problem
is ‘Find the conductivity distribution corresponding to these measurements’: a
problem which might have been asked by a medical physicist. On further ques-
tioning, they may find the well posed problem ‘Find a conductivity distribution
with a specified smoothness agreeing with this data to within measurement
precision.” to be closer to what they had in mind. Ultimately this could have
come from a clinician whose question was ‘Does this data lead us to suspect a
haemorrhage in this premature infant?’.
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The approach taken to ill-posedness in this chapter will be regularisation
in the sense used by Tikhonov [91]. This corresponds to ‘asking a different
question’ by changing our criteria for what constitutes a solution. Given that
the data we use has measurement error and that there will be errors in our
model, we will accept a solution which fits the data as closely as possible, but
not exactly, and amongst the possible candidates for such a solution we shall
select one which satisfies a given smoothness criterion.

In addition to the ill-posedness of the recomstruction problem, another
difficulty we need to overcome is its non-linearity. In the absence of direct
methods for this type of non-linear problem we will inevitably have to use
an affine approximation at some stage in the algorithm. As we have seen in
Chapter 5 both the non-linear problem and its affine approximation using the
derivative, are ill-posed. One has a choice then at what stage to regularise.
The regularisation can be performed before or after linearisation. The regular-
isation itself can then be performed in many possible ways. This results in an
enormous number of possible alternative strategies only a selection of which
will be covered in this thesis. Some have been considered in some depth and I
have been able to implement and test them. Others are methods which have
been implemented by other authors which I attempt to put in 2 more unified
setting. Others still are pointers towards future work.

6.2 Non-linear Data Fittin

X
<

6.2.1 How many minima?

The EIT reconstruction problem can be regarded as a non-linear data fitting
or parameter identification problem. The data being the set of voltage mea-
surements taken and the parameters to be fitted the free conductivities. We
seek to minimise a ‘cost’ function which measures the discrepancy between
the measured voltage data and the voltage data derived from our model. OUne
must distinguish carefully between minimization problems where the objective
is to Aind eny minimum or near-minimum of an objective function and those
in which the solution sought is the solution which best explains the data. Ex-
amples of the former are a least cost solution to a design problem (such as the
placement of transistors on a VLSI' chip), or 2 model which will be used for
prediction but not explanation (such as tide tables). In these cases uniqueness
is not a problem and a local minimum of the objective {unction will often suf-
fice, the cost of finding a global minimum may be prohibitive and it may be
unnecessary to do so. In the first category uniqueness of the minimum is not a
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problem, any solution which gives a low value of the cost function will do. In
the second category we are more interested in the solution than the cost. The
EIT problem falls into the second category, we seek e conductivity distribution
which subject to certain a priori hypotheses best explains the observed data.
Fortunately numerical evidence suggests that the problem is not one in which
the surface of the objective function is pitted with many distinct local minima
for the unwary minimisation algorithm to fall into. Rather it is like a bent,
(i.e. non-quadratic) deep sided valley with a very flat floor where the lowest
point is hard to find. Plots were made which show contours of the objective
function when two degrees of freedom of the conductivity were varied®. They
vary in shape depending on the two variable conductivity modes. All exhibit a
single minimum, the contour shapes varying from elliptical to banana-shaped.
See Figure 6.1. This numerical evidence is encouraging but not conclusive. It
would be more satisfactory to have better analytical results.

6.2.2 Newton’s Method for a critical point

Let us first define some notation. In this chapter the assumption is that the
problem is in discrete form. The conductivity is represented by a finite dimen-
sional vector -y of k free conductivity parameters (such as nodal conductivities
in a finite element representation). A finite set of currents jq,...,J» is applied
to 09 each represented as an m-vector of currents at each of the m electrodes,
together ihey form the matrix J. A set of m true measurements of voltage v
is made from the apparatus {the number of current injecting electrodes and
voltage measurements need not be the same but in practice this is usually the
case). The discrete forward mapping is represented by F(J,~). We seek a ~
sc as to get agreement

v=F(J,). (6.1)

get exact agreement. Insiead we seek to minimise the error ld
5 & i

d=F(J,vy) —v. (6.2)

The measurements made be made in many different patterns, for example
between adjacent electrodes or between one fixed electrode and the rest. Al-
ternatively the measurements could be scaled or indeed formed by linear com-
binations of other measurements. The choice of measurement data set will be
sssumed to have been built in to the forward mapping F. There will therefore

be no loss in generality in measuring the quality of our approximation by the

2These were produced using a transputer implementation of fwprob written by Kevin

Paulson.



Figure 6.1: A 73 node finite element model of the two dimensional disk was
taken. Two nodes were selecied, one near the edge and the other in the centre.
An initial conductivity was taken to be 100 at each of these nodes and I else
where. The horizontal and verticel azes represent variations in these two nodal
conductivities and the contours the norm of the difference in voltage readings.
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objective function

e(~) = S|l (6.3)

[a]

At a critical point of e we have De(a) = 0 for every & € RF. The global
minimum we seek is in particular a critical point so we may seek it by making
the Newton-Kantarovich step [50] from our starting point 4. The step is &+
where

De(a) = —D?e(e, §7) (6.4)

for all . More explicitly
~w£@F@w>:@iﬁﬁxaﬁw»+@aﬂaxﬂyﬁw» (6.5)
where (-,-) is the standard inner product in R™". Using the notation 4 for

the matrix OF;/0~v; and H, for 8°F;/0~,0v; this can be re-expressed as

nm
(ATA+S dH)éy=-4"4d. (6.6)
=1
If the second derivative were non-singular then this would uniquely define &-.
Even if this were not the case any 67 satisiying Equation 6.6 is a minimizer
of the second degree Taylor polynomial for e. In that sense Equation 6.6 can
be thought of as a2 quadratic approximation to the original problem.

6.2.3 Calculation of the second derivative

Calculation of the second derivative matrices is relatively expensive. From the
Taylor series in Chapter 3 we see that

BQF;(&,Q;i = i:QL@}2Ug (67)
where u; is the potential when current j 1s applied. To convert this quadratic
form into a bilinear form we use uh rization identity

D'Fla+B,a+pB)—D*Fila—-38,0 — | .
D*Fi(e,B) = ‘ P, 'j) 1 ( — ’S). (6.8)

To calculate §°F;/0~;0v, explicitly let m, be the ith basis function in the
space of discretized conductivities and define £, = n; + 7, and £ = 1, — 7,

Ji;h€ﬂ DQE\ ({:.L E.L\ D E\ f )
N2t ~ g 1 wif‘? 11.7 Z ! h 3
sz;’/(j&/ia‘fj — 7 - Ji‘s (6.9}
or more explicitly
q (CT g+ )P~ (GTg-)u
O F[0v;0v; = - . : (6.10)

4
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This formulation requires the matrices corresponding to the Greens opera-
tors 1o be calculated, in discrete terms this is equivalent to the calculation of
the inverse of the system stiffness matrix. If the Choleski factorization of the
matrix were known this would amount to performing k forward and backward
substitutions this would take O(kp?) floating point operations where p {which
is at least k) is the number of degrees of freedom in the finite element mesh.

The product G‘L€+ would require the assembly of a system stiffness matrix for
i

the conductivity £ and a matrix multiplication of order O(p®). The resulting

matrix must be squared, another operation of order O(p®). As this must be

performed for each ¢ and j this results in O(k?p®) operations. For a first itera-

tion from known conductivity these calculations could be done in advance, but

for subsequent iterations this 5th order process should be avoided if possible.

Perhaps the simplest approach to the problem of calculating the second
derivatives would simply be to ignore them and solve

AT Ay = —ATd (6.11)

which is equivalent to taking the affine approximation to F and minimising
||d — Aé+l|*. However we have seen that thisis illposed as A is the matrix of
a compact mapping and has rapidly decreasing singular values. Indeed there
is a sense in which the ki rob} b than th linear i
is a sense in which the linear problem may be worse than the non-linear in
that even if v may be in the range of F there is nc guarantee that d will be
in the range of the derivative DF.

At this point the problem can be looked at from two points of view. One
is to concentrate on this ill-posed linear problem, and apply the standard reg-
ularisation techniques the other is to go back to the (still ill-posed) quadratic
problem (Equation 6.6) and look at ways of modifying the second derivative
terms. Vet another alternative is to go back to initial non-linear problem and
create a well posed non-linear problem which can then be tackled by one of
the standard methods for solving non-linear problems, some of which will be
discussed in the next section.

6.3 Regularised Newton Methods

6.3.1 The Levenberg-Marquardt Method

64]

As a linear step in an iterative method, Levenberg [59] and Marquardt[64]

suggest one solves the Tikhonov regularised linear approximation

;AT \
(ATA+pul)s=-A"d

—
<D
[
S}

—
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Figure 6.2: Contours of the objective function (see Figure 6.1) showing ¢ hy-
pothetical approzimate solution =, and circular trust region. The long arrows
indicate the steepest descent direction, the short arrows the gradient of ||s][?,

which is the minimiser of ||As + d||*> + g?||s||*. This is equivalent to the
constrained minimisation problem: minimise ||As + d||* subject to ||s|| < p.
Here y is the Lagrange multiplier when the constraint is active. The ball of
radius p centred at the current approximation <, is called the ‘trust region’
(see Figure 6.2) as it represents a region in which we can trust the affine
approximation to F.

For u = 0 the method becomes simply Newton-Kantarovich but {or large
z ; g
u the direction of the update vector év tends to the direction of the steepest
descent direction —A7d. In this way the Levenburg-Marquardt update can
be thought of as an interpolation between the slow but sure steepest descent
method and the rapid but unreliable Newton-Kantorovich. Marquardt [64]

p q ]
himself puts it as {follows:

(o8]
ot



.a mazimum neighbourhood method is developed which, in ef-
fect, performs an optimal interpolation between the Taylor series
method and the gradient method, the interpolation being based on
the maximum neighbourhood in which the truncated Taylor series
gives an adequate representation of the nonlinear model.

It remains to say how the regularisation parameter p is chosen. Mar-
quardt [64] gives a scheme based on decreasing p by a constant factor pro-
vided this improves the residual error compared with the previous iteration,
or exceptionally increasing i by the same factor if no improvement in the er-
ror can be made otherwise. Gradient methods (that is steepest descent) are
characterised by good initial progress followed by extremely slow convergence,
whereas Newton-Kantorovich may at some times actually diverge but when
close o the solution converges superlinearly. As g is reduced the method be-
comes closer to Newton-Kantorovich and thus converges faster. More recent
develpoments of the Levenberg-Marquardt algorithm are give by Moré [65].
These include, in particular, more sophisticated schemes for the choice of t
regularisation parameter such as that due to Hebden [42].

However for ill-posed problems where A7 A may not be invertible (its con-
tinuous counterpart being an operator with an unbounded inverse). This
means that the regularisation parameter must not be reduced to zero. I
an estimate for the error in the date is available, one strategy is to not reduce
y below 2 level where the radius of the trust region is equal to that error.

6.3.2 Using the SVD.

The system of linear equations in the Levenburg-Marquardt method can be
solved by any method suitable for solving a symmetric system of linear equa-
tions. The first iteration, assuming that an initial approximation to the con-
ductivity (eg v = 1) is known, can be performed quickly by storing a pre-
computed inverse or decomposition of the matrix. The singular value de-
composition has several advantageous properties for this purpose. Tikhonov
regularisation can be represented as a filtered singular value decomposition
(see [35]). This means that the stored SVD can be used to solve the first LM
step for any value of p. Also the components of the right hand side corre-
sponding to right singular functions with small singular values can be ignored.
That is a projection can be taken onto the space spanned by the first n singu-
lar functions where X; < € for i < n and ¢ an estimate of the L* measurement
error. This reduces the amount of arithmetic required for the first step as well
as serving as a regularisation technique. Extending this idea further a stored
SVD allows other regularisation techniques to be used other than Tikhonov or
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truncated SVD.

While a stored SVD seems ideal for the first step in the LM algorithm,
it is computationally expensive (see Dongarra [26]) and therefore unsuitable
for subsequent steps. The numerical experiments performed by the author
to date have either used Choleski factorisation or recalculated the SVD so
that the structure of the derivative matrix could be followed at each iteration.
To establish the principle, speed of execution was not considered important.
Reports on these experiments were first published in Breckon and Pidcock [15,
16], and more details are given later in this Chapter.

6.2.2 TIterative Methods

Linear solution methods can be classified broadly as iterative or direct al-
though compromises between the two also exist. Direct methods usually pro-
vide answers to within machine precision for well conditioned problems in a
known number of operations. Iterative methods however approach such accu-
racy asymptotically, the number of steps required depending on the quality of
the initial guess. The advantage of using iterative techniques in this context
is that one need not require the linear equation to be solved to within full
machine accuracy. The data collected would typically only be measured to
12 bits, and is unlikely to be that accurate. Double precision accuracy using
8 byte real numbers typically includes about 50 bits for the mantissa. This
means that a much smaller number of iterations need be done for each linear
step. A slightly more sophisticated approach to the same argument 1s to treat
a truncated iterative method itself as a regularisation procedure. One can
then apply the Morozov stopping criterion (Morozov [66]) of terminating an
sterative solution method when it has converged to within the accuracy of the
data.

Three well known iterative techniques with interesting regularisation prop-
erties are successive approximation, steepest descent and conjugate gradient.
Here they are stated in terms of solving the system of linear equations Az = b.
In each of these methods, a sequence z; of successive approximations to the
generalised solution is calculated. Define the error 7 by

ri= AT Az; — ATb. (6.13)

The iteration scheme for successive approximation (also called Landweber’s
Method [3]) is then

Tip1 = Ty + 7T (614}
where 7 is a fixed relaxation parameter. Steepest descent is given by a similar
formula

Tip1 = T -+ 7T (615)
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but in this case 7; is given by
7= ||ril[P/ 1| Ar] . (6.16)

The conjugate gradient method is slightly more sophisticated, the iteration
being given by

Tip = i + Gps (6.17)
where
po=ro=—A"b, pi=r1i+VioiPi1 (6.18)
and
Gior = (ro o) /N1AR P vicy = —(Ar, Apica) [ Apica | (6.19)

The regularisation properties of these iteration schemes can be understood

in terms of singular values [88]. For example the ¢-th term in the successive
approximation is given by

z; = 3 s(A) ([, br) x bk (6.20)
k

as in Section 5.5. The filter in this case being

1 - {}. - %_‘//—'4:1’2)!

3:(t) =

§
=\
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——
N
ot
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it can be seen from the form of the filter that for large ¢ the iteration converges
to the Moore-Penrose solution A! provided +/7A; < 1. For Ay large, conver-
gence is rapid, but for small singular values it is slow. Contributions {rom the
large singular values appear early in the iteration process, while those {rom
smaller singular values appear later. Stopping after a finite number of steps is,
therefore, a regularisation method. Taking the iteration too far contaminates
the solution with errors present in the contributions of the small singular val-
ues. This semi-convergent behaviour for iterative methods applied to ill-posed
problems is quite general.

Marquardt proves that for his Tikhonov regularised step the angle § be-
tween the steepest descent direction ATb and the vector s, = (ATA+ u)7'
is a continuous monotone decreasing function of g such that § — 0 as g — oo.
As p — 0 the vector s, approaches the Moore-Penrose solution Atb. All the
above iterative solution methods share a similar property. The initial guess
is always in the steepest descent direction and for well posed problems they
converge to Alb. This shows that a truncated iteration method, that is an iter-
ative linear technique stopped short of convergence to machine accuracy, can
replace Tikhonov regularisation in the linear step of the Levenberg-Marquardt

1

method. The role of the regularisation parameter is taken by the number of
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Figure 6.3: X-Ray CT scanning geometries: (a) Parallel, (b) Fan Beam.

{ the linear residual

iterations performed the trust region radius being the size o
Irill. A poieniia‘z advantage of the use of an iterative 11 iear solution technigue

lIr
is the reduced computational cosi of the linear step of 2 no nJinear algorithm.
In the early stages of the iteration, or in the presence of high noise.only a few
linear iterations will be required. The best regularised linear solution technique
to use will depend on a number of factors used including the architecture of the
computer and the accuracy of solution required. The use of these methods on
Multiple Instruction Multiple Data machines is the subject of an investigation
by Paulson, and is reported in [17]

6.4 X-Ray CT

Most of the algorithms devised by medical physicists have been inspired by
methods used in X-Ray CT. It is necessary, therefore, to review X-Ray CT
reconstruction algorithms. In X-Ray CT collimated beams of X-Ray radiation
are passed through the patient and measured by a detector on the opposite
ide. The X-ray source and detector are mounted on a device which allows
them to be moved in such a way as to scan a two dimensional section of
the patient. T h1s is done either by a combination of rotary and lateral motion
(parallel geome bry ) or by two rotary motions about different centres (fan-beam



If 6 € S', is on the unit circle, and p € R then the Radon transform of a

function f defined on a two dimensional domain is
(RA)Op) = [ _ flx)dr. (6.22)
Tv=p

This generalises easily to the case of § € S™™! and p € R, and still further to
integrals over families of submanifolds [9,31].

There are two principal classes of methods for X-Ray CT reconstruction
(For details see [72]). The first, Radon transform inversion, is also called
filtered back-projection. This relies on the special structure of the Radon
transform which has an explicit inversion formula. The second major class
uses a discretized matrix representation of the Radon transform. The result-
ing system of linear equations is solved using iterative matrix inversion tech-
nigues. The most widely known examples of this are Algebraic Reconstruction
Technique (ART) [40] and Simultaneous Iterative Reconstruction Technique

(STRT) [33].

The adjoint operator R™ : L*(R?) — L*(S' x R) is given by the formula

(R*g)(z) = - g(b,z-6)d6. (6.23)

This is known as the back-projection operator as the measurement of X-ray in-
tensity g(6, z-6) is projected back along the line z-6 = p. Back-projection itsell
does not constitute a solution method, however by taking Fourier transforms
it can be shown {72] that -

(RR* 4+ ul) lg=hxg (6.24)

where h is the filter function

1 . .
R(t) = 5(2m) F S (1) (6.25)

where .
Sult) = - (6.26)

F3EA Tl

The convolution is taken with respect to the second vanable. Filtered back-
projection is therefore a method of reconstructing an X-Ray CT image implic-
itly using Tikhonov regularisation.

In iterative methods a discrete approximation to the Radon transform is
used, usually using a pixel basis [92]. This matrix will be denoted by A. Fol-
lowing the convention adopted in the above discussion of iterative algorithms,
the data vector will be denoted by b and the image to be reconstructed by

<
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z. The data is naturally partitioned into blocks, We will think of the LA
equations represented by Az = b as being partitioned into M blocks each of
size L. The j-th row of A will be denoted by a;. If we denote ¢ (mod A)+1
by m; then a generalisation for the ART iteration formula (following [45]) is

with 7 = (m; — 1)L + £. Here 7 is a relaxation parameter.
€ par

Fo ticular case of a block size of I = 1 the algorithm i

rth that of Kacz-
marz [92,49] which is the same as the original ART proposed by Gordon [40]

(ﬂ

B
~

If the number of blocks M is 1 then the method is the classical met?“sc» of
Cimmino [25], which is very close to the SIRT method of Gilbert et al [33].
Another obvious choice for the block size is the number of measurements taken
for each projection angle of the CT scan.

It will be useful to introduce the more general framework of Eggermont [27)
The matrix A will be partitioned into blocks A,, each of L rows of A, and &

/ A(m—1)L+1 \\

- l ] (6.28)

partitioned similarly

fEim
o @mL
{!’5 1)L+1 \i

B, = L (6.29)
\ me }

The iterative step given by Eggermont is then

Tip1 = Ti+ Aiggm;<5ms — Am, 6.30)

£

o
AT
k=)

i

where the Zm are referred to as relaxation matrices. Eggermont proves that,
provided the equations are consistent and the stariing value z¢ is in the range

of AT the algorlthm converges to the Moore-Penrose solution

hm z; = A'b (6.31)
e de o]
as long as the relaxation matrices satisly
AL (Ip — An AL ) Anll < 1. (6.32)
The algorithm described by Equation 6.27 is a particular case with
© = diag(7]| N 71 %) 6.33°
& = A1ag\ T A (m~1)L+111 w-w’HamL” )e ( .33)
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Convergence is guaranteed by choosing 7 small enough.

There are a very large variety of methods for solving systems of linear
equations and it is worth noting the particular features of the reconstruction
problem for X-Ray CT have lead to this particular class of methods being
employed. The important properties (see [92]) are that the matrix A is:

e Large. The matrix is very large — possibly with 10%° entries. Typically

more rows than columns (an over determined system).

¢ Sparse. Most of the entries in the matrix are zero — typically more than
99%.

e Singular. The rank of A will be less than the number of columns.

e [Unstructured. The distribution of non-zero entries has no regular struc-
ture. '

e Jll-condiiioned. The singular values decay with order O(k~1/?)

Methods like ART are row action methods — a single iterative step re-
quiring access to only one row of the matrix. This cuts down the memory
requirements of such an algorithm. Also the original matrix, and hence its
sparse structure is preserved. As discussed above, iterative methods in general
have a regularising effect when stopped short of convergence. This can be
used to solve the problem caused by the decay of the singular values. It must
be noted, however, that these methods are in some respects not ideal, despite
their popularity (see [92]). For example the conjugate gradient method dis-
cussed above has superior convergence properties at an only slightly increased
storage cost.

6.5 Radon Transform Inversion

6.5.1 Not a Radon Transform

The early work of Tasto and Schomberg [90] assumed that the forward problem
o EIT could be represented as a generalised Radon transform. However, there
s a simple example which shows that the forward problem for EIT is not a

et +

ot

generalised Radon transform. The demonstration of this elaborates on an idea
of Bates et al [4].

First it is necessary to define a generalised Radon transform (GRT). The

strict definition given by Gel'fand et a! [31] is as a double fibration, however
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since the counter example is rather simple, it is unneccessary to introduce the
full sophistication of the definition. The counter example has as its domain
the unit disk D in R?, so we shall give a definition of a GRT for this case.

Let I be an interval in R, then for any point « on the circle S* and any
number § € I, let L, 5 be a curve in D. These curves will be considered as
the ‘rays’ along which integrals are taken. In the case of the standard Radon
transform the rays would be Lo s = {z € Dl|z- o = f}. The rays L.z will
be assumed to depend smoothly on « and f. Moreover, we require that for a
fixed o the L, 4 do not intersect (strictly for each « the rays form a folliation
of D). For a function f € L*{D) we define the GRT of [ as

R = [ f (6.34)
a,B

Each ray will be assumed to have a measure depending smoothly on «, 5. This
can be thought of as a (positive) weighting function w, s so that

-

(Rf)(eB)= [ fle)wap(z)ds. (6.35)

o I€La,ﬁ

The GRT is a linear operator, so at best we could hope for agreement with

the linearised forward problem for EIT. Consider the one-parameter family of
conductivities

141, forr<p

{4
1, forp<r<1 (6.36

S

Tt (?‘5 9:’ = %(

Given some one-parameter family of current patterns j,, and some pa-
rameterisation 6(J) of a subset of dD, let us assume that to first order the
potential on the boundary u.(¢) is a GRT of the conductivity. That is

Ou(8(5)) A
— GOl - 53 } (6.37)
ot =0 ot 12=0 !
However, suppose that for some ag, 74,(f) = cos . In this case
Bua, (6(8))] 7]
m———“aﬂé‘ﬁj}i = —2p%cosd é‘i! (6.38)
v 11=0 it:o
= —p’cost (6.39)

from Equation 2.10. Notice that this vanishes only when cos@ = 0, hence the
integrals along all but possibly two rays are non-zero. However the variation in
the conductivity is only non-zero inside a circle of radius p. This means that all
rays pass through that circle. Taking the limit as p goes to zero, we conclude
that all rays L.,z pass through the centre of the disk. This contradicts the
non-intersection property of the rays.



6.5.2 Counsistent Updates

Despite the counter example of the previous section, one successiul EIT re-
construction algorithm uses the idea of a generalised Radon transform — that
of Barber and Brown [5]. To motivate their method consider first the prob-
lem of finding a conductivity consistent with only one set of Neumann and
Dirichlet data. Clearly this problem is under specified and the solution will
not be unique. However a unique solution can be found under the initial hy-
pothesis that the gradients of v and u are parallel {we will assume also that
u,y € CHA)):

dv Adu = 0.

o~

6.40)

For the definition of d and A in this context see [I]. In coordinates Equa-
tion 6.40 becomes
Ov Ou Oy Ou RN
JT; %5 ;0%
for all 7 and j (this argument will work in dimensions two or three so the
generality will be maintained). In this particular case, which was treated
by Cannon and Halton [23], a unique solution can be found. Notice that
Equation 6.40 implies that d(~du) = which means that ydu is a closed form
(equivalently vVu is an irrotational vector). For a simply connected domain
Q) this implies the existence of a function h with

~Vu = Vh. (6.42)

Now h satisfies Laplace’s-equation V?h = 0 and the same Neumann data as
u:

A straight-forward method for finding both « and u is now apparent. First
is found by solving the Neumann problem for Laplace’s equation. Given an
point z € {1 look at the intersection of the level-set of h which passes through
= with the boundary: {y € Q|h(y) = k(z)} N 0. In two-dimensions this set
will consist of one or two points, in three-dimensions it will be a2 curve. The
gradients of 7, u, and h are parallel, so the level-sets of all three functions
coincide. The value of v(z) is therefore the same as its value on the whole of
the level-set of A through z. In particular its value on the boundary can be
determined. Let t be an vector tangential to 8l then yViu = Vih and

(6.44)

A solution to the problem will exist exactly when the expression given in
Equation 6.44 is constant on {y € Q[h(y) = h(z)} N O for all z € .
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The method of Barber and Brown [5] is to take 2 weighted average of con-
ductivities parallel with the equipotentials and consistent with each Neumann-
Dirichlet data pair. This is only possible where such conductivities exist which
means, as shown above, that the right-hand side of Equation 6.44 must be
constant on the intersection of the equipotential lines with the boundary. In
three-dimensions this is unlikely to be the case. In two-dimensions agreement

of this function at two points is also unlikely. Barber and Brown consider the
case where {l is the two-dimensional disk. However the particular choice of
current patierns used by Barber and Brown make the method possible. They
take the current pattern to be dipole source:

85,
7?56

= 0, are semi-circles passing through the
point a where the d}poie is centred. ‘v ltage data is not known at this point,
which is a singularity of u, hence the value of Vih(y)/Viu(y) at the other end
of the equipotential is used.

i

Cﬂ

Jal8) (6.4

e

The equipotential lines, assuming

B

Details of the weighting function used in the averaging process, and the
connection with Radon transform inversion, can be found in [80].

6.6 Application of ART to EIT

As shown in the previous section, the linearised forward problem in EIT is not
a generalised Radon transform. One consequence of this is thet the derivative
matnx A, in contrast to a discrete Radon Transform, is not sparse. Indeed
zeros of the kernel function Ky = vVup - Vo occur only on a set of measure
zero. This means that one good reason for using row-action methods which
applied to Radon transform inversion, is not valid for EIT. However this does
not invalidate the use of ART-like methods which are valid for any matrix.

An application of an ART-like algorithm to EIT can be found in the work
of Kim [53]. Both Kim and Yorkey [96] use the term back-projection in a
way which may lead to confusion. When treating the Radon transform, back-
projection, as defined by Equation 6.23 is equivalent to multiplication by A7.
However in EIT the geometrical interpretation of the adjoint operator is not
as clear. It is ‘back-projection’ in the sense that the data on the boundary is
cast 1ntc the interior. However each point in the interior of the region receives
a contribution from all the measurements made, rather than just those made
at the boundary points of the current stream-line or equipotential on which it
hes.

Kim’s formulation differs slightly from the approach taken in this thesis in
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that it treats relative, that is percentage, changes in the resistivity and the
relative changes they produce in the currents. For comparison this presentation
will use the equivalent absolute measurements. Recell that Kim uses constant
voltage sources and measures the changes in current. An appropriate forward
mapping 1s

j = F(p) (6.46)

where p = 1/v is resistivity. For the k-th voltage pattern the ¢-th current
measurement will be denoted i and its deviation from the current predicted
by the finite element model §jz;. The perturbation matrix used by Kim is an
approximation to the matrix A of partial derivatives ap = 07y /Op: where p; 18
the resistivity of the [-th element in the finite element model. Kim’s algorithm
updates the n-th estimate of resistivity P as follows:

(n+1) (), i Gkil O7ks
&y =p A T=T
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This iteration is repeated for each voltage distribution k cyclically. The 1t-
eration given in Equation 6.47 is very close to the general ART method of
Equation 6.27 dlﬁermg oplv by the use of the I-morm in the denominator. For

suitable choice of v this clpa”h {cil within the more general framework of

L]

a

Eggermont {Equation 6 28) and hence converges to the Moore-Penrose solu-

tion (By the eguivalence of norms on finite dimensicnal normed spaces, the

1-norm can be estimated in terms f the 2-norm. This changes the bounds on

7 which guarantee convergence). Moreover stopping short of convergence will

abt as regularisation. This exnlams the success of the method when applied
v Kim. The poor convergence found by Yorkey [96] is understandable when

compared to direct methods.

The algorithm as it stands is simply a linear solution method. However it
‘s amenable to natural non-linear extensions. The derivative, or perturbation
matrix can be recalculated at any stage in the iteration. If all measurements
are cycled through using Equation 6.47 a numbe r of times before recalculat-
ing the matrix, this amounts to another variation of { the regularised Newton’s
method discussed above. The number of iterations is determined by the Moro-
zov stopping criteria. Another alternative would be to recalculate the matrix
at each iteration of Equation 6.47, or perhaps an intermediate stage after
each voltage profile had been used K times since the last update of the ma-
trix. The determination of optimal K would depend on the speed of solution
of the forward problem solution relative to the inverse problem, and the ad-
vaniage gained by the recalculation of the matrix. Although Kim did not
implement this non-linear extension, Yorkey implemented a SIRT version of
the Kim method, updating the matrix after each iteration. This was found to
converge, but not as rapidly as Levenberg-Marquardt.
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6.7 Implementation of Regularised Newton

Methods

6.7.1 Reconstructing the Moat Object

Regularised Newton methods were implemented using truncated SVD as the
regularisation technique. Initial results were reported in [15]. The mesh used
was a square with 100 nodes and square bilinear elements. The sixteen elec-
trodes were taken as edges of elements on the boundary. The current drive
pattern used was the adjacent pair technique, as described in Chapter 5. Of
the conductivity distributions tested, one of the more difficult to reconstiruct
was the ‘moat’ object illustrated in Figure 6.4. This consists of a ‘moat’
of conductivity 50 units against a background of 100. One can expect that
this ring of higher conductivity will prevent current from penetrating into the
‘mound’ deeper into the region. This will result in problems in reconstructing
the central area. This was found to be the case in practice. The first iteration
produced a recognisable moat but a much diminished mound. The detail be-
carne evident as the iteration proceeded, the mound becoming more accurate
only after the moat had taken shape. After five iterations little visible differ-
ence was detectable on the reconstructed image, although the algorithm was
still able to make changes which reduced the residual 6.5. '

6.7.2 The Effect of Data Errors

The effect of errors in the data was investigated by simulating three possible
types of inaccuracy. The first was in the position of the electrodes, for both
current application and voltage measurement purposes. This was achieved
by interpolation using the finite element basis. Secondly the shape of the
boundary was distorted by adding a small random vector to the coordinates of
the boundary nodes. Finally, uniformly distributed random noise was added
to the measurements.

Referring to the singular value decomposition of Chapter 5 it can be an-
ticipated that the effect of even small amounts of noise in the data will be
dramatic. This was indeed found to be the case as illustrated in Figure 6.5.
The initial iteration, in which only the first few singular singular functions were
used (typically about 30}, resulted in a similar reduction in the residual even
in the reconstructions with contaminated data. The images obtained in all
the cases of contaminated data were all qualitatively similar to Figure 6.4(b).
However with the contaminated data no further improvement can be made
after the second iteration as the residual is already commensurate with the
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error in the voltage data.

Figures 6.5 and 6.6 show that with fairly small amounts of unsysiematic
noise little improvement is made after the first iteration. This is true whether
the error is voltage noise, electrode position error or random perturbations
in boundary shape. These observations contrast with the experience of the
Sheffield group using the Barber and Brown method which is remarkably stable
with respect to variations in geometry. The technique has been used on half
planes rather than cylinders without changes in the forward modelling! This
phenomenon has yet to be explained satisfactorily. It 1s worth mentioning
in this context that the Barber and Brown method is a linear algorithm and
thus measures only conductivity changes, a feature they call Dynemic Imaging.
From Figure 6.5 it can be seen that the first iteration, which is a linear method
is less effected by the data errors than subsequent iterations.

The simulated errors used in this study were plausible but somewhat arti-
ficial. A more useful test is to apply the algorithms to real data, either from
phantom studies or measurements taken on patients. It seemns likely that sys-
tematic errors from inaccurate forward modelling may have a less dramatic
effect on image quality. This exercise has not yet been performed by the au-
thor, although Yorkey [96] has tested a regularised Newton method on data
derived from a phantom study. One purpose of constructing the OXPACT
machine [69] has been to investigate the real types of error generated by a
measurement system. Some analysis of accuracy of the system is given by
Furper in [30]. It is already clear that imaging real data will require more
accurate forward modelling, including detailed treatment of the electrodes,
and much larger finite element meshes. A method for accurately locating the
electrodes on the patient must also be found.

6.7.3 The Positivity Constraint

One problem which has not been addressed by previous authors 1s the fact that
the conductivity must be bounded away from zero. As discussed in Chapter 4
the Choleski solver will fail if any conductivity falls below a certain level, as
this will cause the system stiffness matrix to be no longer positive definite. Let
us denote the smallest feasible nodal conductivity by ¢. The problem becomes
a constrained minimization problem, with an inequality constraint. There ar

many ways to treat such a problem, one of the most common is the penalty
function method in which a penalty function is added to the objective function
which becomes very large as the solution approaches the constraint. Another
approach, the barrier method, is simply to truncate the conductivity so that
negative conductivities are replaced by the minimal value c. A third possibility
is to scale the update vector év by a constant o < 1 so that v+ by > ¢
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at each node. Both the barrier and scaling methods were employved and, in
general the scaling method found to be superior.

Another possible approach 1s to change the parameterisation of v so that
negative conductivities are not possible. The most obvious way of achieving
this is to define a new parameter v = In~y. This method was tested and found
to have no particular advantage. The new parameter v can become very large
and negative. When 4 is calculated to solve the new forward problem the
stiffness matrix may no-longer be numerically positive definite.

The positivity constraint usually becomes active on particularly compli-
cated conductivity distributions. A typical situation is where there are two
central maxima close together. The Levenberg-Marquardt update in such a
case typically includes the two maxima but has a negative overshoot in the
coll between them. If the background level is already low, this negative over-
shoot is reduced by the scaling method, at a cost of not increasing the maxima
sufficiently. The maxima will be increased further at the next iteration of the
algorithm.

One additional method which in some cases prevents the problem of nega-
tive overshoot, is to scale the initial approximation to the conductivity before
beginning the iterative technique. An average conductivity can be obtained
from ||7]]/l|v]], and the initial approximation to the conductivity scaled to
agree with this. As no constant function appears amongst the singular func-
tions, a constant background conductivity will nol be found immediately by
the method. If a negative overshoot was caused by an the initial conductivity
being too low, this can be circumvented by an initial scaling.

It may seem, on first sight, that the use of the logarithmic In~ may over-
come the problem caused by the positivity constraint. In some ways, the use
of logarithmic conductivity is more natural, however, it does not solve this
particular problem. The bound on the logarithmic conductivity will be Inc,
which in practice results in the same problem.

A particularly testing conductivity distribution, in respect of the positivity
constraint, is the object funny which is an arbitrarily constructed distribution
designed to be difficult. It is illustrated in Figure 6.7. It was reconstructed
using 32 electrode trigonometric currents. Without the scaling treatment of
the positivity constraint the algorithm was not able to proceed. However,
using the scaling method it was successful as is illustrated in Figure 6.7.
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Figure 6.5: (@) The error in the conductivity ||y — || plotied against iteration
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Figure 6.7: The conductivity distribution funny. Contour plots of aciual dis-
tribution and first three iterations of reconstruction. Graphs show voltage error
(logarithmic scale) against iteration and conductivity error against iteration.
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Chapter 7

Adaptive Methods

Thirty spokes share one hub. Adapt the nothing therein io the
purpose in hand end you will have the use of the cart.

Lao Tzu

7.1 Which Measurements to Make?

Thus far in the thesis it has been assumed that the data set has been given to
us as a fixed collection of current patterns and voltage measurements. Sup-
pose now that we are in a position to prescribe which current patterns are
applied which should we choose? There are various alternatives. For ease of
reconstruction we might attempt to apply the Calderon fields or if our best g
priori guess for v was not constant, the Sylvester-Uhlmann fields. This would
be impossible practically as the current patterns are band limited by the finite
number of electrodes.

Another approach would be to attempt to apply trigonometric current pat-
erns. From the data derived from such an experiment one could synthesise an
approximation to the data which would have resulted from applying a different
current set of current paterns. One could also apply some other orthonormal

~

set of currents, such as a basis of characteristic functions of intervals. Such

b

1

data would be similar to the data gathered by the Sheffield apparatus [8].
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A different approach still would be to optimise the signal to noise rat
the measurements taken. One such approach, pioneered by Isaacson [4
described 1n the next section.

1

o

P

,__,
(o)
N



=
£

.2 Two-norm Optimal Currents

Isaacson [47] defines two conductivities 5, and v, to be distinguishable by
L
L

n
measurements of precision ¢ if there is a current density j ¢ H=Y2(601) for
which }

. ”R’n - R’n i \

)= e (7.1)
1]

The number ¢ is called the distinguishability. The best currents in the sense of

Isaacson are those which maximise §(;). For simplicty, R, will be considered

as the a map R, : H% — HY. The definition of §(j) can be reformulated as

follows:

&

6(7) = sup ||Ry = Ryl (7.2)
”‘7”—1]2:}

= sup (5,D%) (7.3)
lla p2=1

where D = |R, — R |. (Note that R,, — R, may not be positive definite). *

The map D is a compact, self adjoint pseudo-differential operator : H® —
H®. Tt has a complete set of orthonormal eigenfunctions Jk € C=(09), with
eigenvalues Ay, Ag, - -~ with Ay — 0 as k¥ — co. From the min-max principle one
can deduce that the largest distinguishability possible is A; which is achjeved
when j is an eigenfunction with this eigenfunction. These currents are the
optimal two-norm currents to apply in the sense that they produce the largest
r.m.s. boundary voltage. If the measuremant system has a fixed level of noise
these currents will give the highest signal to noise ratio.

It is instructive at this point to illustrate this with an example. The con-
centric anomaly of Section 2.4.2 provides the simplest case. Take ~v; and ¥, to
be concentric anomalies with conductivity contrasts o; and o, and radii p1 and
p2- The transfer impedance operator for any radially symmetric conductivity
on the disc must have the Fourier basis as its eigenfunctions. These will also
be the eigenfunctions of R, —.R,, and hence of D. The eigenfunctions of D
will be

>

PPN e N el i 4 (7.4)
Sl et 1 ppdt s
where
T¢ — 1
= —— £=1,2. 7.5)
o= 1 (7.5)

'Any compact self-adjoint operator A can be represented as 4 = U*AU where A is the
diagonal operator of eigenvalues and U is a unitary operator. A power of such an operator
can then be defined by A* = U*A*U and the absolute value by |A] = UAlu
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As k — oo it 1s seen that

3

1 o,
Ak = O(}C‘P%) (7.6

2]
L

where p = max(py, p;). The currents which meximise the dist inguishabilty
are therefore cos# and sin . From Equation 7.6 the distinguishability of the
higher order trigonometric cu‘:rentq cos k6 and sin k6 decreases exponentialy
with k. The optimal currents are the best currents to tell v, and v, apart.
The higher order trigonometric currents give decreasing information.

For more general conductivities on the disk the eigenfunctions will not
necessarily be trigonometric functions but will reflect any asymmetry in the
two i ributions.

7.3 Algorithms for eigenfunctions

7.3.1 Power Method

Isaacson’s algorithm for calculating this optimal current is based on the power
method (see for example [48]). We will take 7 to be the (unknown) conduc-
tivity of the body and =, as the best available guess for the conductivity. The
method is an iterative process which involves repeated measurement and can
be expressed as follows:

Guess 7@ (where

4

Repeat

5Ol =1)

Apply ]‘” and measure v(n) = &Aj(n);
Compute v (n} = _R,mj(m;
~'ﬁ

Set An = |0t — 5]
Set ;(n+1) = (v — 5) /5,
i

Implicitly Isaacson is assuming that the voltage measurement apparatus
has a fixed dynamic range, thus all measurements will be made to a fixed
absolute accuracy. As an analogy one could think of a voltmeter, reading for
example 10mV full scale, graduated in 1mV divisions. The relative accuracy
to which smaller voltages are measured is therefore less than that for larger
signals. Suppose that instead of using Isaacson’s procedure we simply took an
arbitrary orthogonal basis of currents, applied these and measured the volt-
ages, resulting in a transfer impedance matrix. This matrix would have each
entry accurate to within the same absolute precision, say 1mV. Any numerical
technique could then be applied to find the first eigenfunction of this measured
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matrix. However these functions may not be eigenfunctions of the actual trans-
feri pedance operator, even to within measurement precision. The arithmetic

operations required to compute the eigenfunction involved combining measure-
ments give the possibility of increasing the error. In Isaacson’s method the
accuracy is maintained by performing a new measurement each time a voltage

is required, rather than performing a matrix-vector product.

7.3.2 Higher eigenfunctions

The power method only produces the largest eigenfunction, which would give
only one measurement with which to estimate +;. It would be desirable to
have a basis of currents at least spanning the same space as the eigenfunctions
Jk With Ay < e. For this reason a procedure is needed which computes all the
eigen functions j; with Ay > e. The following algorithm has been found to
work in computer simulations with pseudo random noise in the measurement
stage.

Guess 1", j5”, -, 50
(an orthonormal basis with fyq 7 = 0)
Repeat
Measure U}(ﬁn) = &]jé , compute 7./}{: U= finjén) for all &
Compute ri = (ji, vl — vi’”}

Calculate the eigen system for R = [r], RU = UL
Set 7 "(n“) = SUnsn
||’ — LH <e

Until

This method is very much in the spirit of Isaacson’s. It repeatedly makes
new measurements and is ‘not satisfied’ with the current patterns found un-
til, to within measurement precision, they are eigenfunctions of the transfer
impedance operator . However it makes maximum use of the measurements

made t each stage by calculating the eigenvectors of the matix numerically.
A ny stable numerical algorithm can be used to find the eigenvectors. An it-
erati\e technique such as the Jacobi method is particularly appropriate as
the eigensystem need only be found to within measurement precision. In nu-
merical experiments with white noise simulated by a pseudo random number
generator, little was gained after two iterations of the algorithm. It has vet to
be tested on a real system, in which the measurement errors may well have a

different structure.
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7.3.3 Critique of the Measurement Model

To understand the nature of the errors involved in making impedance mea-
surements it is necessary to understand something of the electronics of an
adaptive current impedance tomograph. Currents are generated by constant
current sources, one for each electrode. The current level is set using a Digital
to Analogue Converter (DAC), which converts a binary number generated by
the computer into an analogue current or voltage level. The DAC takes a num-
ber with a specified number of bits, typically 12, and produces an analogue
signal to with in an accuracy of £1 bit. For the specific case of a 12-bit DAC
the acuracy is one part in 4096. This digital limitation is a base line for the
errors in the current generation stage. Ideally the other components of the
system would be designed so that any errors they caused would be less than
this digital error. However that is difficult to achieve in practice. The current
source, for example, has a limited compliance. It will maintain the preset cur-
rent level to within a certain accuracy only over a certain range of operating
loads. If the load, in this case the body, has too high a resistance it will not be
able to apply a sufficiently high voltage to achieve the desired current. Other
components too will deviate from their specifications. Amplifiers in the sys-
tem will have a slightly non-linear response, making the transier impedance, as
‘seen’ from the computer appear to be a non-linear operator. Different compo-
nents, supposedly identical, will have slightly different specifications resulting
in differences in the response of each current channel.

The voltage measurement stage of an EIT system typically comprises of
zn instrumentation amplifier, which is a sensitive, stable amplifier, and an
Analogue-to-Digital Converter (ADC). The ADC performs the reverse function
of a DAC, converting an analoge voltage into a binary number. The accuracy
of the ADC has a similar limitation to the DAC, however increased accuracy
can be gained at the expense of speed can be obtained by taking t
average of a series of measurements. This can effectively generate far more
bits of accurate measurement than the design of the ADC allows. This means
that the discretization error is no longer the limiting factor in the accuracy of
the system.

While the assumption of fixed absolute accuracy is a reasonable first as-
sumption, such a limitation can be circumvented by more elaborate electronics.
The OXPACT system [69], for example, has a programmable gain amplifier
in the voltage measurement stage. This is an amplifier with an adjustable
amplification factor controlled digitally from the host computer. The analogy
with a simple volt meter would be a range selection knob. If the voltage to
be measured were tenths of a mV, the range knob is turned so that the mete
has a full scale deflection of only 1 mV rather than 10mV. The smaller sig-
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nal can then be measured with the same relative accuracy as the larger. The
same method could be applied to the current generation stage, so that, within
certain limits, small currents could be set with the same relative accuracy as
large. With this complication, it is not as clear how to design a measurement
algorithm. Nevertheless, the fixed absolute accuracy model is still a useful
base-line from which to work.

7.4 Reconstructing With Optimal Currents

Given that an EIT system used is capable of making optimal measurements
in the sense of Isaacson, what algorithms should be used to reconstruct the
conductivity? It would be possible to use the optimally measured data as the
input to the type of regularised Newton's method described in the previous
chapter. It is important to remember, however, that the current patterms
chosen using Isaacson’s criteria are optimal only for distinguishing b

two specific conductivities.

e

Given an initial guess, 7o, for the conductivity, current patterns can be
chosen to distinguish between 7o and the real conductivity +. Notice at this
point that, if there is a known absolute error level €, only a small number
of current patterns will be used, those with A, > e. This would result in
an apparently smaller data set than using all poessible current patterns with
a different configuration. However the situation is similar to the controversy
between those advocating adjacent rather than polar drive pairs. The appar-
ently lost information was not actually present at given the level of error in
the measurements. Indeed, since these patterns are optimal, current patterns
which have components outside the span of the eigenfunctions with eigenvalues
A, > € contain misleading information.

Now suppose that a linear step has been taken and our conductivity esti-
mate up-dated to v;. This estimate will typically include the larger features of
the image. Suppose for example that the real conductivity has a large central
maximum and the initial guess is a uniform distribution. The optimal currents
will then concentrate current in the central region as far as possible. However
these currents will not be ideal for distinguishing between +; and . Optimal
currents for this purpose will concentrate of the regions of disagreement such
as the perifery of the central object which, in v; may not yet be the right
shape. This suggests the following adaptive Maquardt method.

Given initial guess g
Repeat
Calculate optimal currents



Measure resulting voltages
Calculate derivative matrix A
Solve (ATA+ ul)éy = —ATév
Update: v =i + 6

Until ||6v]] < €

The parameter u here is chosen using the same criterion as the non-adaptive
methods discussed in Chapter 6.

Although apparently fewer measurements are used at each iteration in this
method, the total number of independent current patterns used is much larger
as the optimal currents will, in general, be completely different at each iter-
ation. The use of a smaller number of measurements reduces the number of
rows of the matrix A. This means that AT A is rank deficient in exact terms
as well as in terms of measurements of a limited precision. However it also
indicates that a row-action iterative solution method, may be more efficient.
An iterative method could be particularly appropriate as a solution is only
required to within measurement precision.

7.5 Numerical Results

Experiments conducted with this algorithm reported in [16] were extremely en-
couraging. Figure 7.1(a) shows the original conductivity tc be reconstructed.
A central ‘spike’ was chosen deliberately to emphasis the difference between
optimal currents and adjacent pair current patterns. The first iteration with
adjacent current patterns produced the updated conductivity shown in Fig-
ure 7.1(b), where as the first iteration with optimal currents produced that
shown in Figure 7.1(c). After 10 iterations with the adjacent drives the ‘spike’
was recovered to a similar accuracy, whereas the first iteration with optimal
currents produced almost as good an image as was possible given that the
problem is ill-posed. Further jterations produced little qualitative improve-
ment.

7.6 Point Optimal Currents

(iven that Isaacson’s criterion for optimality is not indisputable, what other
criteria could be used? One idea is, rather than optimising the norm of the
oltages, one could seek a current pattern which optimises one individual mea-
surement of voltage. This would result in a smaller data set than Isaacson’s

"
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criterion, but as stated in Section 7.4, this need not matter if the currents used
are different at each stage in the iteration.

~

No numerical experiments have yet performed using these poini opiimal
currents (which were introduced in [18]) as any advantage they may have
would only be apparent with real data. Simulations would only be useful
if the structure of the voltage errors were known. Here, a method for their
determination is presented. ‘

As in Isaacson’s treatment ~; and 7, are conductivities between which
we wish to distinguish. Let p € 01 be the point at which we make the

. . —woo(p) = (R M) — ; We seek a 7 such
measurement vi(p) — vo{p) = (R, 7)(p) — (R,7)(p). We seek a 7 such that

~3

(7) = v (p) — valp)] (

is optimised subject to {|7]| =1 and [3n5 = 0.
The current pattern can be expresed in terms of the eigenfunctions as

7 = 3 aijr- The optimisation problem is then

maximise . apJr{p)

. (7.8
subject to S af =1. (7.8)
s . . R -
Jsing Lagrangian procedure we have
ar = CArgk(p) (7.9)
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where

C = /(X 0Owdnlp))?): (7.10)

bi

The measurement procedure would be first to calculate the eigenfunctions
as detailed above, and then make the measurement at p when the current

7=2_Chigi(p)ix (7.11)

In the simple case of a concentric anomaly, these functions can be calculated
explicitly as
2k
2up P
k(14 up*)
A plot of point optimal currents for this case in Figure 7.2. It can be

&
3
seen that for a small object in the centre these currents differ least from the

two-norm optimal case.



Chapter 8
Conclusions and Further Work

Work is love made visible.

joy

il Gibran
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8.1 Summary of this Work

The main focus of this thesis has been to show why the Reconstruction prob-
lem for EIT is inherently difficult and how the difficulties can be overcome. In
Chapter 3 a Taylor series for the forward mapping was derived. This empha-
sised that the problem is non-linear but also showed how it can be approxi-
mated by a linear problem. Chapter 4 presented a technique for modelling the
forward problem using finite elements. In Chapter 5 it was demonstrated how
both the non-linear and linear problems are ill-posed. The ill-posedness of the
linear problem was characterised in terms of a singular value decomposition.
In Chapter 6 iterative algorithms were presented which include regularisation
to combat the ill-posedness. In Chapter 7 strategies were presented to collect
optimal data and it was shown how these techniques may be integrated with
iterative reconstruction algorithms.

8.2 The Future of EIT

During the period from October 1985 to January 19390, over which this work
was done and this thesis written, enormous progress has been made in EIT.
Many new workers have joined the field from a wide spread of disciplines.
Mathematicians have been working on many aspects of EIT, medical physicists
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have built prototype impedance tomographs, and clinicians have tested the
technique for medical diagnosis. However the subject is still young and there
is still much work to be done before EIT will be used routinely as a tool for
medical diagnosis and research.

The principal areas where further work is vital for progress to be made are
as follows.

e An accurate model is needed for the electric field around an electrode on
the skin, including contact impedance.

e A method must be found of accurately placing a large number of elec-
trodes on the body which is easy to apply.

The first point must be addressed by Mathematicians and Physicists, the sec-
ond by Medica! Engineers.

In 2 more theoretical vein, there are still interesting problems to solve
which have important implications for EIT. An analytical characterisation
of the singular value decomposition of the derivative of the forward problem
would greatly increase our understanding of the problem. Also if a direct
method were found to calculate the left singular functions and singular values,
the solution of the linear step in an iterative reconstruction algorithm could
by speeded up significantly.

Another theoretical problem is to find to what extent errors caused by
inaccurate knowledge of the boundary shape or electrode position can be sep-
arated from voltage differences caused by genuine changes in impedance. A
useful result in this area would be as follows. Suppose that the data is changed
by a boundary perturbation or electrode position change which is bounded in
size by 6. Is there a distance r(§) such that noc conductivity change within
the region (&) from the boundary can explain the change in the data? If the
anatomy were known near the surface of the body but an anomaly near the
centre was sought, the data which could be explained as conductivity vari-
ations near the surface could be used to fit a more accurate model for the
boundary shape and electrode positions.

8.3 Some Leads on the Problems

8.3.1 Electrode Modelling

0 this work a naive model of the boundary conditions has been used - that one

peun]
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an specify Neumann conditions using electrodes. This is not exactly the case.
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Firstly electrodes have finite area and finite gaps between them. Secondly the
electrodes are conductors - which means that the voltage is constant on them.
Thirdly there is effectively a highly resistive layer between the electrode and

the skin.

This last effect, the contact impedance, has been the cause of some con-
troversy in EIT. It has been argued that the contact impedance cannot be
modelled adequately so that measurements of voltage cannot be made at cur-
rent carying electrodes. This argument has lead to the adoption of the ‘four
electrode’ measurement technique where voltage measurements are made be-
tween electrodes other than those carrying current. Advocates of this posi-
tion [8,61] argue that contact impedance can be represented as an unknown,
non-interacting resistor in series with the electrode. If current passes through
this resistor there will be an unknown voltage drop and the measurement of
voltage will be useless.

The other school of thought, originating at Rennselaer Polytechnic Insti-
tute (see [38] and [24]), proposes the following model for contact impedance.
The £-th electrode E; has an ‘infinitesimally thin’ layer with effective contact
tmpedance (; (whose units are (dm™?). The voltage V; on the electrode is
therefore the voltage u minus the voltage drop across the contact impedance
layer

Foent
St

Vi=u+{Vau on K, ’ (8.
As the electrode is conducting V is constant. Equation 8.1 together with the
the knowledge of the total current flowing through each elecirode,

Ie = YV, (8.2)

gives a set of boundary conditions for u. It is not clear if these boundary

conveniently into the usual framework. However for the case of the uniform
disk they can be solved by expressing v as a series in the usual way:

conditions result in a well posed boundary value problem as they do not fall
r
7

U = Zrk(ﬁ& cos k€ + B, sin k@). (8.3)
k=0

Equations 8.2 and 8.1 then provide linear equations relating the V., A4; and
By to the known I, which can be solved numerically. Cheng [24] compared
data measured from a two dimensional, circular, saline solution phantom tank
with this model. He found an excellent correlation after fitting one parameter,
the effective contact impedance, which was assumed to be the same for each
electrode. Other models, including the non-interacting resistor model, did not

fit as well. This would indicate, at least for saline solution phantoms, that the
model is correct.

—
-y
ot



8.3.2 FElectrode Placement and Boundary Shape Er-
rors

The problem of accurately placing large numbers of electrodes must be over-
come by ingenious engineering. One possibility is to design a belt which fits
the body with equally spaced electrodes. This has the disadvantage that the
shape of the belt is not known. Another approach would be to have a rigid
array of electrodes connected electrically to the patient via a compressible
conducting material of similar impedance to the tissues. This layer between
patient and electrodes would be imaged just as the air surrounding the patient
is imaged in X-Ray CT. This configuration would allow a very large number
of electrodes, which would offset the effort wasted in recomstructing the sur-
rounding medium. This would also alleviate the the problem of an unknown
boundary shape.

An alternative solution would be to determine the position of the elec-
trodes and the body shape using additional sensors. This could be done using
mechanical position transducers or optical range-finding, for example.

8.4 Final Remarks

Progress continues in EIT and an increasing number of research groups are
working in the area but formidable challenges still remain. The original pro-
gramme of work for this thesis has been in some sense over-ambitious. Its
scope has ranged from the abstractions of Sobolev spaces to the practicalities
of circuits and saline solution. The author’s original aim was to understand
impedance tomography mathematically and translate this understanding into
a practical system. Needless to say neither of these have been achieved. In-
deed there will be many more doctoral theses written on the subject long
before these aims are met. The author hopes that other workers in the field
will find the work presented in this thesis useful in their own investigations.



Appendix A

Yesign of an Adaptive Current
Tomograph

A.1 Introduction

~ -

This appendix describes the design, construction and initial testing of the
Oxford Polytechnic Adaptive Current Tomograph (OXPACT). The system
was initially designed by Dr D. Murphy in 1987 in f“muncb()n with the current
author. The system was developed and built by Dr C. McLeod, Dr F.J. Lidgey,
Mr S. Owen, Mr T. Davey-Winter and Mr P. FL;HGI’) again, together with d}@
current author.

1

The idea of an Adaptive Current Tomograph stems from Isaacson, Newell
and Gisser [47,7] at Rensselaer Polytechnic ?ns itute in the USA. This method
employs a single-ended current source on each electrode and allows for mea-
surement of voltage also at that electrode. The current paitem an be adjusted
under software control to optimise the distinguishability of

4

f the conductivity
distribution of the object.

Following successful reconstructions of computer simulated data
adaptive current algorithm (see Chapter 7) it was decided to build a proto-
type system to test these methods in practice. In particular it was hoped

vt ':h?- E‘b ‘T\é." t’ to‘ro e 1 )
greater insight would be gained 1nilo tne iype o1 €IT0TS inherent in measure-
ments from an adaptive current tomograph, and the accuracy of the forward

4

modelling techniques used could be tested and, if necessary, improved.

The specification of the system was that currents should be set, and volt-
ages measured to within an accuracy of 0.1%. The system was to be designed
to meet medical safety standards. This dictated the limits of current and volt-
age levels which could be applied, and the frequency of the applied current.
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1t also meant that the instrument needed to incorporate isolation barriers to

prevent dangerous voltages being applied to the patient in the event of a mal-

function. Although it was not anticipated that this version of the system would
+

be used in a clinical setting, it was necessary to design the system to these
safety standards so that an accurate assessment of errors could be obtained.

It was decided at the design stage that the instrument would be capable of
measuring both the in-phase and quadrature components of the signal. If the
alternating voltage is represented by a complex value, this arrangement allow
both real and imaginary compornents to be measured separately. This al Iows
the future study of objects which have a non-zero reactive component in their
impedance.

A.2 System Overview

The layout of the overall system is illustrated in Figure 9.1. The OXPACT
system is housed in a single instrument case. The instrument is contro lled by a
host computer, which can set current levels and operate the measurement sys-
tem under software control. The host computer is a standard PC-compatible
Rtted with a parallel interface card connected to the 22 digital lines used to
drive the instrument. A 12-bit analogue-to-digital converter card is also fitted
in the host computer which is connected to the instrument’s analogue outputs

The digital output lines are divided into address, data and control lines.
These enable independent setting of each current source, effect measurement
from any electrode pair, and set the programmable gain stage in the measure-
ment system.

Internally the instrument comprises a motherboard and four electrode in-
terface boards for a 32 electrode system (see Figure 9.2). The motherboard,
which is directly controlled from the host, has the following features:

s Optical isolation on all digital input lines from the host.

e Address decoding for selection of each electrode-interface board.

¢ Selection of differential voltage signal from electrode-interface board.
¢ A Wien-bridge oscillator.

¢ Two phase-sensitive demodulators for in-phase and quadrature measure-
ment.

1T r

e Programmable gain control for the voltage measurement.
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Host Computer

Figure A.1: Overall layout of OXPACT system



Figure A.2: The OXPACT system with front panel removed showing four elec-

trode interface board, each with eight screened leads terminated with crocodile
3 o

clips

”
1
By

L4 £ : N
of the following:

(&

Fach electrode interface board consist

@

A programmable current source for each of eight electrode lines.
¢ Voltage measurement buffer and screen driver on each electrode line.

e Multiplexing for selecting voltage measurement {rom any one or two

electrodes.

The number of electrodes may be increased in increments of eight, up to a
limit of 96, by adding electrode-interface boards.

A.3 Circuit Details

A.3.1 Motherboard

The circuit diagram for the motherboard is shown in Figure 9.3. The dig-
:tal lines from the host computer are passed via a 26-way IDC connector.

The usage of each line is detailed in Table 9.1. Fach digital line is optically



isolated to provide isolation between the host computer and the instrument.
This 1s achieved via IC’s 1-6 which are quad opto-isolators. A 4-t0-16 line
decoder, IC 7, provides a mechanism for selecting one of twelve electrode in-
terface boazd% or selecting the multiplexer latch, via address lines A0-A3.
Communication with the electrode interface board is achieved with a 50-way
IDC connector. This is used to pass the isolated bus signals and decoded
board-select lines to each electrode interface board.

The motherboard is capable of making one differential measurement be-
tween any pair of channels. The measurement pair selected is held on IC 8
which is an 8-bit latch (74LS374). Four bits of the output go to each 16-1

multiplexer (IC 9 and 10). Each of the 16-channel multiplexers, I1C’s ¢ and 10
{\H; 506A) switches the signal from the selected electrode to one side of the

differential instrumentation amplifier IC 11 (AD524).
N Y

Fach of electrode-interface boards has its own p air of eight-channel multi-
plexers. Figure 9.4 illu tes the overall multiplex cheme which is designed

to:

¢ enable selection of any pair of electrodes, in either order,
e enable single-ended measurement from any electrode,
e be expandable by plugging in exira boards,

e minimise channel resistance and output capacitance, to reduce common-
mode errors,

e minimise feedthrough and maximise isclation,

The instrumentation amplifier has a r>in-arogrammab}e gain which can be
set to 1, 10, 100 or 1000 using a DIL switch. The output of the amplifier,
single- ended high freguency volt age, is fed to an isolation transformer, T1.
'his meets the safety standards set out in BS5724). The output of the trans-
ormer is connected to a cascade connection of two programmable gain ampli-
(IC 12 and 13 — AD526). The gain of each amplifier is set digitally, using
the Lmso;aied digital lines, to a value of 1,2,4,8.0r 16, with a non-linearity of
better than 0.05%. The total gain, therefore, is any value of the form 2,
where 0 < r < 8. This programmable gain selection is incorporated for two
reasons: signal levels obtained from phantoms where not known a priori and

A g)
M

Fodoy

“:h

the voltages measured will have a large dynamic range.

The ouilput from the programmable gain amplifier passes to the phase-
sensitive detector circuit. The ADB30K 1s a switching type demodulator which
i1s employed as IC 14 and 15. The carrier for the demodulation comes from
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the oscillator. The output of each demodulator is low-pass filtered to remove
the high frequency harmonics produced by this type of demodulation.

The oscillator employed of the Wein-bridge type. The frequency was fixed
at 6.5kHz. Both in phase and quadrature outputs are produced which are fed
to the demodulators. The in phase output is buffered and fed to the electrode
interface boards via screened cables. An external oscillator was also available
and frequencies from 5 to 20 kHz were used for testing.

A.3.2 Electrode-Interface Board

Each electrode-interface board supports eight electrodes. The circuit for each
pair of eiectrodec 1s shown in Figure 9.5. These blocks are connected together
as shown in Figure 9.6. Each board has is connected to the 15V, 0V power
supply, the 50-way ribbon cable to the motherboard, a screened oscillator
input from the motherboard, two screened measurement lines connected to
the motherboard and eight electrode lines terminated in alligator clips.

The control functions required of the electrode-interface board are to select
a current source and set its output level and to select one or two electrodes on
the board for voltage measurement. Each electrode-interface board is identical
apart from a jumper set to designate its board number {Figure 9.6). When
the board-select line is activated from the mother-board, the 3-bit decoder
(T4L5138) is activated. This decodes the address lines A4-A6 for selection of
devices on the board. Five of the eight possible outputs from this device are
used. The first (000) 1s used to drive an 8-bit latch (7418374). The others
are used for the chip-select lines for each of the four duau DAC’s used in the
programmable current sources.

As described in Section 8.3.1 each electrode-interface board has its own pair
of eight-channel multiplexers to select the measurement electrode pair. The
8-bit latch (74LS374) is used to latch the data lines for these multiplexers.
The two least-significant bits are used to switch on and off each multiplexer.
The two pairs of three bits remaining are used to control the channel selection
on each multiplexer.

The programmable current source (Figure 9.5) can be thought of as two
parts. The first is a Multiplying Digital-to- Analogue Converter (MDAC) ca-
pable of multiplying a high frequency signal by a signed 11-bit number. The
second stage is a voltage to current converter (or transconductance amplifier)
which translates a positive or negative voltage level into a proportional current.

The MDAC is realised using a standard 12-bit DAC, IC 1, (DAC 8212GP)
which has a single ended output together with a standard summer network
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(IC 5 and 6) which allows for inversion of the output. The summer network
uses precision matched resistors. Each IC 1 has a pair of DAC’s each control-
ling a separate current source.

The current source circuit used was an ingenious design due to Lidgey [62].
It has the particular advantage of not requiring matched or accurate resistors.
It would be particularly suitable for incorporation in a monolithic electrode-
interface circuit at a later stage. The operation of the circuit is as follows
(Figure 9.7). The operational amplifier, IC 2, is connected as a unity gain
amplifier. If the voltage on the non-inverting terminal of the op-amp is Vi
then a current of ¥, /R, flows to ground through R;. This current must be
drawn from the supply lines (pins 4 and 7). The novel element of this circuit
is that the supply lines of the op-amp are connected to Wilson current mirrors
(IC 4 and 5) which reflect the current drawn in the output. The polarity o
V., relative to ground will determine the direction of the current, and will
determine which of the current mirrors is active and hence the direction of the

- PWM

output current. The resistor, R 2, allows any DC component of the current
to go to ground, while C 2 aﬂowq only the high frequency component to enter
the patient. It was found that, if the output lines were unloaded while a non-
zero current was set, the output transistors of the current mirrors would break
down. This was prevented by ﬁtimg the Zener diodes shown, which had a

reverse breakdown voltage just lower than the supply voltage used.

The final part of the circuit for each electrode is the voltage buffer and
screen driver. The measurement buffer is an AT follower corﬁrrw@mm giving
maximurn input impedance at high { ;.requencze A separate op-amp is used to

drive the screen on the electrode line with a voliage following thau carried by
the central conductor, this minimises the effect of stray capacitanc

A.4 Software Drivers

Software drivers were written by the author in conjunction with Dr. C.
McLeod. The drivers were written in Turbo Pascal, which provides a con-
venient development environment and easy access to low level facilities such
as input-output ports. The interface was designed so that the low level mech-
anisms were hidden from the calling program. Three routines are used to
interact with the tomograph: SetCurrent, MeasureVoltage and SetGain.

The electrodes are indexed via an integer subrange:

lectrodelndex : 0..85;

s

Current values are in the range MinI. .MaxI, where MinI is the constant value
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0 and MaxI is 4095 = 2** — 1. To set the current source EL to the integer value
Val one makes the procedure call

1f all 32 channels are used, each comnected to an electrode on the phantom
tank. care must be taken that the sum of the currents set is zero. If this is not
the case, and there is no additional earth connection on the tank, the operation
of the current sources will break down and the additional current will be drawn
from, or sunk into, the current sources despite their setting. If an extra earth
clectrode is used, any additional current will flow from or to earth via this
route. If the current sources are properly matched there will be no current in
the earth electrode. I the apparatus were connected to & patient care must
be taken that part way through the setting of the full current patiern, an
unacceptable current is not entering the patient via the earth electrode. The
programmable gain amplifier can be set to gain 277 by the statement:

SetGain(r,s);
A voltage measurement can now be made using the function call
v := MeasureVoltage(E1,E2);
which measures the voltage between electrodes E1 and E2. In fact it takes az

average over ten measurements as this reduces the error in the measurement
due to white noise.

ft

Hidden in these routines are all the complexities of addressing the various
devices in the instrument. No details will be give here but the complexities
include allowing for the delays caused by the opto-isolators and the sending of
write pulses to certain devices. Now these routines are written the programmer
no longer has to allow for these complexities.

A.5 Problems with the Design

A very large number of problems have been encountered with the design, some
were solved in this version, others will have to await the design of the next
version. Some of the main problems will be outlined in this section. The first
problem encountered in writing the driving software was the complexity of
the addressing scheme. This complexity is due largely to the isolation barrier
between the instrument and the computer. The instrument was connected

pot
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directly to the computer’s bus this problem would be overcome — the digital
devices in the instrument could be memory-mapped and addressing would be
easy. One method of achieving this, without compromising patient safety, 1s
to use a battery powered computer which is not connected to the mains. Such
a computer has been purchased and its use is being investigated.

Another problem associated with connection to the computer is the pres-
ence of digital noise. To overcome this two completely separate power-supply
units were used. One to power the parts of the instrument within the isola-
tion barrier, the other to power those outside. This significantly improved the
signals and eliminated the digital noise. It would, in any case, be necessary to
have this dual power-supply arrangement for patient safety.

o0

Apart from the modification mentioned in Section 9.3.2 of fitting Zener
diodes another problem was found with the programmable current source
circuit. A phase-shift was found to occur in the op-amps IC 5/A and IC 6/A
on the outputs of the DACs. This meant that the summer network did not
work correctly as the reference signal (in R 2 and R 8) was not phase shifted.
A suitable phase shifting network was introduced to compensate for this. It
would be advantageous to eliminate the need for this summer network for this
reason as well as its dependence on precision resistors. A alternative would be
to use a DAC with a two-ended output.

A useful addition would be a programmable gain stage for the signal sup-
plied to the current sources. At present the maximum current level is set with
a potentiometer. This would also, at a later stage, avoid the problem men-
tioned above of a large current fowing through the earth electrode when only
part of a current pattern is set. The DACs could be set and then the signal
level raised to the desired level.

A final problem with the system is that, since its design, it has grown in a
rather disorganised fashion as it was modified. Its appearance is rather baroque
with flying leads and added-on circuit boards. It is now rather unmanageable
and unreliable. The time to design and build GXPACT Mark 2 is long overdue.

A.6 Calibration and Testing

The voltage measurement stage of the instrument is common to all channels,
this makes calibration of the measurement stage straightforward. It was found
to be linear over the operating range to within the 12-bit measurement preci-
sion availiable. For the current sources calibration was more involved. Each
current source was slightly mis-matched and a calibration procedure had to
be devised.
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A precision resistor was used as the load, each electrode lead was connecte
to this in turn. A testing program was written which applied & current ranging
from MinI to MaxI is 32 steps. The voltage between the precision resistor and
ground was measured by the measurement stage and linear regression was
used to fit a straight line to the measurements. The intercept of the line
‘ndicated an error in setting the current zero (due, for example to, errors 1n
cesistor values in the summer network). The slope indicated the gain of the
transconductance amplifier. Most channels had slopes agreeing to within 1%,
however two clearly had a fault condition exhibiting an error of up to 10%.
The 1% error is worse than the design performance, but once the calibration
procedure has been done, that error can be removed in software. The fault on
the other channels has not been found at the time of writing.

As not all channels were operating correctly, it was decided to make mea-
surements on phantoms using only 16 channels. A tank of radius 14 cm and
depth of 5 cm was constructed. Electrodes were made of stainless steel strip.
The gaps between the electrodes were chosen to be the same size as the elec-
trodes. The rectangular shape of the electrodes gives the tank symmetry in
the z-direction and can thus be treated as a two-dimensional problem. The
tank was filled with a solution made with Sodium Chloride and tap water.
Sixteen working channels from the tomograph were connected to every other
electrode. Trigonometric current patierns were applied to the tank and the
voltages measured. The results are shown in Figure §.&.

Measurements were also taken when cylindrical insulating targets were
placed in the tank. The measurements showed that a voltage change was
detectable for a 3 cm object in the centre of the tank.

The objects have not yet been successfully reconstructed.

A7 Future Work

Work on reconstructing images from the measured data is in progress. It is
hampered by the unreliability of the instrument but success is anticipated
soon. The experimental program for the tomograph includes verification of
the forward model by an analysis of the spectrum of the measured transfer-
impedance matrix. The algorithm for finding the eigen-system of the transfer
impedance matrix suggested in Chapter 8 will also be implemented and tested.

Image reconstruction algorithms have so far been implemented on a Sun
3861 workstation, and on a transputer board fitted in the workstation. To avoid
interfacing problems the host PC computer will be fitted with an ethernet card
to facilitate easy data interchange. Measurement software can then run on the
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host computer while the workstation reconstructs images.

The design and construction of OXPACT Mark 2 will commence shortly
incorporating the lessons learnt {rom the construction of this prototype. It
will have at least 96 channels so that fully three-dimensional problems can be
investigated.
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