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We report the first large-scale statistical study of very high-lying eigenmodes �quantum states� of
the mushroom billiard proposed by L. A. Bunimovich �Chaos 11, 802 �2001��. The phase space of
this mixed system is unusual in that it has a single regular region and a single chaotic region, and
no KAM hierarchy. We verify Percival’s conjecture to high accuracy �1.7%�. We propose a model
for dynamical tunneling and show that it predicts well the chaotic components of predominantly
regular modes. Our model explains our observed density of such superpositions dying as E−1/3 �E is
the eigenvalue�. We compare eigenvalue spacing distributions against Random Matrix Theory ex-
pectations, using 16 000 odd modes �an order of magnitude more than any existing study�. We
outline new variants of mesh-free boundary collocation methods which enable us to achieve high
accuracy and high mode numbers ��105� orders of magnitude faster than with competing
methods. © 2007 American Institute of Physics. �DOI: 10.1063/1.2816946�

Quantum chaos is the study of the quantum (wave) prop-
erties of Hamiltonian systems whose classical (ray) dy-
namics is chaotic. Billiards are some of the simplest and
most studied examples; physically their wave analogs are
vibrating membranes, quantum, electromagnetic, or
acoustic cavities. They continue to provide a wealth of
theoretical challenges. In particular “mixed” systems,
where ray phase space has both regular and chaotic re-
gions (the generic case), are difficult to analyze. Six years
ago Bunimovich described1 a mushroom billiard with
simple mixed dynamics free of the usual island hierar-
chies of Kolmogorov-Arnold-Moser (KAM). He con-
cluded by anticipating the growth of “quantum mush-
rooms;” it is this gardening task that we achieve here, by
developing advanced numerical methods to collect an un-
precedented large number n of eigenmodes (much higher
than competing numerics2 or microwave studies3). Since
uncertainties scale as n−1Õ2, a large n is vital for accurate
spectral statistics and for studying the semiclassical (high
eigenvalue) limit. We address three main issues: (i) The
conjecture of Percival4 that semiclassically modes live ex-
clusively in invariant (regular or chaotic) regions, and
occur in proportion to the phase space volumes. (ii) The
mechanism for dynamical tunneling, or quantum cou-
pling between classically isolated phase space regions. (iii)
The distribution of spacings of nearest-neighbor eigenval-
ues, about which recent questions have been raised.3 We
show many pictures of modes, including the boundary
phase space (the so-called Husimi function).

I. INTRODUCTION

The nature of eigenfunctions of linear partial differential
operators in the short wavelength, or semiclassical limit re-

mains a key open problem which continues to engage math-
ematicians and physicists alike. When the operator is the
quantization of a classical Hamiltonian dynamical system,
the behavior of eigenfunctions depends on the class of dy-
namics. In particular, hyperbolic dynamics �exponential sen-
sitivity to initial conditions, or chaos� leads to irregular
eigenfunctions, the study of which forms the heart of a field
known as “quantum chaos”5 or “quantum ergodicity.”6,7 The
planar billiard, or particle undergoing elastic reflection in a
cavity ��R2, is one of the simplest examples. Billiards ex-
hibit a menagerie of dynamical classes8 ranging from com-
plete integrability �ellipses and rectangles� to complete er-
godicity �e.g., Sinai billiard9�. Bunimovich introduced the
“mushroom” billiard1,10 with the novelty of a well-
understood divided phase-space comprising a single inte-
grable �KAM� region and a single ergodic region. �We note
that a related Penrose-Lifshits mushroom construction51 con-
tinues to find use in isospectral problems.52� As seen in Fig.
1�a�, the mushroom is the union of a half-disk �the “hat”� and
a rectangle �the “foot”�; only trajectories reaching the foot
are chaotic. The simplicity of its phase space has allowed
analysis of phenomena such as “stickiness” �power-law de-
cay of correlations� in the ergodic region.11,12

The quantum-mechanical analog of billiards is the spec-
tral problem of the Laplacian in � with homogeneous
boundary conditions �BCs�. Choosing Dirichlet BCs �and
units such that �=2m=1� we have

− �� j = Ej� j in � , �1�

� j = 0 on � � . �2�

This “drum problem” has a wealth of applications through-
out physics and engineering.13 Eigenfunctions �or eigen-
modes, modes� � j may be chosen to be real-valued and
orthonormalized, ��i ,� j� : =���i�r�� j�r�dr=�ij, where
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dr : =dxdy is the usual area element. “Energy” eigenvalues
E1�E2�E3� ¯→� may be written Ej =kj

2, where the
�eigen� wavenumber kj is 2	 divided by the wavelength.

Traditional numerical methods to compute eigenvalues
and modes employ finite differences or finite elements
�FEM�. They handle geometric complexity well but have two
major flaws: �i� it is very cumbersome to achieve high con-
vergence rates and high accuracy, and �ii� since several nodes
are needed per wavelength they scale poorly as the eigen-
value E grows, requiring of order E degrees of freedom �e.g.,
for the mushroom deMenezes et al.2 appear limited to
j�400�. The numerical difficulty is highlighted by the fact
that analog computation using microwave cavities is still
popular in awkward geometries.3,14

In contrast, we use boundary-based methods, as ex-
plained in Sec. II. These �i� achieve spectral accuracy, allow-
ing eigenvalue computations approaching machine precision
as exhibited for low-lying modes in Sec. III, and �ii� require
only of order E1/2 degrees of freedom �with prefactor smaller
than boundary integral methods15�. Furthermore at high E we
use an accelerated variant, the scaling method,16–18 which
results in another factor of order E1/2 in efficiency. These
improvements allow us to find large numbers of modes up to
j�105; in Sec. IV we show such modes along with their
Husimi �microlocal� representations on the boundary. Visu-
alization of modes can be an important tool, e.g., in the dis-
covery of scars.19

We are motivated by a growing interest in quantum
ergodicity.7,20 For purely ergodic billiards, the Quantum
Ergodicity Theorem21–24 �QET� states that in the E→� limit
almost all modes become equidistributed �in coordinate
space, and on the boundary phase space25,26�. However no
such theorem exists for mixed billiards, thus numerical stud-
ies are vital. It is a long-standing conjecture of Percival4 that
for mixed systems, modes tend to localize to one or another
invariant region of phase space, with the occurrence in pro-
portion to the phase space volumes, and that those in ergodic
regions are equidistributed. �This has been tested in a smooth
billiard,27 and recently proved for certain piecewise linear
quantum maps.28� We test the conjecture via a matrix ele-
ment �10� sensitive to the boundary �for numerical effi-
ciency�; we then can categorize �almost all� modes as regular
or ergodic. We address two issues which have also been
raised by recent microwave experiments in the mushroom.3

�i� The mechanism for dynamical tunneling29 is unknown

�although it has been studied in KAM mixed billiards30�. In
Sec. V we propose and test a simple model for coupling
strength �related to Ref. 31� which predicts observed features
of matrix element distributions. �ii� The level-spacing distri-
bution, conjectured to be a universal feature,5,32 is studied in
Sec. VI, where we also examine spacing distributions for
regular and ergodic subsets of modes. Note that we use an
order of magnitude more modes than any existing experi-
ment or study. Finally we draw conclusions in Sec. VII.

II. NUMERICAL METHODS

In this section we outline the numerical methods that
make our investigation possible; the reader purely interested
in results may skip to Sec. III.

A. The method of particular solutions

Our set of basis functions, or particular solutions,
	
n�r�
n=1. . .N satisfy −�
n=E
n at some trial eigenvalue pa-
rameter E, but do not individually satisfy Eq. �2�. The goal is
now to find values of E such that there exists nontrivial linear
combinations x1
1+x2
2+ ¯ +xN
N, which are small on the
boundary. These are then hopefully good approximations for
an eigenfunction.

Let us make this precise. We define the space H�E� of
trial functions at a given parameter E as

H�E� = Span	
1, . . . ,
N
 .

If we denote by �u��� and �u�� the standard L2-norm of a
trial function u�H�E� on the boundary �� and in the inte-
rior �, we can define the normalized boundary error �also
called the tension� as

t�u�: =
�u���

�u��

. �3�

It is immediately clear that t�u�=0 for u�H�E� if and only
if u is an eigenfunction and E is the corresponding eigen-
value on the domain �. However, in practice we will rarely
achieve exactly t�u�=0. We therefore define the smallest
achievable error as tm�E� : =minu�H�E�t�u�. This value gives
us directly a measure for the error of an eigenvalue approxi-
mation E, namely, there exists an eigenvalue Ej such that

FIG. 1. �a� Mushroom billiard � used in this work. The
dotted line shows the reflection symmetry. �b� Desym-
metrized half-mushroom �� used for mode calculation,
and polar coordinates. Dashed lines meeting at this cor-
ner are zeros enforced by basis functions. The remain-
ing part of ��� is �, comprised of two pieces: Dirichlet
boundary conditions on the parts shown as solid, while
boundary conditions vary �see text� on the dashed-
dotted vertical line �s. Boundary coordinate q� �0,L�
parametrizes �.
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�E − Ej�
Ej

� Ctm�E� , �4�

where C is an O�1� constant that only depends on the domain
�. This result is a consequence of error bounds of Moler and
Payne.33,34 Hence, by searching in E for minima of tm�E� we
find approximate eigenvalues with relative error given by a
constant times tm�E�. Figure 2 shows such a plot of tm�E� for
our mushroom domain.

The implementation of this Method of Particular Solu-
tions �MPS� depends on �i� basis set choice, and �ii� how to
evaluate tm�E�. The former we address in the next section.
The latter requires a set of quadrature points 	yi
i=1. . .M on
which to approximate the boundary integral �u���. One must
take into account that Helmholtz basis sets tend to be ill-
conditioned, that is, the M �N matrix A with entries
Ainª
n�yi� becomes numerically rank-deficient for desirable
choices of N. The tension tm�E� can then be given by the
square-root of the lowest generalized eigenvalue of the ma-
trix pair �ATA ,BTB�, or by the lowest generalized singular
value of the pair �A ,B�, where B is identical to A except with
the replacement of 	yi
 by interior points.13,17,35 These differ-
ent approaches are discussed in Ref. 36. Here, we use the
generalized singular value implementation from Ref. 36,
which is highly accurate and numerically stable. We note that
these methods are related to, but improve upon, the plane
wave method of Heller.37

B. Choice of basis functions

In order to obtain accurate eigenvalue and eigenfunction
approximations from the MPS it is necessary to choose the
right set of basis functions. In this section we propose a basis
set that leads to exponential convergence, i.e., errors which
scale as e−cN for some c
0, as N the number of basis func-
tions grows.

To achieve this rate we first desymmetrize the problem.
The mushroom shape � is symmetric about a straight line
going vertically through the center of the domain �see Fig.
1�. All eigenmodes are either odd or even symmetric with
respect to this axis. Hence, it is sufficient to consider only the
right half, ��. The odd modes are obtained by imposing zero
Dirichlet boundary conditions everywhere on the boundary
��� of the half mushroom. The even modes are obtained by
imposing zero Neumann conditions on the symmetry axis �s

and zero Dirichlet conditions on the rest of ���.

Eigenfunctions of the Laplacian are analytic everywhere
inside a domain except possibly at the boundary.38 Eigen-
functions can be analytically extended by reflection at cor-
ners whose interior angle is an integer fraction of 	.13 The
only singularity appears at the re-entrant corner with angle
3	 /2 �where dashed lines meet in Fig. 1�b��. Close to this
corner any eigenfunction � j can be expanded into a conver-
gent series of Fourier-Bessel functions of the form

� j�r,�� = 

n=1

�

akJ2n/3�kjr�sin
2n

3
� , �5�

where the polar coordinates �r ,�� are chosen as in Fig. 1�b�.
The function J� is the Bessel function of the first kind of
order �.

The expansion �5� suggests that the basis set

n : =J2n / 3�kr�sin 2n / 3�, where k2=E, might be a good
choice since these functions capture the singularity at the
re-entrant corner and automatically satisfy the zero boundary
conditions on the segments adjacent to this corner �dashed
lines in Fig. 1�b��. Hence, we only need to minimize the
error on the remaining boundary � which excludes these
segments. The boundary coordinate q� �0,L� parametrizes
�; its arc length is L=3�1+	 /4�. This Fourier-Bessel basis
originates with Fox, Henrici, and Moler39 for the L-shaped
domain; we believe it is new in quantum physics. In Ref. 40,
the convergence properties of this basis set are investigated
and it is shown that for modes with at most one corner sin-
gularity the rate of convergence is exponential. Indeed, in
practice we find tm�E1�=O�e−cN� for some c
0 as the num-

ber N of basis functions grows. Hence, for the minimum Ê of
tm�E� in an interval containing E1, it follows from Eq. �4�
that

�Ê − E1�
E1

� Ctm�Ê� � Ctm�E1� = O�e−cN� ,

which shows the exponential convergence of the eigenvalue

approximations Ê to E1 for growing N.

C. Scaling method at high eigenvalue

For all odd modes apart from the lowest few we used an
accelerated MPS variant, the scaling method,16–18 using the
same basis as above �to our knowledge the scaling method
has not been combined with a re-entrant corner-adapted basis
before now�. Given a center wavenumber k0 and interval
half-width �k, the scaling method finds all modes � j with
kj � �k0−�k ,k0+�k�. This is carried out by solving a single
indefinite generalized eigenvalue problem involving a pair of
matrices of the type ATA discussed above. The “scaling” re-
quires a choice of origin; for technical reasons we are forced
to choose the singular corner. Approximations to eigenvalues
lying in the interval are related to the matrix generalized
eigenvalues, and the modes to the eigenvectors. The errors
grow17 as �kj −k0�3, thus the interval width is determined by
the accuracy desired; we used �k=0.1 which ensured that
tm�E� errors associated with the modes rarely exceeded
3�10−4. Since the search for minima required by the MPS
has been avoided, and on average O�k� modes live in each

FIG. 2. The tension tm�E� plotted as a function of trial eigenvalue parameter
E, for the half-mushroom with Dirichlet boundary conditions. The minima
indicate the eigenvalues of this domain. Close to E=44 there is a cluster of
two eigenvalues.

043125-3 Quantum mushroom billiards Chaos 17, 043125 �2007�

Downloaded 07 Apr 2008 to 130.88.123.147. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



interval, efficiency per mode is thus O�k�=O�E1/2� greater
than the MPS. By choosing a sequence of center wavenum-
bers k0 separated by 2�k, all modes in a large interval may
be computed. Rather than determine the basis size N by a
convergence criterion as in Sec. II B, for E
103 we use the
Bessel function asymptotics; for large order J��x� becomes
exponentially small for x /��1 �the turning point is x=��.
Equating the largest argument kR �with R=3 /2� with the
largest order 2N /3 gives our semiclassical basis size N
�9k /4=O�E1/2�.

We are confident that the scaling method finds all
odd modes in a desired eigenvalue window. For instance
we compute all 16 061 odd symmetry modes with kj �300,
using 1500 applications of the scaling method �at
k0=0.1,0.3, . . . ,299.9�. This computation takes roughly 2
days of CPU time �all calculation times are reported for one
core of a 2.4 GHz Opteron running C++ or MATLAB under
linux/GNU�. We verify in Fig. 3 that there is zero mean
fluctuation in the difference between the �odd� level-counting
function N�k�ª # 	j :kj �k
 and the first two terms of Weyl’s
law,5

NWeyl�k� =
vol����

4	
k2 −

�����
4	

k , �6�

where ����� is the full perimeter of the half mushroom do-
main. Note that there is no known variant of the scaling
method that can handle Neumann or mixed BCs, hence we
are restricted to odd modes. It is interesting that the method
is still not completely understood from the numerical analy-
sis standpoint.16–18

In applying the scaling method to the mushroom, the
vast majority of computation time involves evaluating Bessel
functions J��x� for large nonintegral � and large x. This is
especially true for producing 2D spatial plots of modes as in
Fig. 4, for which of order 109 evaluations are needed
�1 h CPU time�. We currently use independent calls to the
GSL library41 for each J��x� evaluation. This is quite slow,
taking between 0.2 and 50 �s per call, with the slowest be-
ing in the region ��50, 102�x�103. However, we note
that Steed’s method,42,43 which is what GSL uses in this slow
region, is especially fast at evaluating sequences J��x�,
J�−1�x�, J�−2�x� , . . ., and that since � is a multiple of a ratio-
nal with denominator 3, only 3 such sequences would be

needed to evaluate all basis functions 	
m�r�
m=1¯M at a
given location r. We anticipate at least an order of magnitude
speed gain could be achieved this way.

III. LOW EIGENVALUE MODES

In this section we present highly accurate results for the
first few even and odd modes. Odd modes are obtained by
solving the eigenvalue problem with zero Dirichlet boundary
conditions on the half mushroom from Fig. 1�b�, using the
MPS, by locating minima in the tension function of Fig. 2. In
Table I�a� the eigenvalues are listed to at least 10 significant
digits, and in Fig. 5�a� the corresponding modes are plotted.
We emphasize that it is the exponential convergence of our
basis that makes such high accuracies a simple task.

For even modes we impose Neumann BCs on �s and
Dirichlet BCs on the remaining part of �. This was achieved
in the MPS by modifying the tension function �3� to read

FIG. 3. Difference between the mode counting function N�k� and the two-
term Weyl’s prediction NWeyl�k� defined by Eq. �6�, for the 16 061 odd-
symmetric eigenvalues with kj �300.

FIG. 4. High-energy eigenmode with kj =499.856¯, at around odd mode
number j�45 000. This mode appears to live in the ergodic region.
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t�u� ª
���nu��s

2 + �u��\�s

2 �1/2

�u���
, �7�

where the normal derivative operator on the boundary is
�nªn ·�, the unit normal vector being n. Table I�b�, gives
the smallest 10 even modes on the mushroom billiard, and
the corresponding modes are plotted in Fig. 5�b�.

Although we are far below the semiclassical regime we
already see properties of the underlying classical dynamical

system. For example, the eighth odd and the sixth even mode
live along a caustic and therefore show features of the clas-
sically integrable phase space while the seventh odd and
tenth even mode already shows features of the classically
ergodic phase space. For comparison, in Fig. 6 we show
some odd modes with intermediate eigenvalues of order 104

�odd mode number of order 103�, a similar quantum number
to that measured in a microwave cavity by Dietz et al.3 As
these authors noted, modes at this energy usually live in
either the integrable or to the ergodic regions of phase space;
we pursue this in detail in Sec. V.

IV. BOUNDARY AND HUSIMI FUNCTIONS

We choose a Poincaré surface of section �PSOS� �Ref. 5�
defined by Birkhoff coordinates �q , p���� �−1,1�= :Z,
where q is the boundary location as before �see Fig. 1�b��
and p is the tangential velocity component, in the clockwise
sense, for a unit speed particle. �If the incident angle from
the normal is �, then p=sin �.� The structure of this PSOS
phase space is shown in Fig. 7. Our choice �which differs
from that of Porter et al.10� is numerically convenient since it
involves only the part of the boundary on which matching is
done �Sec. II�. Despite the fact that it does not cover the

TABLE I. Tables of �a� lowest 10 odd and �b� lowest 10 even eigenvalues of
the mushroom. All digits shown are believed to be correct.

j Ej j Ej

1 11.507 908 98 1 5.497 868 889
a� 2 25.550 152 54 b� 2 13.363 962 53

3 29.124 676 10 3 18.067 786 79
4 43.856 983 00 4 20.805 793 68
5 44.208 992 53 5 32.589 926 04
6 53.052 597 77 6 34.194 889 64
7 55.200 116 30 7 41.911 982 64
8 66.423 329 21 8 47.375 671 40
9 69.225 768 22 9 54.624 970 98

10 82.010 937 12 10 65.187 132 35

FIG. 5. The first 10 odd �a� and even �b� modes of the
mushroom shape, shown as density plots. Eigenvalue
increases rightwards from the top left. White corre-
sponds to positive and black to negative values.
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whole boundary ���, it is a valid PSOS since all trajectories
must hit � within bounded time.

Integrable phase space consists of precisely the orbits
which, for all time, remain in the hat1 but which never come
within a distance b /2 from the center point qc. �This require-
ment is needed to exclude the zero-measure set of marginally
unstable periodic orbits �MUPOs� in the ergodic region
which nevertheless remain in the hat for all time.11,12� Simple
geometry shows that the curved boundary between ergodic
and integrable regions consists of points �q , p� satisfying

q − qc =
b/2

�1 − p2
, for p2 � p0

2
ª 1 −

b2

4R2 . �8�

For our shape, qc=a+b /2=3 /2, p0
2=8 /9. In the domain

q� �qc+R ,L� the boundary occurs at the lines p= ±b /2R
= ±1 /3. Successive bounces that occur on � are described by
the PSOS billiard map f :Z→Z. Any such Poincaré map is
symplectic and therefore area-preserving.5

The quantum boundary functions �n� j�q� for q� �0,L�
are convenient and natural representations of the modes.
Note that they are not L2���� normalized; rather they are
normalized according to a geometrically weighted L2 bound-
ary norm via the Rellich formula �see Refs. 18 and 44�

����r · n���n� j�2dq = 2Ej , �9�

where r�q� is the location of the boundary point q relative to
an arbitrary fixed origin. Figure 8 shows the intensities of the
first 600 odd boundary functions. Features include an ab-

sence of intensity near the corners �over a region whose size
scales as the wavelength�. The region 3�q�L, in which
phase space is predominantly integrable, has a more uniform
intensity than 0�q�2, which is exclusively ergodic. The
region 2�q�3 is almost exclusively integrable, but is
dominated by classical turning-points corresponding to caus-
tics; these appear as dark Airy-type spots. In 1 /2�q�3 /2
there are horizontal dark streaks corresponding to horizontal
“bouncing-ball” �BB� modes in the foot. Finally, a series of
slanted dark streaks is visible for 3 /2�q�2; these interest-
ing fringes move as a function of wavenumber and we post-
pone analysis to a future publication.

In Fig. 9 we show a sequence of 20 much higher modes
with consecutive eigenvalues near wavenumber k=500
�eigenvalue E=2.5�105�. These modes are a subset of the
modes produced via a single generalized matrix eigenvalue
problem �of size N�1200� using the scaling method at
k0=500. The full set of 77 modes �evaluating boundary func-
tions� took only 20 min CPU time. Typical tension tm�E�
values were below 10−3. Naively applying Eq. �4�, we would
conclude only about 3 relative digits of accuracy on eigen-
values. However, it is possible to rigorously improve this
bound by factor O�Ej

1/2�,35 giving about 6 digits.
Figure 4 shows the 14th in the sequence in more detail.

The corresponding boundary function is shown in Fig. 10�a�,
along with the intensity, and its Husimi distribution. The
Husimi distribution is a coherent-state projection of the
mode onto the PSOS phase space �see Appendix A�. The

FIG. 6. The 10 odd modes of the mushroom whose
eigenwavenumbers lie in the range 90�kj �90.35, at
mode number at about j�1430. Intensity �� j�2 is shown
with zero white and larger values darker.

FIG. 7. �Color online� Poincaré surface of section
�PSOS�, that is, the classical phase space in boundary
coordinates q �as shown in Fig. 1�b�� and p �sin of
incidence angle�. Vertical dashed lines show location of
corners. The vertical dotted line shows location of qc

the focal point of the hat. The dark line shows the bor-
der of integrable phase space; note that q=2 corre-
sponds to the smallest possible caustic for integrable
phase space. Families of orbits defined by constant an-
gular momentum are shown by lines in the integrable
region. Note that they exchange vertical ordering at the
corner, as indicated by their gray scale color labeling.
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choice of the aspect ratio � is somewhat arbitrary but it is
expected19 that phase space structures have spatial scale
O�k−1/2�, so we chose a scaling similar to this; with k=500
we used �=0.076. By comparing the phase space �Fig. 7� we
see localization to the ergodic region. The only part of the
ergodic phase space that is not well covered contains BB
modes in the foot �the white “box”�. A scar is also visible as
the 9 darkest spots: 4 pairs of spots surrounding the white
box correspond to 4 bounces in the foot, and a single spot at
q�5 corresponds to a normal-incidence bounce off the cir-
cular arc. By contrast, Fig. 10�b� shows the boundary func-
tion of a mode living in the regular region �the 15th in Fig.
4�; the energy-shell localization is clear. The full set of 20
Husimi functions is shown in Fig. 11. We remind the reader
that in purely ergodic systems boundary functions obey the
QET �Refs. 25 and 26� with almost every �n� j /kj tending to

an invariant Husimi density of the form C�1− p2. We might
expect a similar result for the ergodic subset of modes in the
ergodic phase space of the mushroom. However, Fig. 11
highlights that, despite being at a high mode number of
roughly 45 000, we are still a long way from reaching any
invariant density; the 7 ergodic modes have highly nonuni-
form distributions.

V. PERCIVAL’S CONJECTURE AND DYNAMICAL
TUNNELING

In the small set of 20 high-lying modes discussed above,
Percival’s conjecture holds: modes are either regular or cha-

FIG. 8. Intensity of boundary normal-derivative functions ��n� j�q� /kj�2,
plotted vs boundary coordinate q on the horizontal axis and odd mode num-
ber j� �1,600� on the vertical. The density plot shows white as zero, and
larger values are darker.

FIG. 9. Twenty high-eigenvalue consecutive modes,
covering the range kj � �499.800,499.869�, with mode
number j�45 000. Mode number increases horizon-
tally from the top left. �� j�2 is shown with zero white
and larger values darker.
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otic but not a mixture of both. We will now study this statis-
tically with a much larger set, the first n=16 061 odd modes
corresponding to 0�kj �300. Since the PSOS phase space
in 0�q�3 /2 is ergodic for all p, the following “foot-
sensing” quadratic form, or diagonal matrix element, is a
good indicator of an ergodic component,

f j ª
1

2Ej
�

0

3/2

�r · n���n� j�2dq , �10�

where, as Fig. 1�b� shows, r ·n takes the value 1 for 0�q
�1 /2, and 1/2 for 1 /2�q�3 /2. �The weighting by r ·n is

chosen to mirror Eq. �9�; scaling by Ej is necessary for a
well-defined semiclassical limit.25,45�

The observed distribution of f j is shown in Fig. 12�a�.
The main feature is a cluster around O�1� �we associate with
ergodic modes� and a wider distribution of smaller values
�predominantly regular modes�. We have tested that the ap-
parent cluster lying roughly from 10−14 to 10−9 is merely an
artifact reflecting the size of numerical errors in �n� j; the key
point is that there is a continuum of values �see error bars in
Fig. 12�a�� which extends from O�1� down to exponentially
small values. Roughly 0.75% of the total number of modes
fall within each decade from 10−2 to 10−8. We believe that in
the absence of numerical errors a similar distribution would
extend down many tens of orders of magnitude.

Percival’s conjecture would imply that the sequence
	f j
 j=1. . .� has �for all but a set of vanishing measure� two
limit points: zero �for regular modes�, and some positive
constant �for ergodic modes�. Even though most mode num-
bers are large ��104� the upper cluster still has a wide stan-
dard deviation of 0.1 �its mean is 0.39�; this is in line with
our recent work confirming the slow algebraic semiclassical
convergence of matrix elements.18

We would like to test whether the relative mode frequen-
cies of regular versus ergodic modes are in proportion to the
corresponding classical phase-space volumes. We categorize
modes by defining them as “regular” if f j �0.1. This choice
of cutoff value is necessarily a compromise between lying
below the whole ergodic peak yet capturing the full dynamic
range of regular modes. This gives a fraction �regªnreg /n
=7178 /16 061=0.4469¯ of regular modes, which is
only 1.7% less than the integrable phase space fraction
�reg=0.4549¯ �computed in Appendix B�. Assuming that
each regular mode counted arose randomly and indepen-
dently due to some underlying rate �fraction of level
density�, we may associate a standard error of
�nreg�n−nreg� /n3=0.004 with the measured fraction. Thus
the discrepancy is only 2 sigma, not inconsistent with the
�null� hypothesis that �reg=�reg. To check whether this result
persists semiclassically we computed a smaller set of
n=615 high-lying modes sampled from the range 500�kj

�750, up to mode number j�105, and found �reg

=0.441±0.015, again consistent with Percival’s conjecture.

A. Results and model for dynamical tunneling

The continuum of matrix element values in Fig. 12�a� is
a manifestation of dynamical tunneling,29 quantum coupling
between regular and ergodic invariant phase space regions.
This has recently been seen in mushroom microwave cavity
modes,3 and these authors raised the question as to the
mechanism for tunneling in this shape. We address this by
proposing and numerically testing a simple such model. First
we notice that the density of ln f j is roughly constant �in the
range fh
10−8 where numerical errors are negligible�. This
suggests a coupling strength which is the exponential of
some uniformly distributed quantity. We may ask whether
this density is dependent on eigenvalue magnitude �energy�;
Fig. 12�b� shows that the density appears to die as E−1/3,

FIG. 10. �a� The mode of Fig. 4 Husimi distribution H�n�j,�
�q , p� defined by

Eq. �A4� �top�, density plot of ��n� j�2 �middle�, and graph of �n� j �bottom�.
Note the q coordinate is common to the three plots. �b� Similar representa-
tion of the next highest mode at kj =499.858, the 15th in the sequence of Fig.
9, which lives in the regular region.
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consistent with the expectation that all f j values for regular
modes vanish in the semiclassical limit.

Our model is to assume that f j values are controlled by a
matrix element � j giving the rate of dynamical tunneling
from the regular to the ergodic region. Each regular mode
closely approximates an �n ,m�-mode of the quarter disk,
which are the product of angular function �2 /�	�sin m� and
radial function

�mn�r� =
�2

RJm� �kmnR�
Jm�kmnr� , �11�

where n=1,2 , . . . is the radial mode number and
m=2,4 , . . . is the angular mode number, and kmnR is the
argument of the nth zero of the Jm Bessel function. Quarter-
disk eigenwavenumbers are kmn. The normalization is
�0

R ��mn�r��2rdr=1. A wavepacket initially launched from
such a disk mode will, in the mushroom, leak into the er-
godic region due to the openness of the connection into the
foot. We take the rate proportional to the probability mass of
�mn “colliding” with the foot,

� j ª �
0

b/2

��mn�r��2rdr

=
4

�kmnRJm� �kmnR��2

l=0

�

�m + 1 + 2l��Jm+1+2l�b

2
kmn��2

�12�

where we used �Ref. 46, Eq. �11.3.2�� to rewrite the integral.

This model is similar to that proposed recently by Bäcker
et al.31 �in our case the “fictitious integrable system” is the
quarter-disk�. � j is exponentially small only when the Bessel
function turning point lies at a radius greater than b /2; at
eigenvalue E this occurs for b�E / �2m��1.

We compare in Figs. 13�a� and 13�b� f j values for regu-
lar against � j values computed using all relevant �m ,n� quan-
tum numbers for the quarter-disk. It is clear that although the
densities are similar, f j is irregularly distributed, whereas � j

values fall on a regular lattice. However, upon closer exami-
nation there is a strong correlation. We attempted to match
each disk mode �m ,n� seen in panel �b� with its correspond-
ing mushroom mode j as seen in panel �a�; in most of the
1051 cases there was a very clear match, with relative eigen-
value difference �Ej −kmn

2 � /Ej �10−4 in 90% of the cases, and
�Ej −kmn

2 � /Ej �3�10−6 in 74% of the cases. �Note that, al-
though it is not needed for our study, it would likely be
possible to improve the fraction matched using data from
�n� j.� As shown in panel �c�, f j values are quite correlated
with the � j values of their matched mode. Note that an over-
all prefactor of c=15 was included to improve the fit. The
resulting ratio f j /� j is shown in panel �d�, and has a spread
of typically a factor 102. Since this is much less than the
spread of 108 in the original matrix elements, this indicates
that the above model is strongly predictive of dynamical tun-
neling strength, mode for mode. We suggest the remaining
variation, and the value of c, might be explained by varying
eigenvalue gaps �resonant tunneling� between quarter-disk

FIG. 11. Husimi distributions H�n�j,�
�q , p� of the 20

high-eigenvalue modes shown in Fig. 9, and in the
same order. The q and p axes are as in Fig. 10.

FIG. 12. �Color online� �a� Histogram of the logarithm
of f j, the “foot-sensing” matrix element �10�, for the
first 16 061 odd modes. Error bars show counts of f j

lying in each decade �errors assuming independent
counts�, on a vertical scale magnified by a factor 15. �b�
Fraction of modes with 10−8� f j �10−2 lying in loga-
rithmically spaced Ej intervals �error bars�, compared to
power law E−1/3 �solid line�.
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and ergodic modes �such variation is discussed in Ref. 30�,
although this is an open question. Also in this simple model
it is clear from the E-dependence in panel �d� that there are
algebraic prefactors that should be included in a more de-
tailed model.

Using the model we may predict the decay �E−1/3 in the
density of f j values reported above, by returning to the sum
in Eq. �12�. For regular modes where � j�1, the Bessel func-
tions in the l�1 terms have turning points successively fur-
ther away from b /2, thus the sum may be approximated by
the l=0 term �this has been checked numerically�. We make
the approximation that the turning point is close to b /2, that
is ��1, where

� ª 1 −
bkmn

2m
. �13�

We focus on the exponentially small behavior of � j and drop
algebraic prefactors. In Eq. �12� using Debye’s asymptotics
for the Bessel function �Ref. 46, Eq. �9.3.7�� and keeping
leading terms for small �
0 gives

g ª − ln � j � �const� +
1

2
ln � + ln kmn +

4�2

3
m�3/2. �14�

�This can be interpreted as the tail of the Airy approximation
to the Bessel.� For fixed ��1 we need keep only the last
term as m→�. Fixing m while increasing n by 1 causes a
small wavenumber change km,n+1−kmn�	 / �p0R�, causing
via Eq. �13� a change ���−	b / �2mp0R�, which in turn
causes via Eq. �14� a change

�g � − 	�2�/�p0R� � −
	

p0R
� 3g

2m
�1/3

, �15�

where in the last step we expressed � in terms of the
asymptotic for g. Realizing that, for ��1 we have
m�bkmn /2=b�E /2, and that adjacent curves of constant m
in the �E ,g�-plane are separated in E by �E�8�E /b, gives
our result, the density of points in the �E ,g�-plane,

d�E,g� =
1

��g�E�
�

p0R

8	
� b4

3gE
�1/3

. �16�

Recall that Figs. 13�a�–13�c� illustrate the �E ,g�-plane. In
Fig. 12�a� small dynamic range and counting statistics pre-
vents this weak dependence of density on g from being de-
tected. However the main conclusion from Eq. �16� is that
the density of � j �and hence f j� values lying in any fixed
interval scales asymptotically as E−1/3, in agreement with
Fig. 12�b�.

VI. LEVEL SPACING DISTRIBUTION AND LEVEL
DENSITY FLUCTUATION

We show the nearest-neighbor spacing distribution
�NNDS� of the complete set of the first n=16 061 eigenval-
ues of odd-symmetric modes Ej with kj �300, in Fig. 14�a�.
Spacings were unfolded in the standard way,32 thus a histo-

gram of sjª �Ej+1−Ej� / Ē, where Ē is the mean level spac-
ing, was collected. This is compared in the figure against the
Berry-Robnik prediction47 for a mixed system with a single
regular component �of phase-space fraction �reg=0.4549¯�
and single ergodic component. The agreement is excellent,
with deviations consistent with the standard error for each

FIG. 13. �Color online� �a� Distribution of matrix ele-
ments f j for regular modes, as a function of eigenvalue
Ej. �b� Corresponding rates � j predicted by the model in
the text. �c� Zoom of �a�, showing f j �dots� connected
by vertical lines to best-matching values of c� j �circles
labeled by disk quantum numbers m ,n�, using constant
c=15. �d� Ratio f j /� j for all matched pairs.
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bin count. In their recent work Dietz et al.3 claim that there is
a dip in the NNDS around s=0.7 associated with the super-
shell structure in the hat �two periodic orbits of close
lengths�. Their choice of mushroom shape differs from ours
only in the foot. Our results, computed using over 16 times
their number of levels, show no such dip. This suggests that
their observed dip is a statistical anomaly, or that it does not
carry over to the rectangular-foot mushroom and therefore is
not associated with the hat.

In order to study this further we computed the partial
NNDS associated with regular or ergodic modes, categorized
using the method of Sec. V. Regular modes �Fig. 14�b�� fit
the Poisson level spacing distribution well. Ergodic modes
�Fig. 14�c�� fit Wigner’s standard approximate form for the
GOE distribution reasonably well, however there are visible
deviations; the data systematically favors small spacings
s�0.75 while disfavoring intermediate spacings 0.75�s
�1.6. This can be quantified by comparing 0.392, the frac-
tion of spacings with s�0.75, to 0.357, the corresponding
fraction predicted using the Wigner distribution. Using the
normal approximation to the binomial distribution, this dis-
crepancy is nearly 7� and is thus statistically very significant
�similar conclusions are reached by the standard
Kolmogorov-Smirnov test for comparing distributions�. We
conjecture that, as with mode intensities discussed above, the
discrepancy is another manifestation of slow convergence to
the semiclassical limit.

One difference between our mushroom and that of Dietz
et al. is that our foot supports BB orbits and theirs does not.
Therefore to eliminate this as a cause of difference, in Fig.
14�d� we show the ergodic NNDS with BB modes removed.
Here BB modes were identified as those with f j 
0.7
but small integral on the base of the foot, namely,

�0
1/2�n ·r� ��n� j�2dq�0.1; the BB subset comprises only 0.8%

of the total. The difference between panels �c� and �d� is
barely perceptible, indicating that BB modes are not a sig-
nificant contribution in our setting.

Finally, in Fig. 15 we show the amplitude spectrum
�̃�l�ª
 j=1

n eikjl of the density of states, which highlights con-
tributions from periodic orbits of length l. Panel �a� shows all
levels, while �b� and �c� shows the contribution only of levels
categorized as either regular or ergodic, according to the
above method. The periodic peaks at the integers in panel �a�
�and absent in �b�� are due to the BB mode in the foot. As
expected, �b� contains only the regular clusters of peaks as-
sociated with hat orbits which unfold to polygons in the disk.
Each cluster of peaks has an upper limit point at multiples of
	R=3	 /2 corresponding to whispering-gallery rays. It is in-
teresting that �c� contains contributions not only from UPOs
but from all the peaks of �b� too.

FIG. 14. �Color online� Nearest-neighbor spacing dis-
tributions �NNDS� p�s� for the 16 061 modes with kj

�300, estimated via a histogram with bins of width
�s=0.125. Data �in counts per bin� are shown by bars.
Predictions are shown by dots, with ±1 standard error
�solid lines above and below�. �a� All modes vs Berry-
Robnik formula; �b� regular modes vs Poissonian for-
mula e−s; �c� ergodic modes including BB modes vs

Wigner’s approximate GOE formula �	 / 2�se−	s2/4, and
�d� ergodic modes with BB modes removed using the
categorization in Sec. VI vs the same.

FIG. 15. �Color online� Absolute value of the Fourier transform �̃�l� of the
density of states ��k�ª
 j=1

� ��k−kj�, vs orbit length l, for �a� all eigenvalues
lying below kj �300, �b� regular modes only, �c� ergodic modes only.
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VII. CONCLUSION

We have presented the first known high-lying eigenmode
calculations of Bunimovich’s mushroom, which has unusu-
ally simple divided phase space without KAM hierarchy. Us-
ing a basis set adapted to the re-entrant corner, the Method of
Particular Solutions achieves very high accuracy for low
modes, and the scaling method enables us to find high modes
orders of magnitude more efficiently than any other known
numerical approach, allowing the lowest n=16 061 odd
modes to be computed in reasonable time. Since statistical
estimation errors scale as 1 /�n, we are therefore able to
reach the 1% level for many quantities.

Chaotic modes and Husimi functions have been shown
to be nonuniform and scarred even at mode number
�45 000, evidence that the semiclassical limit is reached
very slowly. Using a separation into regular versus chaotic
modes, Percival’s conjecture has been verified to within 2%.
A new model for dynamical tunneling �similar to that of
Bäcker et al.31� has been described, and shown to predict the
chaotic component of predominantly regular modes to within
a factor of roughly an order of magnitude �over a range of
108�. Its prediction �via Bessel asymptotics� that the density
of occurrence of modes which are regular-chaotic superposi-
tions dies asymptotically like E−1/3 agrees well with the first
known measurement of this density.

Our study of nearest-neighbor eigenvalue spacing finds
good agreement with the Berry-Robnik distribution, and for
the regular subset, good agreement with the Poisson distri-
bution. The ergodic subset shows statistically significant de-
viations from Wigner’s GOE approximation, favoring small
spacings. However we find no evidence for the dip reported
at s=0.7 by Dietz et al.;3 recall we study over 16 times their
number of modes.

This study is preliminary, and raises many interesting
questions: Can our model for dynamical tunneling be refined
to give agreement at the impressive level found in quantum
maps?31 Does the ergodic level-spacing distribution eventu-
ally tend to the GOE expectation? Finally, can spectral mani-
festations of stickiness11,12 be detected?
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APPENDIX A: HUSIMI TRANSFORM

We define the Husimi transform48 of functions on R, for
convenience reviewing the coherent state formalism in di-
mensionless ��-free� units. Given a width parameter �phase
space aspect-ratio� �
0, it is easy to show that the annihi-
lation operator

a ª

1
�2

� q

�
+ ��q� �A1�

has a kernel spanned by the L2-normalized Gaussian �0�q�
ª �	�2�−1/4e−q2/2�2

. We work in L2�R�, in which the Hermit-
ian adjoint of a is a†= �q /�−��q� /�2. From the commutator
�a ,a†�=1 it follows, ∀z�C, that the coherent state

�z ª e−�z�2/2eza†
�0 �A2�

is an eigenfunction of a with eigenvalue z. The fact that it is
L2-normalized requires the Hermite-Gauss normalization
��a†�n�0�2

2=n!, ∀n�N, which can be proved by induction.
The Bargmann representation49,50 of a function v :R→C is
then ��z ,v�; the Husimi representation is its squared magni-
tude Hv,��z�ª ���z ,v��2. We need a more explicit form than

Eq. �A2�. �z=eza†−z*a�0 follows by the Baker-Campbell-
Hausdorff formula eA+B=e−�A,B�/2eAeB for ��A ,B� ,A�
= ��A ,B� ,B�=0. Applying this formula again and writing
zª �q0 /�+ i�k0� /�2 where q0 ,k0�R gives

�z�q� = eik0q0/2eik0q�0�q − q0� . �A3�

This shows that the coherent state is localized in position
�around q0� and wavenumber �around k0�, thus the Husimi is
a microlocal �phase space� representation,

Hv,��q0,k0� ª ��−�
� v�q�eik0q�0�q − q0�dq�2. �A4�

This is also known as the Gabor transform or spectrogram
�windowed Fourier transform�, and it can be proven equal to
the Wigner transform convolved by the smoothing function
�0

2. Given a normal-derivative function �n� j we periodize it
in order to apply the above. We also scale the wavenumber
by kj, thus the Birkhoff momentum coordinate is p=k0 /kj.

APPENDIX B: INTEGRABLE PHASE-SPACE
FRACTION

The total phase space �restricting to the unit-speed mo-
mentum shell� has volume Vtot=vol����S1�=2	 vol ��
=2	�ab /2+	R2 /4�. Define the function ��r�ª2	
−4 sin−1�b /2d�r��, where d�r� is the distance from r to the
center point qc. When r is in the hat and d�r�� �b /2,R�, ��r�
gives the measure of the set of angles in S1 for which orbits
launched from r are integrable �i.e., never leave the annulus
d�r�� �b /2,R��. The regular phase space volume is found by
integrating ��r� over the quarter-annulus using polar coordi-
nates �� ,��,

Vreg = �
0

	/2

d��
b/2

R

�����d�

=
	2

2
�R2 −

b2

4
� − 2	�

b/2

R

� sin−1 b

2�
d�

= 	R2�cos−1 b

2R
−

b

2R
p0� .

The same result is given without calculus using the space of
oriented lines in a full annulus, that is, 4Vreg=2	 times the
area of the segments ��x ,y� :x2+y2�R2 , �y � 
b /2�. For our
parameters we get �regªVreg /Vtot=0.4549¯ .
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