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Abstract

The Method of Fundamental Solutions (MFS) is a popular tool to solve Laplace
and Helmholtz boundary value problems. Its main drawback is that it often leads
to ill-conditioned systems of equations. In this paper we investigate for the interior
Helmholtz problem on analytic domains how the singularities (charge points) of
the MFS basis functions have to be chosen such that approximate solutions can be
represented by the MFS basis in a numerically stable way. For Helmholtz problems
on the unit disc we give a full analysis which includes the high frequency (short
wavelength) limit. For more difficult and nonconvex domains such as crescents we
demonstrate how the right choice of charge points is connected to how far into
the complex plane the solution of the boundary value problem can be analytically
continued, which in turn depends on both domain shape and boundary data. Using
this we develop a recipe for locating charge points which allows us to reach error
norms of typically 10−11 on a wide variety of analytic domains. At high frequencies
of order only 3 points per wavelength are needed, which compares very favorably
to boundary integral methods.
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1 Introduction

The Method of Fundamental Solutions (MFS), also known as the charge sim-
ulation method or the method of auxiliary sources, is a well known method
for solving Laplace or Helmholtz boundary value problems (BVPs). The idea
is to approximate the solution by fundamental solutions of the Laplace or
Helmholtz equation whose singularities lie outside the domain. Consider the
boundary value problem

∆u + k2u = 0 in Ω, (1a)

u = v on ∂Ω, (1b)

where Ω ⊂ R
2 = C is a simply connected planar domain with analytic bound-

ary ∂Ω. This means that there exists a parameterization of ∂Ω in the form of
an analytic function Z(s) for s ∈ [0, 2π], with Z(0) = Z(2π). For simplicity
we will often equivalently say that Ω is analytic. We call the boundary data v
analytic if v(s) is a 2π-periodic analytic function.

Recall that the solution is unique if and only if k2 is not a Dirichlet eigenvalue
(of the Laplacian) for the domain; physically this is a resonance effect. The
idea of the MFS is to approximate u by a linear combination of fundamental
solutions of the form

u(x) ≈ u(N)(x) =
i

4

N∑

j=1

αjH
(1)
0 (k|x − yj|), yj ∈ R

2\Ω, (2)

where H
(1)
0 = J0 + iY0 is a Hankel function of the first kind of order zero, J0

is a Bessel function of the first kind of order zero and Y0 is a Bessel function
of the second kind of order zero. N is the number of approximating functions
each of which is associated with a charge point yj. It is well known that

H
(1)
0 satisfies the Helmholtz equation in C\{0} with a singularity at zero. It

is common to choose charge points lying on a smooth curve; we then may
interpret the MFS as a discretization of the following external single layer
potential representation of u. Let Γ be a closed curve enclosing Ω such that
dist(Γ, ∂Ω) := min{|x − y|, x ∈ ∂Ω, y ∈ Γ} > 0, then given a density
g ∈ L1(Γ) we may write

u(x) ≈ i

4

∫

Γ
H

(1)
0 (k|x − s|)g(s) ds, x ∈ Ω. (3)

If g(s) =
∑N

j=1 αjδ(s − yj) for some point set {yj} ∈ Γ, where δ is the Dirac

delta, we recover the MFS formulation (2). Note that Y0 or H
(2)
0 may be used

instead of H
(1)
0 in the MFS [10,13]; see Remark 1 below.

An overview of the history of the method and its applications, which have
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largely been in the engineering community, is given in [11]. The rate of conver-
gence of the MFS for the Laplace (k = 0) BVP was investigated in [4,15–18].
It turns out that if the boundary data is analytic one can achieve exponen-
tial convergence for the MFS for the Laplace problem on analytic domains
if the charge points yj are suitably chosen. The MFS differs from the com-
mon approach of discretizing boundary integral equations (BIE) [5] in that,
since Γ is separated from ∂Ω, there is no jump relation nor singularity of the
kernel. Thus one advantage over BIE is that the solution may be simply and
accurately evaluated up to the boundary. There appear to be few performance
comparisons of MFS against BIE in the literature [2]; our goal in this work is
not to undertake such a task, but we will show that MFS may be competitive
and hence deserves analysis.

One of the main drawbacks of MFS is that (unlike with second-kind BIE)
systems of equations or linear least squares problems have to be solved that
are ill-conditioned. This feature is shared by Radial Basis Functions [9]. The
effects of this ill-conditioning on the quality of the MFS solution have been
investigated for the Laplace case in [20,21]. In this paper we investigate more
closely for the Helmholtz problem the conditions on the charge points yj which
lead to a numerically stable representation of an approximate solution. It turns
out that this depends on how far into the complex plane a solution of (1) can
be analytically continued. The importance of this in the context of scattering
problems has already been observed [23,24,8]

Our work also has consequences for the efficient numerical solution of related
more challenging and widely-applicable PDE problems. We have in mind i)
finding eigenmodes of the Laplace operator in Ω with homogeneous boundary
conditions (where the MFS has been used at low [10] and very high eigenvalue
[3]), and ii) scattering of time-harmonic waves (the exterior Helmholtz bound-
ary value problem in R

2 \ Ω). In both these situations the boundary data is
almost always analytic: in problem i) it is zero and in ii) a plane wave or point
source.

We will study convergence of the MFS approximation in the boundary error
norm

t = ‖u(N) − v‖L2(∂Ω) . (4)

By applying [22, Eq. 7], this controls the interior error of the solution as
follows,

‖u(N) − u‖L2(Ω) ≤
CΩ

d
‖u(N) − v‖L2(∂Ω) , (5)

where d := minj |k2 − Ej|/Ej, the domain’s Dirichlet eigenvalues are Ej, and
CΩ is a domain-dependent constant. This shows that for any fixed nonresonant
k, we may use the boundary norm.

In Section 2 we give rigorous results for the convergence and the numerical
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Fig. 1. Geometry for the MFS in the unit disc.

stability of the MFS for Helmholtz problems on the unit disc, with analytic
boundary data, using charge points on a concentric circle. We then present a
heuristic model for behavior in finite-precision arithmetic and show it explains
well numerical results observed at both low and high wavenumbers. A key
conclusion will be that it is the growth in norm of the coefficient vector that
in practice limits the achievable error, so this norm should be kept as small
as possible to retain high accuracy. The reader should take care throughout
not to confuse statements about the coefficient norm (which depending on the
choice of MFS charge points may either grow or not grow with N as the error
converges to zero), with statements about the condition number of the problem
(which always grows with N since the MFS (2) approximates a single-layer
operator (3) which is compact).

In Section 3.1 we move to general analytic domains, and review results for
the analytic continuation of solutions u of (1), in particular how both the
boundary data and the domain shape may lead to singularities in the con-
tinuation of u. Exterior conformal maps play an important theoretical role
in the analysis of the MFS for Laplace problems [17], thus in Section 3.2 we
explore the use of such maps to choose charge points for Helmholtz problems
in several challenging domains. We propose and provide evidence for conjec-
tures in general domains analogous to our theorems on convergence rate and
stability in the unit disc. For nonconvex domains charge points determined by
exterior conformal maps can lead to bad results. This motivates a heuristic
conformally-related method proposed in Section 3.3, which circumvents this
problem and in Section 3.4 is shown to be an efficient representation in the
high-frequency (large k) limit.
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2 The MFS on the unit disc

In this section we analyse the accuracy and coefficient sizes that result in the
unit disc Ω = {x : |x| < 1}, for the MFS using charge points yj = Reiφj ,
j = 1, 2, . . . , N , with φj = 2πj/N , that is, equally spaced on a larger circle of
radius R > 1. See Figure 1.

Before we embark we need to define the Fourier series of a function g ∈
L2([0, 2π]),

g(θ) =
∞∑

m=−∞
ĝ(m)eimθ, ĝ(m) =

1

2π

∫ 2π

0
g(θ)e−imθdθ. (6)

Parseval’s identity is then

‖g‖2
L2([0,2π]) = 2π

∞∑

m=−∞
|ĝ(m)|2 =: 2π‖ĝ‖2

ℓ2(Z). (7)

We also need to represent the coefficient vector α := {αj}j=1,...,N in a discrete
Fourier basis labeled by −N/2 < k ≤ N/2 (we will always choose N even),

αj =
N/2∑

k=−N/2+1

α̂ke
ikφj , α̂k =

1

N

N∑

j=1

αje
−ikφj , (8)

where inversion follows from
∑N

j=1 e2πikj/N = Nδ
(N)
k0 with δ

(N)
k0 , the periodized

Kronecker delta defined by

δ
(N)
kj =






1, k ≡ j (mod N)

0, otherwise.
(9)

Parseval’s identity now gives |α|2 = N |α̂|2, where |α| := (|α1|2 + · · · + |αn|2)1/2

is the standard Euclidean norm.

2.1 Map from layer potential to Fourier basis on the unit circle

For simplicity we first consider the layer potential version of the problem,
which can be interpreted as the N → ∞ limit of the MFS. The single layer
potential lying on the outer circle Γ = {y : |y| = R} is

u(x) =
i

4

∫ 2π

0
H

(1)
0 (k|x − Reiφ|)g(φ) dφ. (10)

5



0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

m

a) wavenumber k=7, R=2

k kR |s(m)|
Laplace
improved
uniform

0 500 1000 1500

10
−100

10
−50

10
0

m

b) wavenumber k=500, R=1.2
k kR

|s(m)|
Laplace
improved
uniform

c)

k

m

−4−2 0 2 4

−30

−20

−10

0

10

20

30

Fig. 2. Comparison for the unit disc of layer-potential eigenvalue magnitudes |ŝ(m)|
given in (12) against various asymptotic expressions: ‘Laplace’ (14), ‘improved’ (39),
and ‘uniform’ (40). a) low wavenumber, b) high wavenumber. Panel c) shows density
plot of matrix elements (20) of Q for N = 10, in the domain |m| ≤ 30. In c) we chose
unrealistically small values of R and k in order to make the super- and sub-diagonals
more visible.

Note g ∈ L1([0, 2π]) is the density with respect to angle measure dφ rather
than the usual length measure Rdφ. The Fourier-Bessel decomposition of a
fundamental solution located at Reiφ, evaluated at x = reiθ is, using Graf’s
addition formula [1, Eq. 9.1.79],

i

4
H

(1)
0 (k|x−Reiφ|) =

i

4

∑

m∈Z

H(1)
m (kR)Jm(kr) cos m(θ−φ) =

i

4

∑

m∈Z

H(1)
m (kR)e−imφ·Jm(kr)eimθ

(11)
where the second step involved the reflection formulae [1, Eq. 9.1.5] J−m(z) =
(−1)mJm(z) and Y−m(z) = (−1)mYm(z). Hence the Fourier-Bessel coefficients
are i

4
H(1)

m (kR)e−imφ. The restriction of (10) to x ∈ ∂Ω gives a single-layer
operator S : L2([0, 2π]) → L2([0, 2π]) of convolution type, which is therefore
diagonal in the Fourier basis {eimθ}m∈Z and entirely described by its eigen-
values. Comparing (10), (11) and using orthogonality gives û(m) = ŝ(m)ĝ(m)
where the eigenvalues of S are

ŝ(m) =
iπ

2
H(1)

m (kR)Jm(k). (12)

Remark 1 Since the Hankel function (of real argument) is never zero, an
eigenvalue can vanish only when Jm(k) = 0, corresponding to a Dirichlet
eigenvalue (resonance) of Ω. In contrast if Y0 were chosen as the fundamental
solution in (2), Ym(kR) may accidentally be very small giving poor or spurious
numerical results, although in practice this happens rarely [10]. In general one
may avoid this problem by using (Y0 + iηJ0) for any η with Re η 6= 0 (an
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analogous idea is used in layer potentials [5, p.48]).

Since its kernel is continuous S is compact, so lim|m|→∞ ŝ(m) = 0, S−1 is
unbounded, and we expect arbitrarily large ‖g‖ will be needed to represent
certain unit-norm boundary functions v.

In the Laplace (k → 0) limit we recover the following known result (e.g. [16,
Eq 3.2]). We use the small-argument asymptotics Jm(k) ∼ (k/2)m/Γ(m + 1)
and Ym(kR) ∼ − 1

π
Γ(m)(kR/2)−m for all integer m > 0, and the reflection

formulae, and get

ŝ(m) → 1

2|m|R
−|m|, m ∈ Z\{0}, k → 0. (13)

To analyze convergence rate we will need the asymptotic behavior as |m| → ∞
for fixed k. Using in (12) the large-order asymptotics (9.3.1 in [1]) Jm(z) ∼

1√
2πm

(ez/2m)m and Ym(z) ∼ −
√

2
πm

(ez/2m)−m, where z is fixed, gives the
leading-order behavior

ŝ(m) ∼ 1

2|m|R
−|m|, |m| → ∞, (14)

which coincides with the Laplace case (13). We therefore have the exponential
uniform bounds, for some constants cs and Cs depending only on R and k,

cs

|m|R
−|m| ≤ |ŝ(m)| ≤ Cs

|m|R
−|m| ≤ CsR

−m, m ∈ Z\{0}, (15)

where Cs is chosen large enough such that |ŝ(0)| ≤ Cs also holds. Fig. 2a shows
that for low wavenumber k the leading-order asymptotic is reached rapidly,
hence the tightest possible ratio Cs/cs is not too large (here it is about 103).
Thus (14) becomes accurate well before the dynamic range begins to exceed
machine double precision ǫmach ≈ 10−16. However, the situation can differ rad-
ically for large k, as Fig. 2b illustrates. Here the Laplace asymptotic is not
relevant for the eigenvalues within a factor ǫmach of the maximum. Worse still,
the ratio Cs/cs must be exceedingly large (several tens of orders of magnitude).
We will present more useful asymptotic approximations for the eigenvalues in
Section 2.4. For now we will use only (15) to prove exponential convergence
rates.

2.2 Map from MFS coefficients to Fourier basis

We adapt the above to the discrete source case. Define the density

g(φ) =
N∑

j=1

αjδ(φ − φj). (16)
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It follows that

u(N)(eiφ) =
i

4

N∑

j=1

αjH
(1)
0 (k|eiφ − Reiφj |) = (Sg)(φ).

We have

‖Sg‖2
L2([0,2π]) = 2π‖Ŝg‖2

ℓ2(Z) = 2π
∞∑

m=−∞
|ŝ(m)ĝ(m)|2 =

N2

2π

∞∑

m=−∞
|ŝ(m)α̂m mod N |2,

where m mod N denotes the unique integer lying in the range −N/2+1, . . . , N/2
which differs from m by an integer multiple of N . The last equality follows
from the Fourier series representation of (16),

ĝ(m) =
1

2π

N∑

j=1

αje
−imφj =

N

2π
α̂m mod N , m ∈ Z. (17)

Applying Hölder’s inequality and (15) we obtain

‖Sg‖2
L2([0,2π]) ≤

N2

2π
max

j=−N
2

+1... N
2

|α̂j|2 ·
∞∑

m=−∞
|ŝ(m)|2 ≤ N2

2π
|α̂|2C2

s

R2 + 1

R2 − 1
. (18)

Define the operator Q : R
N → ℓ2(Z) by Qα̂ := Ŝg, which maps the discrete

Fourier coefficient vector α̂ to the Fourier series coefficients on the boundary
∂Ω. From (18) we immediately obtain the following.

Lemma 2 For R > 1 the operator Q is bounded, with norm

‖Q‖ ≤ Cs
N

2π

√
R2 + 1

R2 − 1
,

where ‖Q‖ := max
α̂∈RN\{0}

‖Qα̂‖
ℓ2(Z)

|α̂| .

The action of Q is multiplication by a generalized matrix of width N but
(bi-)infinite height,

û(m) =
N/2∑

k=−N/2+1

qmkα̂k, for m ∈ Z. (19)

From Qα̂(m) = (Ŝg)(m) = ŝ(m)ĝ(m) and (17) it follows that the matrix
elements are

qmk =
N

2π
ŝ(m)δ

(N)
mk . (20)

Fig. 2c) shows a greyscale picture of a piece of this matrix. It is dominated by
a main diagonal proportional to the diagonal of the S operator defined in (12),
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but with (exponentially) smaller entries on an infinite sequence of super- and
sub-diagonals. This off-diagonal part can be interpreted as aliasing ‘overtones’
due to discrete sampling of a continuous layer potential. In the Laplace case
using (13) in (20) recovers the results of Katsurada [18, Lemma 1, case 2].

2.3 Convergence rate and coefficient sizes in the disc with analytic data

We are now in a position to express the boundary error norm (4) in terms of
α̂. Combining with (7) and (19) gives

t[α̂] =
√

2π ‖Qα̂ − v̂‖ℓ2(Z) , (21)

where v̂ ∈ ℓ2(Z) is the vector of Fourier coefficients of the boundary data v
on the unit circle. Assume that v can be analytically continued to the annulus
{z ∈ C : 1

ρ
< |z| < ρ} for some ρ > 1, that is, the closest singularity of the

analytic continuation of v has the radius ρ or 1/ρ. We then have asymptotically
exponential decay of the Fourier coefficients,

|v̂(m)| ∼ Cρ−|m|, |m| → ∞, (22)

for some constant C. A simple example is boundary data arising from an
nth-order pole v(z) = Re (z − ρ)−n for z ∈ ∂Ω, n = 1, 2, . . . .

Minimizing (21) over α̂ is a least-squares problem involving the generalized
matrix Q. But since the columns of Q are orthogonal this separates into N
independent single-variable minimizations. We may use a diagonal approxima-
tion to choose α̂ which is sufficient for the following convergence rate bounds.

Theorem 3 Let R > 1 and N be even. For analytic boundary data v obeying
(22), the minimum boundary error (4) achievable with the MFS in the unit
disc satisfies

t ≤






Cρ−N/2, ρ < R2

C
√

NR−N , ρ = R2

CR−N , ρ > R2

(23)

where each time C means a different constant which may depend on k, R,
and v, but not N . Furthermore if v is analytically continuable to an entire
function, the last of the three cases holds for any R > 1.

Proof: We choose coefficients α̂m = v̂(m)/qmm for −N/2 < m ≤ N/2. This
exactly matches the Fourier coefficients in this interval, therefore errors are
due only to frequencies lying outside the interval. (21), (20) and the triangle
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inequality in ℓ2(Z) give

t =


2π

∑

m/∈[−N
2

+1, N
2

]

|(Qα̂)(m) − v̂(m)|2



1/2

≤
√

2π(Eu + Ev),

where

E2
u =

∑

m/∈[−N
2

+1, N
2

]

|(Qα̂)(m)|2 =
∑

−N
2

<n≤N
2

∣∣∣∣∣
v̂(n)

ŝ(n)

∣∣∣∣∣

2∑

b 6=0

|ŝ(bN + n)|2 (24)

and
E2

v =
∑

m/∈[−N
2

+1, N
2

]

|v̂(m)|2 . (25)

We can bound both error terms since all terms in the sums have exponential
bounds. First we note that using (15) and (22) gives

E2
u ≤ C1

∑

−N
2

<n≤N
2

n6=0

(
R

ρ

)2|n|
|n|2

∑

b 6=0

R−2|bN+n|

|bN + n|2 + C2

∣∣∣∣∣
v̂(0)

ŝ(0)

∣∣∣∣∣

2∑

b 6=0

R−2|bN |

|bN |2

≤ C1

∑

−N
2

<n≤N
2

n6=0

(
R

ρ

)2|n|∑

b 6=0

R−2|bN+n| + C2

∣∣∣∣∣
v̂(0)

ŝ(0)

∣∣∣∣∣

2∑

b 6=0

R−2|bN | (26)

for sufficiently large constants C1 and C2. We can bound

∑

b 6=0

R−2|bN+n| ≤ C3R
−2N+2|n|, −N

2
< n ≤ N

2
(27)

for a large enough constant C3. Inserting (27) into (26) and absorbing
∣∣∣ v̂(0)
ŝ(0)

∣∣∣
2

into the constants gives

E2
u ≤ CR−2N

∑

−N
2

<n≤N
2

(
R2

ρ

)2|n|
(28)

for a sufficiently large constant C. Similarly E2
v ≤ Cρ−N follows from (22). We

now study the sum in (28). For ρ < R2, (28) can be estimated by Cρ−N for
some constant C > 0. This means both E2

u and E2
v have the same exponen-

tial decay Cρ−N . For ρ = R2, the sum contains N equal terms and therefore
E2

u ≤ CNR−2N , which decays slower than the bound Cρ−N on E2
v . For ρ > R2,

(28) can be estimated by CR−2N for some C > 0, which means Ev is of higher
negative order in N than Eu and can be dropped. For the case of v continu-
able to an entire function, we may take ρ → ∞ and the case ρ > R2 applies. �
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This is a generalization of a result of Katsurada [15] from the Laplace to
the Helmholtz problem. Since only the exponential bounds (15) and no other
information about ŝ(m) was used, the convergence rates are identical to those
for Laplace with the same boundary data.

Remark 4 An interpretation of the two main convergence rate regimes is:

• v is ‘not relatively smooth’ (R >
√

ρ, i.e. ‘distant’ charge points): errors
are limited by the absence of Fourier modes beyond a frequency N/2 in the
MFS basis, hence rate is controlled by the boundary data singularity ρ.

• v is ‘relatively smooth’ (R <
√

ρ, i.e. ‘close’ charge points): errors are
limited by aliasing errors due to the discrete representation of the single
layer potential, hence rate is controlled by R.

Remark 5 By keeping track of the constants in the above proof, one can check
that C is at least as big as Cs/cs, which, as discussed, must be very large for
large wavenumbers k. Thus although the convergence rates in the theorem are
reached asymptotically as N → ∞ in exact arithmetic, we cannot expect the
bounds to be numerically useful in practice at large k.

We are interested in how the coefficient norm |α| grows as we reduce the
boundary error in the MFS representation (2) by increasing N . Firstly, we now
show that when the MFS charge points are closer than the nearest singularity,
the coefficients need not grow.

Theorem 6 Let Ω be the unit disc, and R < ρ, with fixed analytic boundary
data v obeying (22). Then as N → ∞ there exists a sequence of coefficient
vectors α with bounded norm |α|, with corresponding boundary error norm
(21) converging as in Thm. 3.

Proof: We choose coefficients as in the proof of Thm. 3, which therefore give
the desired convergence rate. Then using (22), (20) and (14),

α̂m =
v̂(m)

qmm

=
2π

N

v̂(m)

ŝ(m)
∼ C

|m|
N

(
R

ρ

)|m|
≤ C

2

(
R

ρ

)|m|
, −N

2
< m ≤ N

2
, m 6= 0

(29)
for some constant C. For R < ρ this is an exponentially decaying sequence so,
independent of N , |α| is bounded by a constant. �

If ρ < R, the coefficient choice used in the above two proofs would cause
|α| to diverge exponentially with N . It is not immediately obvious whether
there is a different choice of α̂m which avoids such growth. The next result,
proved in Appendix A, excludes this possibility by showing that when the
singularity in the analytic continuation of the boundary data is closer than
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Fig. 3. Convergence and coefficient sizes as a function of N , for the MFS approxi-
mation to the interior Helmholtz BVP in the unit disc given boundary data corre-
sponding to a single source (34) at radius ρ. The wavenumber is low (k = 8). The
MFS sources are at R = 1.5. For visual comparison the relevant power laws from
Theorems 3 and 7 are shown (sometimes the constants have been chosen to match
the data). There were M = 240 quadrature points.

the MFS source points, any sequence of coefficient vectors α with the desired
error norm convergence of Thm. 3 must blow up exponentially.

Theorem 7 Let Ω be the unit disc, with R > ρ. Let the boundary data Fourier
coefficients decay no faster than (22), that is, for some constant cv,

|v̂(m)| ≥ cvρ
−|m|. (30)

For any positive even N satisfying N > 3+Nmin, where Nmin := 2 max
[
ln
(√

2
π

c
cv

)
/ ln ρ, 1

]
,

let α be a coefficient vector such that the MFS representation (2) has a bound-
ary error norm (21) satisfying

t ≤ cρ−N/2, (31)

where c is a constant independent of N . Then

|α| ≥ C
√

N

(
R

ρ

)N/2

(32)

for some constant C which may depend on k, R, and v, but not N .

For MFS approximation in the disc, the immediate consequence is that if ρ
is known for given boundary data, to prevent exponential coefficient growth
one must restrict the charge point radius to R ≤ ρ. We illustrate this and
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Fig. 4. MFS approximation to the interior Helmholtz BVP in the disc with given
boundary data corresponding to a single source (34) outside the domain at ρ = 1.2,
with N = 80 and R = 1.4. a) Re u(N), b) residual error Re (u(N) − u) (note color
scale is 3 × 104 times more sensitive than in a).

Thm. 3 with numerical experiments at low wavenumber using the following
standard implementation. The integral in (4) is approximated using uniform
quadrature with M equally-spaced boundary points {xm}m=1···M . Specifically
we fill a matrix A ∈ C

M×N with elements

Amj :=
i

4
H

(1)
0 (k|xm − yj|), (33)

and a boundary-value vector v ∈ C
M with elements vm := v(xm), then solve

the linear system Aα = v. Choosing M > N this is a least-squares problem,
and for M sufficiently large the quadrature of the boundary error norm gives

t ≈
√
|∂Ω|/M |Aα−v|. We always choose M large enough that this value of t,

and the resulting solution u(N), has converged with respect to M ; in practice
(on analytic domains) we find this usually requires M ≈ 1.5N . For the solution
of the dense least-squares problem we used the QR decomposition in double
precision arithmetic via MATLAB’s backslash (mldivide) command.

In Fig. 3 we show convergence of t using boundary data

v(z) = −1

4
Y0(k|z − ρ|), z ∈ ∂Ω (34)

with real ρ > 1, that is, a single real-valued fundamental solution. The three
panels illustrate the three cases of Theorem 3. In a) ρ > R2 thus convergence is
determined by R. In b) R2 > ρ > R so we have transitioned to a convergence
rate given by ρ. In both these cases the coefficient size |α| is very close to
constant (note by contrast that the condition number of A, not shown, grows).
However in c) ρ < R so convergence rate is again determined by ρ, but now
|α| grows exponentially at precisely the rate indicated by Theorem 7. Fig. 4
shows the resulting approximate field u(N) in the case c), and the error function
u(N) − u. Notice that the error is oscillatory at Fourier frequencies of about
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Fig. 5. a) Convergence and coefficient sizes as a function of N , for MFS approxima-
tion of the interior Helmholtz BVP in the disc at high wavenumber k = 500, with
boundary data (34) with singularity radius ρ = 1.1, and MFS sources at R = 1.2.
The ‘predicted’ curves are given by (37) using (36), with (40) estimating both ŝ(m)
and v̂(m). b) Minimum achievable boundary error norms t0, and c) corresponding
basis sizes N0, predicted for a selection of source radii ρ and MFS source point
radius R, for k = 500, using the model in Sec. 2.4. Note that in c) all the graphs
for different ρ lie on top of one another.

N/2 (as predicted by Remark 4; this can be seen by comparing the alternating
signs in Fig. 4b to the angular spacing of source points), is concentrated on the
side of ∂Ω nearest the singularity, and decays exponentially inside the domain
(it is evanescent). We have also substituted v(z) = Re(z − ρ)−1 and find the
convergence rates of Fig. 3 are very similar. We note that in each plot in this
figure, the convergence eventually stops, as we now explain.

2.4 Minimum achievable error in the disc for low and high wavenumbers

So far we have proven results which hold in exact arithmetic. However ma-
chine precision limits the dynamic range of relevant eigenvalues of S: since
the MFS trial functions in (2) have size O(1) in Ω (for any reasonable k),
each coefficient αj will result in round-off errors of size roughly ǫmachαj in the
numerical approximation u(N). Thus we expect convergence to stop when t
reaches of order ǫmach times the coefficient norm |α|; this is well illustrated
by Fig. 3. In panel c) the coefficient growth thus limits achievable error norm
to only about 10−5. This convergence halting problem has been observed in
the Laplace case in the disc [15,19,32] but not analyzed much before. We now
analyse this in the Helmholtz case, and first note the following guideline, a
consequence of Thm. 3 and 6.
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Remark 8 For all k, for boundary data with nearest singularity radius ρ,
a choice of charge point radius R in the range

√
ρ < R < ρ gives optimal

asymptotic convergence rate t ∼ ρ−N/2 and coefficient norm |α| = O(1).

We now construct a useful heuristic model which predicts, for general ρ and
R in the unit disc, both the lowest achievable error norm and the basis size
N required to achieve it. We first consider low k, that is, where (14) applies
for the relevant eigenvalues (those exceeding ǫmach maxm |ŝ(m)|). We discuss
both the case R < ρ with O(1) coefficients and the case R > ρ when the
coefficient norm grows. The proof of Thm. 7 suggests that, at least when ŝ(m)
is exponentially decaying, the diagonal approximation for the MFS Fourier
coefficients (see (29))

α̂m ≈ 2π

N

v̂(m)

ŝ(m)
(35)

approximates the true least-squares Fourier coefficients well, apart from an
O(1) number of them lying at extreme frequencies near m = ±N/2. For R > ρ
these Fourier coefficients grow exponentially, so dropping an O(1) factor we
may consider only the largest coefficient’s contribution to the l2-norm, namely
that at m = N/2. For R < ρ there is no growth hence the norm is dominated
by the coefficients of size O(1) at m ≈ 0. Combining the two cases, we get the
order-of-magnitude estimate at a given N ,

|α| ≈ max

[
1√
N

|v̂(N/2)|
|ŝ(N/2)| , 1

]
. (36)

Similarly, since the boundary data coefficients die exponentially, following Re-
mark 4 and ignoring an O(1) factor we may suppose

t ≈ |v̂(N/2)|. (37)

We define N0 to be the N at which convergence stops: for this we use the
round-off error consideration t/|α| ≈ ǫmach discussed above. In the case R < ρ
this implies that convergence halts when t reaches of order ǫmach, as observed
in Fig. 3a,b. However for R > ρ, combining (36) and (37) we get an implicit
equation for N0,

√
N0|ŝ(N0/2)| ≈ ǫmach (criterion for halting of convergence, R > ρ) .

(38)
The minimum achievable boundary error is then given by (37) with the sub-
stitution N = N0. As an illustration, using the (Laplace) asymptotic form (14)
for the eigenvalues predicts (dropping algebraic factors) that N0 ≈ 2 ln(1/ǫmach)/ ln R.
The parameters of Fig. 3c give N0 ≈ 180, then using (22) with C = 1 gives
t0 ≈ 10−4 which, given the heuristic nature of our model, agree well with the
observed behavior.

15



We now briefly discuss the case of high wavenumber. In Fig. 2 we saw that
(14) is useless for predicting relevant eigenvalues at high k. We may derive
(Appendix B) the asymptotic

ŝ(m) ∼ 1

2|m|R
−|m|ek2(R2−1)/4m, |m| → ∞, (39)

which Fig. 2a,b shows is improved, but still not useful for the relevant eigen-
values at k = 500 (or beyond). Therefore we use the WKBJ method to derive
(see Appendix B) a uniform approximation for the eigenvalue magnitudes,
defining a2 = m2 − 1

4
,

|ŝ(m)| ≈






[(k2 − a2)(k2R2 − a2)]
−1/4

, m < k

1
2
[(a2 − k2)(k2R2 − a2)]

−1/4
eIa(k), k < m < kR

1
2
[(a2 − k2)(a2 − k2R2)]

−1/4
eIa(k)−Ia(kR), m > kR

(40)

where

Ia(x) :=
√

a2 − x2 − a ln[(a +
√

a2 − x2)/x]. (41)

More precisely this is an estimate of amplitude in the oscillatory region (m < k)
of Jm, and of absolute value in the evanescent region (note |H(1)

m | is never os-
cillatory). Fig. 2 shows this is a highly accurate asymptotic form in all regions
apart from weak algebraic singularities at the two turning points (Jm(k) is at
its turning point for m ≈ k whereas for H(1)

m (kR) this occurs at m ≈ kR).

To understand MFS performance at high k in the disc we use the above
low-k model (38) with (14) replaced by (40). Fig. 5a shows convergence and
coefficient norm at k = 500 for boundary data (34), compared with the model
predictions. Note that for this boundary data, v̂(m) is given by the right-
hand side of (12) with the substitution of ρ for R, which we estimate via (40)
with this same substitution. It is clear that, up to the point when convergence
halts, the predictions for both error norm and coefficient norm are very close to
observations (the largest deviations being spikes due to algebraic singularities
discussed above, at N = 1000 and 1100).

A crucial feature is that no convergence happens until N > 2k, since ŝ(m)
remains large for |m| < k (see Fig. 2b). One interpretation of this is that 2k,
corresponding to 2 degrees of freedom per wavelength on the perimeter, is the
Nyquist sampling frequency for k-bandlimited functions on ∂Ω; in physics this
is called the ‘semiclassical basis size’ [3]. In Fig. 5a, ρ = 1.1 so the singularity
is k(ρ − 1)/2π ≈ 8 wavelengths from the boundary. In this case convergence
is rapid, dropping ten orders of magnitude between N = 1000 and N = 1150.
Convergence then halts, in agreement with (38) which predicts N0 ≈ 1175
and t0 ≈ 3× 10−14 (we find similar agreement for other R and ρ choices). The
number of quadrature points was M = 1500, or 3 points per wavelength.
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How can R best be chosen to achieve the lowest boundary error for a given
high wavenumber k, and ρ? We use the above model to compute N0 and hence
t0 for a variety of ρ and R at k = 500, in Fig. 5b,c. Here the smallest ρ = 1.002
corresponds to a singularity only 0.16 wavelengths from the boundary. Two
conclusions are clear: i) If the nearest singularity in the boundary data is at
least a few wavelengths away (e.g. ρ ≥ 1.1), then the basis size N need only
slightly exceed 2 per wavelength in order to achieve t0 ≈ ǫmach. ii) Fixing ρ,
one may acheive t0 ≈ ǫmach as R tends to ρ from above, as expected from
Remark 8; however, the basis size required to converge to this error diverges
as ρ → 1+.

3 The MFS on analytic domains

In this section we present results for the MFS on arbitrary analytic domains.
On the unit disk we have shown that the MFS coefficients start growing expo-
nentially if the radius R of the charge points becomes larger than the distance
ρ of the singularity. The story will be similar for general analytic domains,
but with the following twist: singularities may now be due to both boundary
data and domain shape. The MFS will be numerically investigated in detail
using charge curves defined by exterior conformal maps, which are theoreti-
cally important (see Katsurada [17]) and provide a natural generalization of
the unit disk case. However, for nonconvex domains conformal maps are not
always a good choice; we motivate a new method for placing the charge points
that instead provides excellent performance. We end with an example where
performance exceeds that of BIE. However, to achieve such promising results,
an understanding of the singularities is needed, as we now discuss.

3.1 Analytic continuation of solutions

The question of analytic continuation is to find a domain Ω̃ ⊃ Ω and a function
ũ such that ∆ũ + λũ = 0 in Ω̃ and ũ|Ω = u. Since solutions of the Helmholtz
equation are real analytic it follows immediately that ũ is unique.

A classical result of analytic continuation is reflection on a straight arc Γ, on
which u satisfies u|Γ = 0. Without restriction let Γ be a subset of {iy : y ∈ R}.
Then u can be continued across Γ by setting u(−x, y) := −u(x, y) (see also [6]).
In [12] Garabedian extended these results to the case that Γ is an arbitrary
analytic arc for which uΓ = 0. More general reflection principles for linear
elliptic PDEs of the type ∆u + a(x, y)ux + b(x, y)uy + c(x, y) = 0, where
a(x, y), b(x, y) and c(x, y) are real analytic functions were treated by Lewy
in [26]. He stated his results for arbitrary Dirichlet, Neumann and mixed
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Fig. 6. Illustration of map Z(s) and its inverse S(z) defining a boundary curve ∂Ω.
The Schwarz function involves composition of Z(s) and S(z).

boundary conditions but restricted Γ to be a straight line. Representations of
the analytic continuation for the case that Γ is not a straight line were given
by Millar in [28]. In [29] he discussed more in detail the analytic continuation
of solutions of the Helmholtz equation.

Millar shows that there are two possible sources for singularities of the analytic
continuation ũ of u. The first one comes from singularities of the analatic con-
tinuation of the boundary data f . The second possible source of singularities is
introduced by the shape of ∂Ω. Let Z(s) = x(s)+ iy(s) be a parameterization
of ∂Ω, where s ∈ [0, 2π]. Assume that x(s) and y(s) are real analytic and that
|Z ′(s)| 6= 0 in [0, 2π]. Then there exists a complex neighborhood of [0, 2π], in
which Z(s) is holomorphic and invertible. We denote its inverse by S(z) and
define the Schwarz function

G(z) := Z̄(S(z)) = Z(S(z)).

Millar showed that except for special cases the singularities of G(z) outside Ω
are also singularities of the analytic continuation ũ of u.

The Schwarz function has been studied in [7]. It is independent of the param-
eterization of ∂Ω and has an interpretation in terms of reflection principles on
analytic arcs. Assume that z1 is a point close to ∂Ω. Then its reflection on ∂Ω
can be obtained by the following steps (see Figure 6).

(1) Compute t1 = S(z1).
(2) Reflect t1 on the real line to obtain the point t2 := t1.
(3) The reflection z2 of z1 at ∂Ω is now obtained as

z2 = Z(t2) = Z(t1) = Z(S(z1)) = G(z1). (42)

Fig. 7 shows the singularities of the Schwarz function on three different do-
mains, a rounded triangle, an inverted ellipse and a crescent. The domains are
defined with default values for the parameters a1 through a4, as follows.
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Fig. 7. Domains (left to right): a) rounded triangle, b) inverted ellipse, c) cres-
cent. Branch singularities of the Schwarz function are denoted by + and pole type
singularites by *. Note in c) the + signs are inside Ω but very close to the boundary.

Rounded triangle: ZT (s) = eis + a1e
−2is, a1 = 0.2

Inverted ellipse: ZIE(s) = eis

1+a2e2is , a2 = 0.25

Crescent: ZC(s) = eis − a3

eis+a4
, a3 = 0.1, a4 = 0.9

The branch singularities in all three domains are of square root type (see [29]
for an analysis of the branch behavior of G(z)). The crescent has exterior
singularity of pole type at z = −1/a4. For the interior Helmholtz problem
only the exterior singularities of G are important since these are points where,
for generic boundary data, the analytic continuation ũ of u becomes singular.
Conversely if we had an exterior Helmholtz problem then the interior singu-
larities would determine the singularities of the analytic continuation.

3.2 Using exterior conformal map to place the charge points

A natural generalization of the MFS on the unit disk to general analytic
domains can be defined in terms of the conformal map from the exterior of the
unit disk to the exterior of the domain. This was investigated in the Laplace
BVP case by Katsurada [17].

Let Ω be a simply connected domain with analytic boundary ∂Ω. We can
parameterize ∂Ω using the exterior conformal mapping function

z = Ψ(w) = cw + c0 +
c−1

w
+

c−2

w2
+ . . . , c > 0

which maps the exterior D1 := {w : |w| > 1} of the unit disk to the exterior
of Ω. The quantity c is called the capacity of Ω. We denote the inverse map
by w = Φ(z). Since ∂Ω is analytic Ψ(w) can be analytically continued to a
domain Dr := {w : |w| > r} for some 0 < r < 1. We denote the conformal
radius of a point z ∈ C\Ω by ρz := |Φ(z)|.
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In the notation of the previous section we may write this parametrization as
Z(s) = Ψ(eis) since the unit disc is parametrized by w = eis. Using that
the reflection of a point z on the unit circle is given by z′ = 1

z
the Schwarz

function may now be written G(z) = Ψ(1/Φ(z)); it follows that it is analytic
in {z ∈ C : 1 < ρz < 1

r
}.

In the unit disk case we placed the MFS points equally distributed on a curve
with radius R. For general analytic domains we now place the points on a
curve ΓR := {z : ρz = R} with constant conformal radius ρz = R. On this
curve we distribute the points equally spaced in conformal angle, that is

yj := Ψ(e2πij/N), j = 1, . . . , N (43)

If Ω is the unit disk this definition coincides with that of Sec. 2. Replacing
the disk radii R and ρ in Theorem 3 by the corresponding conformal radii
we obtain the following conjecture for the rate of convergence of the MFS for
Helmholtz problems on general analytic domains.

Conjecture 9 Let t be the error of the MFS as defined in (4) by placing the
MFS points equally distributed in conformal angle at a conformal distance R
around Ω. Let ρ > 1 be the conformal radius of the closest (in the sense of
conformal radius) singularity of the analytic continuation of u. Then

t ≤






Cρ−N/2, ρ < R2,

CR−N , ρ > R2,
(44)

where C is a constant that may depend on Ω, k, R and v, but not N . Fur-
thermore, if u continues to an entire function, the latter case holds for any
R > 1.

Remark 10 The first case (ρ < R2) of this conjecture was proved in the
Laplace case by Katsurada in [17] under additional restrictions on the analytic
continuation of Ψ into the unit disk. In numerical studies we have observed
that these conditions are not necessary to achieve the given convergence rates,
so do not include them in our conjecture (compare also Remark 3.2 of [17]).
We do not state a conjecture for the case ρ = R2 since numerically it cannot
be established if for general domains the same algebraic factor is needed as for
the disk.

In Figure 8 we plot the observed error t for the MFS on the inverted ellipse
of Figure 7, for wavenumber k = 5 and constant boundary condition v ≡ 1.
The estimated rates from Conjecture 9 are denoted by dashed lines. The three
plots correspond to MFS points placed at the conformal distances R = 1.03,
R = 1.12 and R = 1.2. The conformal radius R = 1.12 is also the approximate
conformal radius ρ of the two singularities. The corresponding MFS curves are
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Fig. 8. Left three plots: Estimated (dashed lines) and observed (’+’) rates of con-
vergence of the MFS on the inverted ellipse for charge points with conformal radii
R = 1.03, R = 1.12 and R = 1.2. The corresponding coefficient norms |α| are
denoted by ’o’. Right plot: Domain and positions of the charge points (shown as
dots) for the above three conformal radii, with branch-type singularity locations (+
signs).

shown on the right of Fig. 8. The estimated convergence rates are in all three
cases in good agreement with the observed error t.

In the disk case we can observe exponential coefficient growth once the radius
R of the charge points is larger than the radius ρ of the singularity of the
analytic continuation of u (see Thm. 7). For general analytic domains we
observe a similar behavior. To demonstrate this we plotted in Figure 8 also
the norm |α| of the MFS coefficients. As long as the conformal radius R of the
MFS points is smaller or equal to the conformal radius ρ of the singularities
we do not observe any growth of |α| for growing N (first two plots of Fig. 8).
In the third plot we have R > ρ and |α| grows exponentially for growing N .
It is instructive to compare this figure panel by panel against Fig. 3.

This leads to the following conjecture, which mirrors Theorem 6 and 7.

Conjecture 11 Let Γ be any Jordan curve enclosing Ω, with dist(Γ, ∂Ω) >
0, on which MFS charge points are chosen asymptotically densely. Then the
coefficient norm |α| that minimizes t grows asymptotically exponentially as
N → ∞ if and only if Γ encloses a singularity of the analytic continuation of
u.

We stated this conjecture for general Jordan curves, since numerical exper-
iments suggest that there is only coefficient growth if the curve encloses a
singularity of the analytic continuation. This conjecture is analogous to (but
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stronger than) a result that coefficients grow if all singularities are not enclosed
by Γ in the context of exterior scattering [8, Ch. 4, Thm. 2.4].

In Figure 9 we show the coefficient norm |α| and the approximation error t for
a growing conformal distance R of the MFS source points and fixed number
N in four different cases: the unit disk and the three domains from Figure 7.
In all cases we have used k = 5. For the disk the boundary data is given
by (34) with singularity location ρ = 1.2, and in the other three cases by
v(z) ≡ 1 (recall that here the Schwarz function introduces singularities in u).
The vertical solid lines denote the conformal radius ρ of the singularities of the
analytic continuation of u and the vertical dashed lines denote the square root
ρ1/2. Since the Schwarz function for the rounded triangle does not have any
singularities in the exterior of the domain the solution u can be analytically
continued to an entire function.

For the disk, the inverted ellipse and the crescent the error t does not decrease
further once R passes the dashed line. This can be expected from Conjecture
9 since the upper bound on the error t does not decrease any more for fixed
N and R > ρ1/2.

For these three domains we can also observe exponential coefficient growth
of |α| for fixed N when R > ρ. For the crescent this exponential growth
already starts earlier. However, this is not a contradition to Conjecture 11.
The conjecture treats the case of a fixed curve and N → ∞. This does not
exclude the existence of transient growth effects if the singularity lies outside
the curve containing the charge points.

An explanation for these transient effects in the crescent case is that close to
the pole-like singularity of the Schwarz function we need a very high number
N of basis functions to sufficiently resolve a highly-oscillatory Helmholtz field.

Another interesting special case is the rounded triangle. Since the analytic
continuation of u is an entire function, by Conjecture 11 we do not expect
any exponential growth of |α|. Indeed, Fig. 9b shows that |α| stays virtually
constant as R increases.

3.3 Using a singularity-adapted curve to place the charge points

The above exterior conformal method has the following problem: in any con-
cave parts of Ω the exterior conformal map Ψ has a very (in fact, exponentially)
large gradient. This well-known property of conformal maps is related to the
so-called crowding problem. This has two consequences for concave regions:
the spacing of charge points according to (43) becomes very large, and as R is
increased from 1, the curve ΓR moves away from ∂Ω very rapidly. Both these
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Fig. 9. Growth of coefficient norm |α| (circles), and least-squares approximation
error t (’+’ signs), for a) the unit disc with boundary data (34), and b-d) the three
other shapes of Fig. 7 with constant boundary data v ≡ 1. MFS points are chosen
on curves with constant conformal radius R. The insets show domains, exterior sin-
gularities using same notation as Fig. 7, and curves with conformal radius R = 1.24
and 1.49. The parameters are k = 5. N = 200 for a-b, N = 400 for c-d. The number
of quadrature points M on ∂Ω is chosen sufficiently large throughout.

effects are illustrated by the MFS charge curve for the crescent in Fig. 10a.

This means that Schwarz function singularities which are a moderate distance
from a concave part of ∂Ω may actually have a conformal radius extremely
close to 1. The net result is that if the coefficient growth of Conj. 11 is to be
prevented, R must be very close to 1, hence by Conj. 9 the convergence rate
is necessarily very poor. For example, in Fig. 10, the conformal radius of the
pole in the Schwarz function is only ρ = 1/a4 ≈ 1.11, and the observed rate
for case a) approaches the predicted ρ−N/2 (dashed line in the figure). One
can attempt to fix the problem of the large point spacing by retaining the
same MFS curve ΓR but choosing charge points equally spaced in arc-length,
as illustrated in Fig. 10b. Despite an initial improvement for small N , the
asymptotic convergence rate turns out to be no better than in case a), and is
believed to be the same (for errors t < 10−6 it performs worse, we believe due
to a lack of point density near the ‘spiked’ parts of the crescent).

In Fig. 10c we show a different ‘adaptive’ choice of MFS curve and point
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Fig. 10. Convergence rate for the crescent domain (with a3 = 0.1, a4 = 0.9) illustrat-
ing the concavity problem. The wavenumber is k = 3 and constant boundary data
v ≡ 1. For a) and b) MFS charge points are placed on an exterior conformal curve
at R =

√
ρ where ρ = 1/a4 is the singularity conformal distance. The point spacing

is equal in a) conformal angle, and b) arclength. c) Adapted curve and spacing given
by (45), see Sec 3.3. The dashed line shows the predicted convergence rate for a),
aN

4 .

spacing which clusters charge points near the singularity but spreads them
out (while taking them further away from ∂Ω) away from the singularity. This
gives a convergence rate over 5 times faster than the exterior conformal curve,
for instance an error of t ≈ 10−13 is reached for N = 140 as opposed to
N = 730 for case a). This simple adaptive method is based on the idea of
replacing the exterior conformal map by an annular one, as follows.

From the discussion in Sec. 3.1, the map Z(s) defines an annular conformal
map which is one-to-one for s in some strip around [0, 2π], as in Fig. 6. The
external singularities control convergence rate; we label them by σ = 1, . . . , P ,
where P is the number of singularities. They have s-plane locations sσ =
χσ − iτσ with τσ > 0, Their minimum distance to the real axis is τ := minσ τσ.
Katsurada et al. [19] have discussed using such an annular map to place charge
points for the Laplace BVP, according to yj := Z(2πj/N − i log R) for some
R > 1; note this is the annular map equivalent of (43). A related annular
map method has been tried in the scattering case [14]. According to Conj. 11
in order to prevent coefficient growth in this case one would need to choose
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Fig. 11. Generalized crescent analytic domain parametrized by (47), showing per-
formance of adaptive charge points of Sec. 3.3. The top row is at k = 3, the bottom
row at k = 100. a) and d) show the curve y(χ) and the locations (χj , y(χj)) in
the s-plane, the singularities sσ (’*’ symbols), and the distance-limiting function
|Z ′(χ)|/Dmax (dotted line). b) and e) show the charge locations (for clarity, N = 90
has been used in both cases). c) and f) shows error norm convergence t (’+’ symbols)
and coefficient norm |α| (’o’ symbols).

log R < τ . This may be a severe restriction: for example one may check that
the crescent formula ZC(s) in Table 3.1 is identical to this domain’s exterior
conformal map Ψ, thus the concavity effect causes τ to be very small.

However, there are an infinite family of annular maps Z(s) which parametrize
the same boundary ∂Ω, and these may have differing Schwarz singularity loca-
tions in the s-plane. Given an analytic domain Ω one is free to choose between
such parametrizations. Ideally, our goal is to choose one with as large a τ as
possible, to achieve a high convergence rate. However, we find it convenient
to retain the given parametrization Z(s), and instead build a charge curve in
the s-plane which no longer has constant imaginary part, and which captures
the spirit of such a reparametrization. Our curve is given by s = χ − iy(χ),
where χ ∈ [0, 2π] is the real part of s, and the function y is given by

[y(χ)]−1 =

(
Dmax

|Z ′(χ)|

)−1

+
P∑

σ=1

[
γτσ + β

1 − cos(χ − χσ)

τσ

]−1

(45)
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Fig. 12. Interior Helmholtz BVP solution u for the same domain as Fig. 11, at
k = 100, with boundary data v ≡ 1, using as basis size of N = 525, and M = 1000
boundary points. Error norm is t = 5 × 10−11. The boundary (thin solid line) and
charge points (’+’ symbols) are shown, and the field u from (2) is shown both
outside and inside Ω. CPU time was 2.9 s to compute the coefficient vector α, and
5.4 mins to evaluate the solution u shown (2.4 × 105 points on a grid of spacing
0.005).

where parameter values performing well in most domains are β = 0.7 (in-
terpreted as a curvature factor), γ = 0.4 (expressing the curve’s fractional
distance to each singularity), and

Dmax = max[1, 25/k] (46)

is interpreted as the maximum allowable distance of the curve from ∂Ω. (45)
has the effect of bringing the curve close to ∂Ω in the vicinity of each singularity
(via each cos term in the sum) in the style of an equipotential curve, while
allowing it to move up to Dmax from the boundary in the absence of nearby
singularities. Given the curve function y(χ) a set of N real values {χj} ∈ [0, 2π]
are then chosen such that their local spacing is proportional to y(χ). 1 The
MFS charge points are then given by yj = Z(χj − iy(χj)).

In Fig. 11 we illustrate the performance of this method on a generalization of

1 In practice this can easily be done numerically by solving the ODE g′(χ) = 1/y(χ)
then spline fitting to construct an approximate inverse function g−1.
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Fig. 13. Interior Helmholtz BVP solution u for the analytic star domain defined
by radial function r(θ) = 1 + 0.3 cos(5θ) at wavenumber k = 400, boundary data
v(z) = Re (z − ρ)−1 and ρ = 1 + 0.5i. The color scale shows a u range [−45, 45].
Boundary error norm is t = 3.6 × 10−10, and interior values agree to 10−11 relative
error against a BIE computation. Basis size was N = 1900 and M = 2800 quadra-
ture points. Charge points are shown by dots and Schwarz branch singularities by
+ symbols. CPU time was 55 s to compute the coefficient vector α, and 1.0 hr to
evaluate the interior solution u shown (8.2× 105 points on a grid of spacing 0.002).

the crescent domain given by

Generalized crescent: ZGC(s) = eis− 0.1

eis + a5

− 0.07 + 0.02i

eis + a6

+
0.2

eis + a7

(47)
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with a5 = 0.9, a6 = −0.8 − 0.2i, a7 = −0.2 + 0.5i. The Schwarz function
has three exterior pole-type singularities, shown by * symbols, with s-plane
locations 1/a5, 1/a6, and 1/a7. The two rows of subfigures contrast the effect
of Dmax given by (46) at low vs high wavenumbers. For low wavenumber Dmax

is large and the contribution of the first term in (45) is small. This enables
the curve to reach large negative Im s, hence large distances from ∂Ω and
a large point spacing, in regions away from singularities. We observe rapid
convergence, reaching t = 10−14 by N = 280, and no exponential coefficient
growth. As k increases, Dmax drops and the first term in (45) starts to become
significant (see dotted line in Fig. 11d), and has the effect of bringing the curve
closer to the domain. As k → ∞ this term dominates and the curve tends to
a constant distance of about 4 wavelengths from ∂Ω everywhere on the curve.
The bottom row in the figure shows the case k = 100. Once N = 400 (about
3.0 degrees of freedom per wavelength on the boundary), convergence is rapid,
reaching 10−10 at N = 525. Since the coefficient norm |α| ≈ 105 convergence
halts here. The resulting solution u is shown in Fig. 12. 2 Values outside Ω
have been included to highlight the manner in which the MFS points generate
the field (very large coefficients are easily noticed due to the dark, highly
oscillatory bands in these parts of Γ).

3.4 Performance of singularity-adapted MFS at high wavenumber

Finally, we test the performance of the above method for different shape at
higher wavenumber, as shown in Fig. 13. This domain is challenging since it
has, very close to the boundary, five exterior branch-type singularities in the
Schwarz function. We also choose non-constant boundary data which itself
has a singularity (however since it is outside Γ there is no need to include
its contribution in the curve formula (45)). There are about 165 wavelengths
across the domain’s maximum diameter. Boundary error t of order 10−10 is
reached using N = 1900 corresponding to 3.3 basis functions per wavelength
on the perimeter. Since |α| ≈ 104, this value of t cannot be decreased much by
increasing N . At fixed N , an adequate number M of quadrature points was
found by increasing until interior values of the solution converged (seemingly
spectrally) to the required number of digits.

We have verified that a pointwise error of order 10−12 times typical u values
is achieved in the interior, by comparison against a BIE solution implemented
with Martensen-Kussmaul spectral quadrature of the double-layer potential,
as recommended in [5, Sec. 3.5]. For instance, with the above parameters the

2 Computation times are quoted for a single core of a 2 GHz Intel Core Duo laptop
CPU, with 2 GB RAM, running GNU/Linux, coded in MATLAB. For evaluation
of u the sum (2) was performed naively. The MATLAB Hankel function routine is
also by no means optimal, requiring on average 2.3 microseconds per evaluation.

28



MFS value of u(N)(0.045+0.1i) is −50.189873472429− 1.5× 10−11i compared
to for BIE −50.189873472414 + 5 × 10−12i. Note that the exact solution is
real, and resonance makes its size roughly 102 times the O(1) boundary data.
This MFS error is much better than the bound (5), which gives relative error
of order 10−7 since d (defined below (5)) is very small, of order 10−5. We note
that to achieve the above the BIE required a larger linear system, N = 3200
Nyström quadrature points (these were equally spaced in θ which may not
be optimal), and required 91 s of CPU time to compute the layer density
coefficients, as opposed to 55 s for MFS. This serves to illustrate the potential
MFS has for high-frequency problems.

In domains with more distant singularities, we find barely more than 2 basis
functions per wavelength are sufficient in the high k limit, similar to what was
found for the disc in Section 2.4. We postpone further study of important issues
such as choice of Dmax at high wavenumber, and more detailed comparison with
BIE, to future work.

4 Conclusions

The Method of Fundamental Solutions is a powerful tool for solving the
Helmholtz BVP, but, as we have demonstrated, the achievable accuracy is
limited by the size of the coefficient norm |α| (as opposed to the condition
number). Therefore we have analysed, for the first time, the growth of |α|
with basis size N as one converges towards Helmholtz solutions in the disc
and other analytic domains. In the disc we have theorems on convergence rate
(Thm. 3) and coefficient growth (Thms. 6 and 7), and for analytic domains
we have corresponding conjectures (Conjs. 9 and 11) supported by numerical
experiments in many domain shapes. These show that the success (numerical
stability and hence high accuracy) of the MFS relies on a choice of charge
curve which does not enclose any singularities of the analytic continuation of
the solution u. These singularities are associated either with the analytic con-
tinuation of the boundary data, or with the Schwarz function of the domain.

The conclusions for optimal choice of MFS charge points are as follows. For
the unit disc, with concentric equally-spaced charge points, a radius between√

ρ and ρ is optimal (Remark 8), ρ being the radius of the nearest singularity
in boundary data. For general analytic domains, charge points placed on a
curve which adapts to the singularity locations have been shown to perform
very well. At high wavenumber we show that in the disc asymptotically 2 ba-
sis functions per wavelength on the boundary are needed, and that in more
complicated nonconvex domains with nearby singularities this need only in-
crease by less than a factor of two to achieve error norms close to machine
precision. In practice this unusually small N results in rapid solution of the
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basis coefficients using dense linear algebra, even at high wavenumber.

Although the goal of this work is not a detailed comparison of MFS against
boundary integral equations (BIE), our experiments show that MFS can be
highly competitive, with a smaller basis size N , and the advantage that ac-
curate solutions are easy to evaluate up to the boundary. MFS is useful only
if condition number is not a problem, which is true for direct solvers but not
iterative ones. Thus we do not expect MFS can benefit in the way BIE do
from Fast Multipole (FMM) acceleration in an iterative solver. However, re-
cent developments in fast direct solvers [27] could remove this problem and
allow MFS to be efficient in large-scale (N > 5000) settings.

As with BIE, the CPU time to evaluate the interior solution at several grid
points per wavelength is much larger than the coefficient solution time, espe-
cially using a naive implementation of the sum (2) and MATLAB’s Hankel
function routine. Replacing this evaluation of u with a FMM summation would
be a natural next step and is expected to result in a large speedup at high
wavenumbers.

We expect our findings on coefficient growth rates, and the new adaptive
charge curve algorithm, to be easily extendable to the exterior Helmholtz
scattering problem, for which MFS has shown promise in the engineering com-
munity [24,14,8].
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A Proof of Theorem 7

For even N fix N > Nmin + 3. Using (20) in (21) implies the trivial bound

√
2π
∣∣∣∣
N

2π
ŝ(m)α̂m mod N − v̂(m)

∣∣∣∣ ≤ t, for all m ∈ Z. (A.1)
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Define the (positive) maximum Fourier frequency F := N
2
− K, where K is

the unique integer such that

Nmin

2
≤ K <

Nmin

2
+ 1.

Note that K is independent of N . One can verify using (31), (30) and the
definition of Nmin that

|v̂(m)| ≥
√

2

π
t, for all |m| ≤ F. (A.2)

In the frequency range |m| ≤ F , it follows from (A.1) and (A.2) that v̂(m) is
sufficiently large relative to t to bound the coefficients away from zero,

|α̂m| ≥ 2π

N

|v̂(m)| − t/
√

2π

|ŝ(m)| ≥ π

N

|v̂(m)|
|ŝ(m)| ≥ πcv|m|

CsN

(
R

ρ

)|m|
, 0 < |m| ≤ F

(A.3)
where the last step used (15) and (30). Choosing the maximal frequency m =
F = N

2
− K we obtain

|α̂F | ≥ πcv

Cs

(
R

ρ

)N
2
−K(

1

2
− K

N

)
>

πcv

2Cs

(
R

ρ

)N
2
−K

1

Nmin + 3
. (A.4)

Here the latter inequality follows from

1

2
− K

N
>

1

2
− Nmin/2 + 1

Nmin + 3
=

1

2(Nmin + 3)
.

Absorbing the N -independent factors of (A.4) into a constant and noticing
that the Euclidean norm of a vector is at least as large as its largest component
we have

|α| =
√

N |α̂| ≥
√

N |α̂F | ≥ C
√

N

(
R

ρ

)N/2

(A.5)

for a sufficiently small constant C > 0, as claimed in the Theorem.

B Bessel function asymptotics

We take the standard Taylor series [1]

Jm(z) =
(

z

2

)m ∞∑

k=0

(−z2/4)k

k!(m + k)!
(B.1)

31



and in the large-m limit we may approximate (m+k)! ≈ m!mk, then recognize
the power series for the exponential, giving

Jm(z) ∼ 1

m!

(
z

2

)m

e−z2/4m, m → ∞ . (B.2)

Similarly the standard series

Ym(z) = − 1

π

(
z

2

)−m m−1∑

k=0

(m − k − 1)!(z2/4)k

k!
+

2

π
ln(z/2)Jm(z) + O(zm)

(B.3)
with (m − k − 1)! ≈ m!/mk gives

Ym(z) ∼ −m!

π

(
z

2

)−m

ez2/4m, m → ∞ . (B.4)

Neither of these asymptotic forms are given in [1], however (B.2) has been
recently noted in the physics community [25]. Combining these two in (12),
using the reflection formulae, and ignoring the lower-order J contribution to
the Hankel function, gives (39).

Bessel’s equation u′′+u′/r+(1−m2/r2)u = 0 with the Liouville transformation
w = r1/2u then changing variable to x = r/a, with a2 = m2 − 1

4
, gives the

ODE
d2w

dx2
+ a2

(
1 − 1

x2

)
w = 0. (B.5)

The WKBJ (or Liouville-Green) asymptotic approximation (Ch. 9.3 of [30])
for large parameter a is then

w(x) ∼






(x−2 − 1)−1/4

(
Aea

∫ 1

x

√
x−2−1 dx + Be−a

∫ 1

x

√
x−2−1 dx

)
, x < 1 (evanescent)

(1 − x−2)−1/4

(
Ceia

∫ x

1

√
1−x−2 dx + De−ia

∫ x

1

√
1−x−2 dx

)
, x > 1 (oscillatory)

(B.6)
where A,B,C,D ∈ C are constants. Note that the integral in the evanescent
region can be performed analytically and is −I1(x) as defined by (41); the
integral in the oscillatory region is not needed since amplitude not phase is of
interest. Since the solution w is continuous through the turning point x = 1
(even though (B.6) breaks down), there exist connection formulae relating the
constants:

C = eiπ/4A + e−iπ/4B, D = eiπ/4B. (B.7)

They can be found by comparing WKBJ to large-argument asymptotics of the
Airy functions Ai and Bi on either side of the turning point (e.g. comparing
10.4.59 with 10.4.60, and 10.4.63 with 10.4.64, in [1], or using 9.3.91,92 of
[30], or the more rigorous presentation of the Gans-Jeffreys formulae in Ch.
11 of [31]). If A = 0 (w decaying as x decreases in the evanescent region) then
|C| = |D| = |B| giving an amplitude of 2|B|/(1 − x−2)1/4 in the oscillatory
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region. When transformed back such a solution u(r) corresponds to the Jm(r)

Bessel function. We match the asymptotic amplitude
√

2/πr at large argument

(see 9.2.1 of [1]) to fix B = 1
2

for all m. Hence the Bessel function has typical
size

|Jm(r)| ≈






1
2
(a2 − r2)−1/4eIa(r), r < a

(a2 − r2)−1/4, r > a.
(B.8)

Note that an amplitude is implied here in the oscillatory region r > a. Note
also that a is defined above (B.5), and Ia(r) < 0 for r < a. Similarly matching
the H(1)

m (r) Hankel function large argument asymptotic gives |C| = 1, D = 0,
so |A| = 1 (which dominates), thus typical size

|H(1)
m (r)| ≈






(a2 − r2)−1/4e−Ia(r), r < a

(a2 − r2)−1/4, r > a.
(B.9)

These formulae have been checked against numerical evaluations of Bessel
functions and accurately predict amplitudes or evanescent magnitudes every-
where apart from very close to the turning point r = a where they have a weak
algebraic singularity, but still provide an upper bound. Substituting (B.8) and
(B.9) into (12) gives the desired (40).
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