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On varieties of representations of finite groups

Alexandre V. Borovik and Arjeh Cohen

Abstract. This is a manuscript last dated 30 June 1994; it was mostly written

during the first author’s visit to Eindhoven in December 1992. This approach
to study of finite subgroups of simple algebraic groups could still be of some

interest.

1. Introduction.

This preprint contains two results related to the variety Rep(F,G) of repre-
sentations of a finite groups F with values in a simple algebraic group G (i.e.
homomorphisms χ : F −→ G). We use the following notation. Let F be a finite
group of order |F | = n, G a reductive algebraic group over an algebraically closed
field K and χ : F −→ G a representation. It will be convenient to denote the image
of an element f ∈ F under χ by xf . If f1, . . . , fn are all elements of F , then we
can identify χ with a point (xf1 , . . . , xfn

) of Gn. Obviously these points fill in the
variety R = Rep(F,G) ⊂ Gn given by the equations

xfxh = xfh

for all f, h ∈ F .
The group G acts on Gn by simultaneous conjugation and this action obvi-

ously leaves invariant the variety Rep(F,G). So there is an obvious one-to-one cor-
respondence between the conjugacy classes of homomorphisms (‘representations’)
χ : F −→ G and the G-orbits on Rep(F,G).

Following R. W. Richardson [R2], we call a representation χ and the corre-
sponding point x̄ ∈ R strongly reductive if the subgroup χ(F ) is not contained in
any proper parabolic subgroup of CG(T ) for a maximal torus T ≤ CG(χ(F )). It is
clear that the definition does not depend on the choice of the maximal torus T of
CG(χ(F )).

The importance of this definition is explained by the following theorem.

Theorem 1 (R. W. Richardson [R2], Theorem 16.4). Let x̄ ∈ Rep(F,G). The
orbit G · x̄ is closed if and only if x̄ is strongly reducible.

In characteristic zero, or, more, generally, if (|F |, charK) = 1, the situation is
very simple, as the following Lemma shows.
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Lemma 1 (See Lemma 3.6 in [Bor3]). Assume that charK = 0 or (|F |, charK) =
1. Then every representation of a finite group F into G is strongly reductive.

Proof: Assume by way of contradiction that X = χ(F ) lies in a proper parabolic
subgroup P of H = NG(T ), where T is a maximal torus in CG(X. Notice that H
is a connected reductive group. Let P = QL, where Q = Ru(P ) is the unipotent
radical of P and L is a Levi complement. Since X consists of semisimple elements,
X ∩ Q = 1. Now take a subgroup Y < L such that QX = QY . If charK = 0
then every factor Q of the central series of Q is a KX-module and H1(X,Q) = 0
by Theorem 3.10.2 in [Brown], hence all complements of Q in the group QX
are conjugate [Brown, Proposition 4.2.3]. Thus Y g = X for some g ∈ P and
CP (X) contains the nontrivial torus Z(L)g. This contradicts to our choice of T as
a maximal torus in CG(X). �

However, in characteristic p the situation is more complicated.

Lemma 2 (See Lemma 16.2 in [R2]). A representation

χ : F −→ GL(V )

is strongly reductive if and only if it is completely reducible.

A representation χ : F −→ G and the corresponding point x̄ ∈ Rep(F,G) are
called irreducible, if χ(F ) is not contained in any proper parabolic subgroup of G.
Obviously, this definition is an immediate generalization of the notion of irreducible
linear representation χ : F −→ GL(V ).

Theorem 2 (R. W. Richardson [R2], Proposition 16.7). A representation χ :
F −→ G is irreducible if and only if x̄ is a stable point of Gn.

Recall that a point x̄ ∈ Gn is stable if the orbit G · x̄ is closed and the |CG(x̄) :
Z(G)| is finite. This form of definition is due to R. W. Richardson [R2] and
slightly generalizes a more traditional one [MF]. A point x̄ is stable in the sense of
Richardson if it is stable in the sense of Mumford [MF] for the action of G/Z(G)
on Gn.

2. Rigidity Theorem

Theorem 3. Let G be a simple algebraic group over the algebraic closure Kp

of the prime field Fp of order p and F a finite group. Assume that (|F |, p) = 1 Then
Rep(F,G) has only finitely many G-orbits. The number of G-orbits on Rep(F,G)
is bounded by a number which depends only on F and G and does not depend on p.
Moreover, is σ is a Steinberg endomorphism of G, then the number of Gσ-conjugate
classes of homomorphisms F −→ Gσ is bounded by a constant that depends only
on F and G and does not depend on p and σ.

Proof: Repetition of the proof of Proposition 3.1 in [Bor3], which, in its turn,
repeats Richardson’s proof [R1] of Corollary I.5.2 of [SpSt].

Let G ≤ GLn(Kp). Set G1 = GLn(Kp). Since (|F |, p) = 1 then by a well-
known fact of the Representation Theory Rep(F,G1) has only finitely many G1-
orbits. Let |F | = n. We can imbed Gn into Gn1 and correspondingly Rep(F,G) into
Rep(F,G1).

We shall prove now that
every G1-orbit of Rep(F,G) meets Rep(F,G) in finitely many G-
orbits.
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Let x̄ ∈ Rep(F,G). Let C1 be the G1-orbit of x̄, C the G-orbit of x̄, and Z
the irreducible component of the variety C1 ∩Gn = C1 ∩ Rep(F,G) containing C.
Consider the mapping

f : diag(Gn1 ) −→ C1x̄
−1

defined by f(ȳ) = ȳx̄ȳ−1x̄−1. It is clear that f fixes the identity element of the
group Gn1 .

For a point v of a variety V we write T (V )v for the tangent space to V at v.
Let L ≤ L1 be the Lie algebras of groups G ≤ G1, correspondingly.

Notice that the differential (df)e of f at the point e has the property that the
map

(df)e : diag(Ln1 ) −→ T (C1x̄
−1)e

is surjective. Indeed, since

dimT (C1x̄
−1
e = dimG1 − dimCG(x̄),

it suffices to show that ker(df)e and CG(x̄) have the same dimension. The first of
these varieties is an associative algebra consisting of those X ∈ diag(Ln1 ) for which
x̄Xx̄−1 = X. The second variety consists of the invertible elements of this algebra,
which form an open subset, and therefore ha the same dimension.

Consider now the following cycle of inclusions:

T (Zx̄−1)e ≤ T (C1x̄
−1)e ∩ T (Gn)e = (1− ad x̄)diag(Ln1 ) ∩ Ln =

= (1− ad x̄)diag(Ln) ≤ T (Cx̄−1)e ≤ T (Zx̄−1)e.

Here the first inclusion holds because Zx̄−1 ⊆ C1x̄
−1 ∩Gn, the second because, by

the previous remark,

T (C1x̄
−1)e = (df)ediag(Ln1 ) = (1− ad x̄)diag(Ln1 ),

the third because F acts on L1 completely reducibly and Ln1 can be written as
Ln1 = Ln ⊕Mn for some F -invariant subspace M ≤ L1, therefore

(1− ad x̄)Ln1 = (1− ad x̄)Ln ⊕ (1− ad x̄)Mn

and
(1− ad x̄)diag(Ln1 ) ∩ Ln = (1− ad x̄)diag(Ln);

the fourth holds because

(1− ad x̄)diag(Ln) = (df)ediag(Ln),

the fifth because C ⊆ Z. It follows that all terms of the cycle are equal, in particular
T (C)x̄ = T (Z)x̄. Thus C contains an open part of Z, and C = Z. Since there are
finitely many possibilities for Z, C1 ∩Gn consists of finitely many G-orbits.

Now we want to prove that
the number of G-orbits on Rep(F,G) is uniformly bounded by a
constant which does not depend on p.

For these purposes we shall vary the characteristic p of a ground field. For
a moment we consider G as a group scheme over Z, then G(Kp) is the groups of
points of G over the algebraic closures of finite fields Kp [Borel]. Obviously the
variety Rep(F,G) is defined over Z and by the previous discussion G(Kp)-orbits on
Rep(F,G) are irreducible components of Rep(F,G). We are in a position now to
apply Theorem 2.10(v) of [vdDS] which states that the number of the irreducible
components over Kp of a variety defined over Z is bounded by a constant which
does not depend on p. This proves our claim.
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If now x̄ ∈ Rep(F,G) ∩Gnσ, then by Theorem I.2.7 in [SpSt] the G-orbit of x̄
in Gnσ splits into

|H1(σ,CG(x̄)/CG(x̄)0)| ≤ |CG(x̄) : CG(x̄)0|

Gσ-orbits. Combining all these facts together, we conclude that the number of
Gσ-conjugacy classes of homomorphisms

F −→ Gσ

is uniformly bounded by some constant d which does not depend on p and σ. �

3. Projective cone over Rep(F,G)

In this section G is a semisimple algebraic group over an algebraically closed
field K, L = Lie (G) its Lie algebra and F a finite group. We assume that the Killing
form < , > on L is non-degenerate. Under this restrictions we will construct a
certain compactification the variety Rep(F,G). It was introduced in [Bor2, Bor4].

Consider the affine space V = (End L)n × A1. We denote an arbitrary point
of V by (xf1 , . . . , xfn

, t), where f1, . . . , fn are all elements of F , xfi
∈ End L =

Mat n(K), i = 1, 2, . . . , n, and t ∈ A1. We can imbed

R = Rep(F,G) ⊂ Gn ⊂ (End L)n × A1

via
(xf1 , . . . , xfn

) 7→ (xf1 , . . . , xfn
, 1).

Obviously R is given by the equations

xf [a, b] = [xfa, xfb]
xfxh = xfh

for all a, b ∈ L and f, h ∈ F .
Let C ⊂ (End L)n × A1 be the closed projective cone over R. Every homoge-

neous equation in variables xf , f ∈ F , and t which holds on R also holds on C.
In particular, C satisfies the following equations, where for a, b, c ∈ L we short-
hand [a, b, c] = [[a, b], c], e denotes the identity element of the group F and f, h run
through all the elements of F .

(1) xf [a, xhb] = [xfa, xfhb]

(2) [xfa, xfb] = txf [a, b]

(3) xf [xf−1a, b, c] = [a, xfb, xfc]

(4) < xfa, xfb >= t2 < a, b >

(5) < xfa, b >=< a, xf−1b >

(6) xe = tId L

(7) xfxh = txfh

(8) < xfa, xhb >= t < a, xg−1hb > .
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let Q be the intersection of C with the hyperplane t = 0. Then the points on
Q satisfy the equations:

(9) xf [a, xhb] = [xfa, xfhb]

(10) [xfa, xfb] = 0

(11) xf [xf−1 , b, c] = [a, xfb, xfc]

(12) < xfa, xfb >= 0

(13) < xfa, b >=< a, xf−1b >

(14) xe = 0

(15) xfxh = 0

(16) < xfa, xhb >= 0

Now denote by If the image of xf ∈ End L in L.
A subspace I of a Lie algebra L is called an inner ideal, if [[I, L], I] ≤ I.

Lemma 3. If x̄ = ((xf )f∈F , 0) ∈ Q, then all If are inner ideals of L, i.e.

[[L, If ], If ] ≤ If .

Proof: An immediate consequence of Equation 11. �
In what follows x̄ = ((xf )f∈F , 0) ∈ Q.

Lemma 4. Under these assumptions we have

[If , If ] = 0

and
[If , Ih] ≤ If ∩ Ih.

In particular,
I = 〈If , f ∈ F 〉

is a nilpotent subalgebra of L and consists of nilpotent elements.

Proof: Equation 10 immediately yields [If , If ] = 0. We also have from Equation 9
that

xh[xh−1fa, b] = [xfa, xhb] = xf [a, xf−1hb],
which means that [If , Ih] ≤ If ∩ Ih. Next, by Equation 16 we have < If , Ih >= 0,
so the restriction of the Killing form on I is trivial. So I is nilpotent and consists
of nilpotent elements. �

Now denote Kf = kerxf .
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Lemma 5.
I⊥f ≤ Kf−1 .

Proof: By Equation 13

< xfa, b >=< a, xf−1b > .

If b ∈ I⊥f then < xfa, b >= 0 and < a, xf−1b >= 0 for all a ∈ L. But then, since
the Killing form < , > is non-degenerate, xf−1b = 0 and b ∈ Kf−1 . �

Since I is a nilpotent subalgebra it lies in a maximal nilpotent subalgebra N
which, in its turn, lies in a Borel subalgebra B.

Lemma 6. For all f ∈ F
If ≤ N < B ≤ Kf .

Proof: By a well-known property of simple Lie algebras B = N⊥. Therefore
B ≤ I⊥f ≤ Kf−1 for all f ∈ F . So

B ≤ ∩f∈FKf−1 ,

and B ≤ Kf for all f ∈ F . �
Now consider the action of G on V given by

g · ((xf )f∈F , t) 7→ ((g−1xfg)f ∈ F , t),
where g stands for an arbitrary element of G.

Lemma 7. Every point x̄ ∈ Q is unstable under the action of G on V , i.e. the
closure G · x̄ of the G-orbit of x̄ contains 0.

Proof: Let x̄ = ((xf )f∈F , 0) ∈ Q. Take a Borel subgroup B as in Lemma 6, then

If ≤ N < B ≤ Kf

for all f ∈ F . We can chose a Chevalley basis in L agreed with B. Now let Λ be a
one-parameter subgroup in the torus H = 〈hr(λ), r ∈ Π〉 of the form

h(λ) = hr1(λ) · · ·hrk
(λ), ri ∈ Π

(here Π is the system of fundamental roots). Then, if s ∈ Φ+,

h(λ) · es = λ
∑
Arses,

where r runs tough Π and

Ars =
2(rs)
(rr)

≥ 0.

At least one of the coefficients Ars is positive, so for s ∈ Φ+ we have

h(λ) · es = λCses

for Cs > 0.
Analogously for s ∈ Φ− we have

h(λ) · es = λCses

with Cs < 0.
Now, since B = 〈hr, es, r ∈ Π, s ∈ Φ+〉, and If ≤ N < B ≤ Kf , a linear

transformation xf ∈ End L = L⊗ L∗ has a form

xf =
∑

r∈Φ+,s∈Φ−

κrser ⊗ e∗s.
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Therefore

h(λ) · xf =
∑

r∈Φ+,s∈Φ−

κrsh(λ)er ⊗ h(λ)∗e∗s

=
∑

r∈Φ+,s∈Φ−

κrsλ
Cr · λ−Cs · er ⊗ e∗s

=
∑

r∈Φ+,s∈Φ−

κrsλ
Cr−Cs · er ⊗ e∗s

Notice that all coefficients Cr − Cs are strictly positive, so sending λ to 0, we
get 0 as the limit point of h(λ)xf . Thus the Λ-orbit of x̄ = ((xf )f∈F , 0) has 0 in
its closure and x̄ is unstable. �

4. Wide subgroups

Let G be a reductive algebraic group and F a finite group. We say that F
is wide in respect to G (in characteristic charK) if every nontrivial representation
F −→ G is irreducible.

Let Rep∗(F,G) denotes the subvariety of Rep(F,G) whose points

x̄ = (xf1 , . . . , xfn)

have the property that at least one component xfi
is a non-trivial semisimple ele-

ment. Since conjugacy classes of semisimple elements in G are closed and the num-
ber of conjugacy classes of semisimple elements of order ≤ |F | is finite, Rep∗(F,G)
is a closed subset. Moreover, it is obvious that if F is wide with respect to G then
F is generated by elements of order coprime to charK and thus

Rep(F,G) = {1} ∪ Rep∗(F,G).

Theorem 4. Assume that a finite group F is wide with respect to a reductive
algebraic group G.

Assume also that the Lie algebra L = Lie (G) of the group G has a non-
degenerate Killing form < , >. Then Rep(F,G) has only finitely many G-orbits.

Proof: Obviously it is enough to consider the case of adjoint group G, then G =
(AutL)◦ ⊂ End L and G is semisimple. We can use the notation and results of
Section 3

By Theorem 2 the orbits of G on R = Rep∗(F,G) are stable. Consider now the
action of G on C. Every point of C either lies over a point of R and thus stable
or lies over Q and thus unstable by the previous lemma. By [Sesh] the quotient
variety R/G is projective. But, since all orbits of G on R are closed, the algebra
of invariants K[R]G distinguishes the points of R/G, therefore R/G is the affine
variety determined by this algebra. So the variety R/G, being affine and projective,
is finite. � �
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