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HOMOTOPY DECOMPOSITIONS AND K–THEORY
OF BOTT TOWERS

YUSUF CIVAN AND NIGEL RAY

Abstract. We describe Bott towers as sequences of toric manifolds Mk,
and identify the omniorientations which correspond to their original con-
struction as complex varieties. We show that the suspension of Mk is ho-
motopy equivalent to a wedge of Thom complexes, and display its complex
K-theory as an algebra over the coefficient ring. We extend the results to
KO-theory for several families of examples, and compute the effects of the
realification homomorphism; these calculations breathe geometric life into
Bahri and Bendersky’s analysis of the Adams Spectral Sequence [2]. By way
of application we consider the enumeration of stably complex structures on
Mk, obtaining estimates for those which arise from omniorientations and
those which are almost complex. We conclude with observations on the rôle
of Bott towers in complex cobordism theory.

1. Introduction

In their 1950s study of loops on symmetric spaces, Bott and Samelson [4]
introduced a remarkably rich and versatile family of smooth manifolds. Vari-
ous special cases were treated in different contexts during the following three
decades, until Grossberg and Karshon [14] offered a description as complex al-
gebraic varieties in 1994. They referred to their constructions as Bott towers,
and addressed issues of representation theory and symplectic geometry. Our
purpose here is to offer the alternative viewpoint of algebraic topology, in the
context of Davis and Januszkiewicz’s toric manifolds [10]. We consider Bott
towers (Mk : k ≤ n) of height n, and discuss homotopy decompositions of the
suspensions ΣMk; these provides further evidence that the spaces of complex
geometry are often stably homotopy equivalent to wedges of Thom complexes,
as we have argued elsewhere [13]. We investigate the real and complex K-
theory of the Mk, casting geometric light on recent calculations of Bahri and
Bendersky [2] which were originally conducted in the algebraic underworld of
the Adams Spectral Sequence.

Given a commutative ring spectrum E, we denote the reduced and unreduced
cohomology algebras of any space X by E∗(X) and E∗(X+) respectively. So
E∗(Sn) is a free module over the coefficient ring E∗ on a single n-dimensional
generator sE

n , defined by the unit of E. In particular, we use this notation for the
integral Eilenberg-Mac Lane spectrum H and the complex K-theory spectrum
K. Real K-theory requires the most detailed calculations, so we abbreviate
sKO
n to sn whenever possible. We require multiplicative maps f : E → F of

Key words and phrases. Bott towers, K-theory, stably complex structures, Thom com-
plexes, toric manifolds.
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ring spectra to preserve the units, so that f(sE
n ) = sF

n for all n; complexification
c : KO → K is an important example. We adopt similar conventions for Thom
classes tE , which also play a major rôle. Given an E-orientable n–dimensional
vector bundle γ, we insist that tE should lie in En(T (γ)), and restrict to sE

n on
the fibre. Alternative choices of dimension are, of course, available for periodic
spectra such as K and KO , but we believe that our chosen convention leads to
the least confusion.

With the single exception of KO , the spectra we use are complex oriented
by an appropriate choice of first Chern class vE in E2(CP∞); by definition, vE

restricts to sE
2 on CP1. We also insist that E∗ be concentrated in even degrees.

So v = vE(ζ(n)) is the first Chern class of the Hopf line bundle ζ(n) over CPn,
and there is a canonical isomorphism

(1.1) E∗(CPn
+) ∼= E∗[[v]]/(vn+1)

for every 0 ≤ n ≤ ∞. In order to emphasise that we are working over CPn,
we occasionally denote v by v(n); thus v(1) and sE

2 are interchangeable. In the
cases E = H and K, we write v as x and u respectively.

Throughout our work, we express the coefficients of complex K-theory as the
ring of Laurent series

K∗ = Z[z, z−1],
where z lies in K2 and is represented by the virtual Hopf line bundle over S2.
Complex conjugation acts on K∗ by z = −z.

For KO-theory, we denote the coefficient ring by

KO∗ = Z[e, x, y]/(2e, e3, ex, 4x2 − y),

where e, x, and y are represented by the real Hopf line bundle over S1, the sym-
plectic Hopf line bundle over S4, and the canonical bundle over S8 respectively,
as described in [16], for example.

The contents of our sections are as follows.
We introduce Bott towers as toric manifolds in Section 2, relating the view-

points of Davis and Januszkiewicz [10] and Grossberg and Karshon [14], and
paying attention to the corresponding stably complex structures. In section 3
we interpret Bott towers as iterated sphere bundles, leading to an alternative
derivation of their E-cohomology algebras, and splittings of their suspensions.
We also consider associated properties of their stable tangent bundles, and in-
troduce a cofiber sequence relating pairs of towers. Our calculations with KO-
theory begin in Section 4, where we focus on dimensions 2 and 4 and obtain
complete descriptions of the KO∗-algebra structure in all cases. These results
provide a springboard for our most comprehensive calculations, which occupy
Section 5; we consider all dimensions, but specialise to two particular families
of examples. Again, we obtain complete information about KO∗-algebra struc-
tures, but find that certain products are particularly complicated to describe
explicitly. We also relate our results to the pioneering work of Bahri and Ben-
dersky. In Section 6 we apply these calculations to the enumeration of certain
collections of stably complex structures which arise from the toric viewpoint.
Such structures are of key importance to understanding their rôle in complex
cobordism theory. Section 7 acts as an appendix, to which readers should refer
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for notation, and for our treatment of the E-cohomology of certain sphere bun-
dles Y over complexes with cells in even dimensions. We record a homotopy
decomposition of ΣY , and give explicit details for the crucial cases E = H and
K.

The idea of studying Bott towers in this context first emerged during dis-
cussions with Victor Buchstaber, made possible by Aeroflot’s abandonment of
flights out of Manchester in the summer of 1996. The second author announced
most of the results at the Conference on Algebraic Topology in Gdansk, Poland,
during June 2001, where Taras Panov and his colleagues offered many helpful
suggestions as we strolled the Baltic beaches. We apologise to them all for our
protracted attempts to produce a final document, and give thanks to Adrian
Dobson for identifying several errors in various intermediate versions.

We also acknowledge the influence of the referee, who instigated many im-
provements in the layout of the material.

2. Toric Structures

A Bott tower of height n is a certain sequence of smooth oriented 2k–
dimensional manifolds (Mk : k ≤ n), determined by a list (a1, . . . , an−1) of
integral (k − 1)–vectors

ak−1 = (a(1, k), . . . , a(k − 1, k)) for 1 < k ≤ n.

We begin by describing the kth stage Mk as a toric manifold Qk, in the sense of
Davis and Januszkiewicz [10]. We use the language of [6] to record additional
salient properties, and discuss the relationship with Grossberg and Karshon’s
construction [14] of the Mk as complex manifolds.

We write the k-dimensional torus as T k and denote a generic point t by
(t1, . . . , tk), where tj lies in the unit circle T < C for each 1 ≤ j ≤ k. The ith
coordinate subcircle is the subgroup

Ti = {t : tj = 1 for j 6= i}.
The torus T k acts coordinatewise on Ck, by multiplication; this is the standard
representation, whose quotient is the nonnegative cone Rk

>. Given a smooth,
orientable 2k–dimensional manifold L2k, we consider actions of T k which are
locally isomorphic to the standard representation, and whose quotient is home-
omorphic to a simple convex polytope P k. According to [10], the associated
projection map π : L2k → P k is a toric manifold.

Davis and Januszkiewicz show that every toric manifold may be represented
by a characteristic function λ, which assigns a primitive vector in Zk to each of
the facets F1, . . . , Fm of P k. The vectors λ(Fi) are uniquely defined up to sign;
moreover, λ(Fi1), . . . , λ(Fil) span an l-dimensional unimodular subspace of Zk

for every codimension–l face F = Fi1 ∩ · · · ∩ Fil of P k. Buchstaber and Ray [6]
insist that the λ(Fi) be directed, by choosing their signs. This is equivalent to
providing an epimorphism ` : Tm → T k, which they call a dicharacteristic. In
these circumstances, λ may be interpreted as a linear transformation Zm → Zk,
whose k ×m matrix (λi,j) describes the map of Lie algebras induced by `.

Davis and Januszkiewicz also provide a beautiful description of the inte-
gral cohomology ring H∗(L2k), which is an analogue of the Danilov-Jurkiewicz
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Theorem for toric varieties. Their description involves the (k− 1)–dimensional
simplicial complex KP , obtained by dualising the boundary of P k. The Stanley-
Reisner algebra of KP is the quotient Z[x1, . . . , xm]/R, where R is the ideal gen-
erated by those monomials xi1 · · ·xip which correspond to empty intersections
Fi1 ∩ · · · ∩ Fip = ∅.

Theorem 2.1 ([10], Theorem 4.14). The cohomology ring H∗(L2k) is isomor-
phic to the quotient

Z[KP ]
/
J ,

where J is the ideal generated by the images of the elements

(2.2) λj = λj,1x1 + · · ·+ λj,mxm for 1 ≤ j ≤ k.

Every facet Fi of P k lifts to a codimension–2 submanifold X(Fi) ⊂ L2k,
with normal 2–plane bundle νi. For any choice of dicharacteristic, the isotropy
subgroup of X(Fi) is the subcircle `(Ti) < T k, and is therefore oriented by `;
the associated tangent vector corresponds to λ(Fi) in the Lie algebra of T k.
Since the isotropy subgroup acts on the normal fibres, it follows that νi is also
oriented by `, for 1 ≤ i ≤ m. The Pontryagin-Thom collapse maps L2k → T (νi)
define 2–plane facial bundles ρi over L2k, and an orientation for νi is equivalent
to an orientation for ρi. In other words, ` identifies ρi as a complex line bundle
for every 1 ≤ i ≤ m, and reversing any of the constituent directions induces
complex conjugation on the corresponding ρi.

An omniorientation for L2k is given by an orientation and a choice of dichar-
acteristic. Following [6], the orientation equips the tangent bundle with an
isomorphism

(2.3) τ(L2k)⊕ R2(m−k) ∼=
m⊕

i=1

ρi,

and the dicharacteristic invests the right-hand side with a complex structure. In
other words, the omniorientation defines a canonical stably complex structure
on L2k; this is preserved by the action of T k, because the torus is connected.
Changing the orientation of L2k negates each structure.

In order to understand Qk from this viewpoint we study the standard action
of T 2k on (S3)k, induced by embedding the latter in C2k as the subspace

(2.4) {(y1, z1, . . . , yk, zk) : yjyj + zjzj = 1 for 1 ≤ j ≤ k}.
When k = 1 the quotient of this action is a curvilinear 1–simplex (or interval)
I = {(r, s) : r2+s2 = 1} in R2

>, so for general k it is a curvilinear cube Ik ⊂ R2k
> .

Given any list a = (a1, . . . , ak−1), we write T k(a) < T 2k for the k–dimensional
subtorus consisting of elements

{(u1, u1,u2, u
−a(1,2)
1 u2, . . . , uj , u

−a(1,j)
1 . . . u

−a(j−1,j)
j−1 uj , . . .

. . . , uk, u
−a(1,k)
1 . . . u

−a(k−1,k)
k−1 uk) : ui ∈ T for 1 ≤ j ≤ k}.

(2.5)

So T k(a) acts freely on (S3)k, and the quotient space Qk (or Qk(a), if the list
requires emphasis) is a smooth 2k–dimensional manifold. Moreover, the k–
torus T 2k/T k(a) acts on Qk, and has quotient Ik; we abbreviate T 2k/T k(a) to
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T k
a whenever it acts on Qk in this fashion. Readers may check that this action

is locally isomorphic to the standard representation, and that the projection
map Qk → Ik is a toric manifold. It is our toric model for Mk.

We follow [6] by writing the facets of Ik as Cε
h, where 1 ≤ h ≤ k and ε is 0

or 1. Here Cε
h is the (k − 1)–cube Ih−1 × (ε, 1− ε)× Ik−h in R2k

> , and m = 2k.
We order the facets as

(2.6) C0
1 , C1

1 , . . . , C0
h, C1

h, . . . , C0
k , C1

k ;

every intersection of the form C0
h ∩ C1

h is empty, whereas every other pair of
facets shares a common face. For any choice of dicharacteristic ` : T 2k → T k

a , the
isotropy subcircles of X(C0

h) and X(C1
h) are `(T2h−1) and `(T2h) respectively,

for 1 ≤ h ≤ k.
In order to describe a dicharacteristic explicitly, we pass to the correspond-

ing homomorphisms of Lie algebras. By restriction, we obtain a short exact
sequence

Zk(a) α−→ Z2k λ−→ Zk
a

of abelian groups. The monomorphism α is induced by (2.5), and its matrix is
2k × k, with jth column

(0, 0, . . . , 0, 0, 1, 1, 0,−a(j, j + 1), . . . , 0,−a(j, k))

for 1 ≤ j ≤ k. We use the facets (2.6) as a basis for Z2k, and note that the
vectors {λ(C1

h) : 1 ≤ h ≤ k} form a basis for Zk
a because

⋂
1≤h≤k C1

h is a vertex
of Ik. Finally, we choose our signs so as to ensure that the k× 2k matrix (λi,j)
is given by

(2.7)


1 −1 0 0 ... 0 0 0 0 ... 0 0 0 0

−a(1,2) 0 1 −1 ... 0 0 0 0 ... 0 0 0 0

...
...

−a(1,j) 0 −a(2,j) 0 ... −a(j−1,j) 0 1 −1 ... 0 0 0 0

...
...

−a(1,k) 0 −a(2,k) 0 ... −a(j−1,k) 0 −a(j,k) 0 ... −a(k−1,k) 0 1 −1

 ,

and the primitive vector associated to each facet of Ik is read off from its
columns. An orientation for Qk is given by combining our basis for Zk

a with an
orientation for Ik.

Remark 2.8. We could just as easily have begun with (2.7), and defined Qk

up to equivariant diffeomorphism by Davis and Januszkiewicz’s blowing down
construction. Nevertheless, we prefer to start with Qk; firstly because Bott and
Samelson construct Mk as a quotient of (S3)k, secondly because Grossberg and
Karshon follow suit, and thirdly because Davis and Januszkiewicz themselves
proceed in this order for classical cases such as CPk.

Functions between cubes (or the corresponding products (S3)k) induce nat-
ural maps of the associated Qk. For example, given l < k we may consider the
projection Ik → Ik−l, defined by collapsing C0

h onto C1
h for any l coordinates

h(1), . . . , h(l); it admits left inverses Ik−l → Ik, defined by identifying Ik−l

with C
ε(1)
h(1) ∩ · · · ∩ C

ε(l)
h(l) for any binary sequence (ε(q)). These functions induce
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maps

(2.9) Qk(a) −→ Qk−l(a′) and Qk−l(a′) −→ Qk(a),

where a′ is obtained from a by deleting all elements of the form a(i, j) for which
i or j = h(q) for some 1 ≤ q ≤ l.

The simplicial polytope dual to Ik is the k–dimensional crosspolytope [26],
and the corresponding Stanley-Reisner algebra is given by

Z[KIk ] = Z[x1, x
′
1, . . . , xk, x

′
k] / (xhx′h = 0 : 1 ≤ h ≤ k),

where xh and x′h correspond to C0
h and C1

h respectively. We may now substitute
the values for λi,j of (2.7) into (2.2), and apply Theorem 2.1.

Corollary 2.10. The integral cohomology ring H∗(Qk) is isomorphic to the
quotient Z[x1, . . . , xk]/Ik, where Ik denotes the ideal(

xj(xj − a(j − 1, j)xj−1 − · · · − a(1, j)x1) : 1 ≤ j ≤ k
)
.

It is important to extend Corollary 2.10 to the complex oriented cohomology
theories E∗(−) of Section 1. As we shall see, this may be accomplished from
the viewpoint of Section 3 by applying Lemma 7.2. Nevertheless, it also follows
from a generalisation of Theorem 2.1, in which λj is replaced by

λE
j = FE([λj,1]E , . . . , [λj,k]E)

for 1 ≤ j ≤ k; here FE denotes the formal group law associated to E, and [n]E

its n-series. The proof of this fact mimics that of Theorem 2.1.
Our construction of Qk leads immediately to the existence of canonical com-

plex line bundles µh, for 1 ≤ h ≤ k. They are defined by

(2.11) (S3)k ×T k(a) C −→ Qk,

where T k(a) acts on C by w 7→ u−1
h w. Writing the facial bundles of Qk as ρ0

h

and ρ1
h, we deduce by the methods of [6] that (2.7) gives rise to isomorphisms

ρ0
h
∼= µh and ρ1

h
∼= µh ⊗ µ(ah−1) of real 2–plane bundles. So (2.3) converts the

associated omniorientation into a stably complex structure

(2.12) τ(Qk)⊕ R2k ∼=
k⊕

h=1

µh ⊕
(
µh ⊗ µ(ah−1)

)
,

where µ(ah−1) stands for µ
a(1,h)
1 ⊗ · · · ⊗µ

a(h−1,h)
h−1 in the notation of (7.1). Each

of the other 22k − 1 possible dicharacteristics defines an alternative structure,
obtained by replacing the appropropriate facial bundles by their complex con-
jugates on the right-hand side of (2.12). These structures are important in
complex cobordism theory, and we consider their enumeration in Section 6.

Grossberg and Karshon [14] use a noncompact version of (2.5) to describe
Bott towers as complex manifolds. Given a list c = (c1, . . . , ck−1) of integral
vectors, they construct varieties Nk as the quotient of (C2 \ 0)k by a k-fold
algebraic torus Ck

×(c), under the action

(2.13) (w1, . . . , wk) · (y1, z1, . . . , yk, zk) =

(y1w1, z1w1, y2w2, w
c(1,2)
1 z2w2, . . . , ykwk, w

c(1,k)
1 w

c(2,k)
2 . . . w

c(k−1,k)
k−1 zkwk).
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By mimicing the standard analysis for CP k [18], we deduce that the corre-
sponding complex tangent bundle τC(Nk) admits a canonical isomorphism

(2.14) τC(Nk)⊕ Ck ∼= (C2 \ 0)k ×Ck
×(c) C2k,

where Ck
×(c) acts on C2k by extending (2.13).

As complex manifolds, Nk coincides with Qk, where the latter is determined
by the list a = −c (for which a(i, j) = −c(i, j) for all 1 ≤ i < j ≤ k). This
observation is used in [9] to relate the quotient cube Ik to the smooth fan
determining Qk. The right-hand side of (2.14) splits as a sum of line bundles,
and yields the stably complex structure

(2.15) τC(Qk)⊕ Ck ∼=
k⊕

h=1

µh ⊕
(
µh ⊗ µ(ah−1)

)
.

It follows that (2.12) and (2.15) agree, for the appropriate orientation of Qk.

3. Bott Towers

In this section we introduce Bott towers as iterated sphere bundles Mk,
and explain their relationship with the toric manifolds Qk. We describe the
cohomology rings E∗(Mk) for any of the complex oriented ring spectra E,
appealing repeatedly to the notation and background information of Section 7.
Our results extend earlier work [19] on bounded flag manifolds, and complement
the more geometric approach of [9]. We obtain an elementary decomposition
of the suspensions ΣMk into a wedge of Thom complexes, and consider two
natural complex structures on their stable tangent bundles.

Given any integer k ≥ 1, we assume that a (k−1)th stage Mk−1 has been con-
structed as a smooth orientable 2(k−1)–dimensional manifold with 2–generators
vE
j , and line bundles γj such that vE(γj) = vE

j , for 1 ≤ j ≤ k − 1. As above,
we write γ(ak−1) for the complex line bundle

γ
a(1,k)
1 ⊗ · · · ⊗ γ

a(k−1,k)
k−1

associated to a (k − 1)-tuple ak−1 = (a(1, k), . . . , a(k − 1, k)) in Zk−1. Fixing
ak−1, we refer to γ(ak−1) as the kth bundle of the construction, and define
Mk to be the total space of the smooth 2–sphere bundle of R ⊕ γ(ak−1); it is
orientable by the complex structure on γ(ak−1) and choice of normal vector.
By Lemma 7.2, we deduce that Mk has 2–generators vE

j for 1 ≤ j ≤ k, where
vE
k is the pullback of the Thom class tEk ∈ E2(T (γ(ak−1))) along the collapse

map qk. Moreover, tEk is the first Chern class of a canonical line bundle λk−1

over T (γ(ak−1)), so vE
k = vE(γk), where γk is defined as q∗kλk−1. Henceforth,

we abbreviate T (γ(aj)) to T (aj) for each 1 ≤ j ≤ n.
In order to get off the ground, it is convenient to write the one-point space as

M0, so that the first bundle is trivial and x0 = 0. Then M1 is a 2–sphere, which
may be oriented compatibly with CP1, and γ1 is the Hopf line bundle ζ(1). The
cohomology ring E∗(S2

+) is isomorphic to E∗[v]/(v2), where v = vE(ζ(1)) = sE
2 ,

and S2 is 2–generated with 2–rank 1. Of course the second bundle γ(a1) is
isomorphic to ζ(1)a(1,2) for some 1-term sequence a1 = (a(1, 2)).
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The construction is now complete, and the kth stage depends only on a list
(a1, . . . , ak−1). It is occasionally helpful to interpret the first bundle C as γ(a0).

We refer to the sequence (Mk : k ≤ n) of oriented manifolds as a Bott tower of
height n (which may be infinite); it is determined by the list a = (a1, . . . , an−1),
containing n(n − 1)/2 integers. If we choose the projective form of Mk for
every k, we obtain a tower of nonsingular algebraic varieties, whose orientations
coincide with those described above. Following Section 7, every Bott tower
involves projections pk : Mk → Mk−1, sections rk and r̃k : Mk−1 → Mk, and
quotient maps qk : Mk → T (ak−1), for each 1 ≤ k ≤ n.

Proposition 3.1. For any 1 ≤ k ≤ n there is a diffeomorphism φk : Qk →Mk,
which pulls γj back to µj for each 1 ≤ j ≤ k.

Proof. We proceed by induction on k, noting that φ1 is defined by factoring out
the action of T 1(a) = T on the domain of the canonical projection S3 → CP1.
So φ∗1γ1 = µ1 by definition.

For k ≥ 1 we assume that φk has been constructed with the stated properties.
Then φ∗kγ(ak) is given by

(S3)k ×T k(a) C −→ Qk,

where T k(a) acts on C by w 7→ u
−a(1,k+1)
1 . . . u

−a(k,k+1)
k w. It follows that the

projectivisation CP(φ∗k(C ⊕ γ(ak))) coincides with Qk+1, and we define φk+1

to be the resultant bundle map to CP(C⊕ γ(ak)). Then φ∗k+1γj takes the the
required form for 1 ≤ j ≤ k + 1. �

Bearing Proposition 3.1 in mind, we shall treat Mk and Qk as interchange-
able, and relate their properties by Proposition 3.1 as necessary. For example,
the projections pk and the sections rk and r̃k correspond to special cases of
(2.9), in which l = 1 and h(1) = k. Also, the complex structure on the projec-
tive form of Mk coincides with that of (2.15). Furthermore, the cohomology
ring of Mk may be computed as follows, in agreement with Corollary 2.10.

Proposition 3.2. For any complex oriented ring spectrum E, the E∗-algebra
E∗(Mk

+) is isomorphic to E∗[vE
1 , . . . , vE

k ]/IE
k , where IE

k denotes the ideal(
(vE

j )2 − vE(γ)vE
j : 1 ≤ j ≤ k

)
;

in particular, E2r(Mk
+) is the free E∗-module generated by monomials vE

R , as
R ⊆ [k] ranges over the subsets of cardinality r, and E∗(Mk

+) has total rank 2r.

Proof. The multiplicative structure follows from k − 1 applications of Lemma
7.2; the resulting relations imply the additive structure immediately. �

In the crucial cases E = H and K, we follow Section 7 by writing vE
j as xj in

H2(Mk
+; Z) and gj in K2(Mk

+) respectively, for 1 ≤ j ≤ k. The ideals IH
k and

IK
k are then described explicitly by (7.8). The structure of H∗(Mk

+; Z) shows
that the Euler characteristic of Mk is 2k, and is independent of a; this may also
be confirmed by straightforward geometric argument.

By way of example we consider the tower (Bk : 0 ≤ k), whose list satisfies
ak = (0, . . . , 0, 1) for all k ≥ 1. We studied this case in [19], where we explained
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its significance for complex cobordism theory. In later work [5] we interpreted
the points of Bk as complete flags 0 < U1 < · · · < Uk < Ck+1, bounded below
by the standard flag in the sense that the first j standard basis vectors lie in
Uj+1, for each 1 ≤ j ≤ k− 1. The resulting description of Bk as a bounded flag
manifold corresponds to the projective form CP(C ⊕ γk−1), and allows us to
display Bk as a toric variety.

From this point onwards we prefer the Thom complex interpretation of
Proposition 3.2, because of its relevance to our decomposition of ΣMk.

Proposition 3.3. Given any Bott tower (Mk : k ≤ n), there is a homotopy
equivalence

hk : ΣMk −→ ΣS2 ∨ΣT (a1) ∨ · · · ∨ΣT (ak−1),

for each 1 ≤ k ≤ n.

Proof. It suffices to apply Proposition 7.10 k−1 times; S2 appears as T (a0). �

With respect to Proposition 3.2, the homotopy equivalence hk induces the
additive splitting

E∗(Mk) ∼= 〈vE
≤1〉 ⊕ · · · ⊕ 〈vE

≤k〉
where 〈vE

≤j〉 denotes the free E∗-submodule generated by those monomials vE
R

for which R ⊆ [j] and j ∈ R. By construction, 〈vE
≤j〉 is the image of E∗(T (aj−1))

under the injection p∗k · · · p∗j+1q
∗
j , for each 1 ≤ j ≤ k; it is split by l∗j−1r

∗
j · · · r∗k,

where l∗j−1 is induced by the map ΣT (aj−1) → ΣM j−1 which collapses the
standard copy of M j−1 in T (R⊕ γ(aj−1)).

It is worth commenting on aspects of the case k = 2, which is influenced by
the fact that the isomorphism class of the SO(3)-bundle R⊕ ζ(1)a(1,2) depends
only on the parity of a(1, 2). So there are diffeomorphisms M2 → S2×S2 when
a(1, 2) = 2b is even, and M2 → S(R ⊕ ζ(1)) when a(1, 2) = 2b + 1 is odd. In
E-cohomology, they induce isomorphisms

E∗[v1, v2]/
(
v2
1, v

2
2 − 2bv1v2

) ∼= E∗[w1, w2]/(w2
1, w

2
2) and

E∗[v1, v2]/
(
v2
1, v

2
2 − (2b + 1)v1v2

) ∼= E∗[w1, w2]/
(
w2

1, w
2
2 − w1w2

)
,

(3.4)

(omitting the superscripts E), which are determined by the 2 × 2 matrices of
their actions on the column vector (v1, v2). Such matrices are exemplified by(

1 0
b 1

)
, for any integer b.

Having defined Mk as an iterated sphere bundle, we now apply Szczarba’s
results [22] to its tangent bundle. We obtain an isomorphism

(3.5) τ(Mk)⊕ R ∼= R⊕
k⊕

j=1

γ(aj−1)

of real bundles, which determines a stably almost complex structure τ ′ on Mk.
Since (3.5) extends over the 3–disk bundle of R⊕γ(ak−1), this structure bounds.
It therefore differs from that of (2.12) and (2.15).

Given a Bott tower of height n, we turn our attention to the projection
pn,k : Mn →Mk, defined as the composition pk+1 · · · pn for some k ≥ 1. This is
also a smooth bundle, whose fibre we wish to identify. In terms of the Qk, we
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are considering special cases of (2.9); for the projection, we take h(i) = k+ i for
1 ≤ i ≤ n− k, and for the inclusion of the fibre, we take h(i) = i for 1 ≤ i ≤ k.

Proposition 3.6. The fibre of pn,k is the (n − k)th stage of a Bott tower
((M ′)j : j ≤ n − k); it is determined by the list (a′1, . . . , a

′
n−k−1), where a′j is

formed from aj+k by deleting the first k entries, for each 1 ≤ j ≤ n− k − 1.

Proof. When we restrict the bundle γ(ak) to a point (M ′)0 in Mk, we obtain
the trivial bundle C, and Mk+1 pulls back to the fibre S2 of pk+1; we label this
fibre (M ′)1. We repeat the pullback procedure over (M ′)1, and continue until
we reach Mn−1. We find that γj restricts trivially to (M ′)n−k−1 for 1 ≤ j ≤ k,
and to γ′j−k for k < j ≤ n − 1. Thus γ(an−1) restricts to γ′(a′n−k−1), where
a′n−k−1 = (a(k+1, n), . . . , a(n−1, n)), and Mn pulls back to S(R⊕γ′(a′n−k−1)),
which we label (M ′)n−k. The construction ensures that (M ′)n−k is the inverse
image of (M ′)0 under pn,k, and is therefore the required fibre. �

Corollary 3.7. For each 1 < k < n, there is a commutative ladder of cofibre
sequences

(3.8)

T (a′k−2)
i−−−−→ T (ak−1)

f−−−−→ Σ2T (a′k−2)

q′k−1

x qk

x xΣ2q′k−1

(M ′)k−1 −−−−→
i

Mk −−−−→
f

Σ2(M ′)k−1
+

.

In E-cohomology, the homomorphisms induced by the upper sequence satisfy
i∗tEk = (t′)E

k−1, and f∗(Σ2i∗w(t′)E
k−1) = vE

1 wtEk for every w ∈ E∗(Mk−1). In
the lower sequence they satisfy i∗vE

j = (v′)E
j−1 for each 2 ≤ j ≤ k, with i∗vE

1 = 0,
and f∗(Σ2i∗vE

R) = vE
1 vE

R for every R ⊆ {2, . . . , k}, with f∗sE
2 = vE

1 .

Proof. The ladder arises by combining Proposition 3.6 with Proposition 7.11,
where X is Mk−1 and Y is Mk. Since the upper i arises from a bundle map it
satisfies i∗tEk = (t′)E

k−1, yielding i∗vE
k = (v′)E

k−1; the corresponding result holds
for j < k by projection onto M j , noting that (t′)E

0 = 0. Pulling sE
2 ⊗ wtEk

back around (7.14) confirms that f∗(Σ2i∗w(t′)E
k−1) = vE

1 wtEk in E∗(T (ak−1),
and applying (7.5) leads to the formula for f∗ on E∗(Σ2(M ′)k−1

+ ). �

Since all the spaces on view in Corollary 3.7 are 2-generated, the horizontal
cofibre sequences are cohomologically split. The formulae for i∗ and f∗ show
that the splitting of E∗(Mk

+) takes the form

E∗[vE
1 , . . . , vE

k ]/IE
k
∼=

E∗[(v′)E
1 , . . . , (v′)E

k−1]/(I ′)E
k−1)⊕ vE

1 E∗[(v′)E
1 , . . . , (v′)E

k−1]/(I ′)E
k−1,

(3.9)

and subsumes the splitting of E∗(T (ak−1)) as

〈vE
≤k〉 ∼= 〈(v

′)E
≤k−1〉 ⊕ vE

1 〈(v′)E
≤k−1〉.
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4. KO-Theory of Stages 1 and 2

The KO-theory of toric manifolds is considerably more subtle than its com-
plex counterpart, and is rarely free over the coefficients. Bahri and Bendersky
[2] have obtained interesting results using the Adams Spectral Sequence, al-
though their calculations are mainly additive and make little reference to the
geometry of vector bundles. Our goal is to describe KO∗(Mk) as a KO∗-algebra
for several families of Bott towers, in terms of the bundles that we have intro-
duced above. We also wish to understand the complexification homomorphism,
for application to stably complex structures and cobordism classes in Section 6.
Here we focus on M1 and M2, which act as base cases for inductive calculation
and are useful for establishing notation.

We appeal repeatedly to Bott’s exact sequence

(4.1) . . . −→ KO∗−1(X) ·e−→ KO∗−2(X)
χ−→ K∗(X) r−→ KO∗(X) −→ . . . ,

which links real and complex K-theory through the realification homomorphism
r. Here, ·e denotes multiplication by e, and χ is defined by composing com-
plexification c with multiplication by z−1. For any element g of K∗(X), the
difference g − g lies in the kernel of r, and hence in the image of χ. Moreover,

(4.2) c(r(g)) = g + g, and χ(r(zg)) = g − g.

On the other hand, r(c(h) = 2h for any h in KO∗(X). It is important to
remember that c is multiplicative, whereas r is not.

As in Fujii [12], we define elements ui in KO−2i(CPn) by ui = r(zi+1u(n))
for any integer i, where u(n) ∈ K2(CPn) arises in (1.1); as a ring, KO∗(CPn)
may then be described in terms of the ui. When n = 2, Fujii’s computations
stretch to an isomorphism

(4.3) KO∗(CP2
+) ∼= KO∗[ui : i ∈ Z]/F 2

of KO∗-algebras, where F 2 is the ideal(
eui, xui − 2ui+2, uiu2j , u2i+1u2j−1 − 4u2(i+j) : all i, j

)
.

The relations show that KO∗(CP2) is free of additive torsion, and that yui =
ui+4 for all i; it therefore suffices to use u0, u1, u2, and u3, as in [12], but
we retain the other ui for notational convenience. We note that (4.3) actually
defines a free K∗-module on a single generator ui, where zui is given by ui+1

for any i. This is equivalent to Wood’s well-known result [25] that KO ∧ CP2

is homotopy equivalent to K.
Further computations lead to an isomorphism

(4.4) KO∗(CP∞
+ ) ∼= KO∗[[ui : i ∈ Z]]/F∞

of KO∗-algebras, where F∞ is the ideal(
eui, xui − 2ui+2, uiuj − ui−2uj+2, u2i+1u2j−1 − (u0 + 4)u2(i+j) : all i, j

)
.

So KO2n(CP∞) is torsion-free, and isomorphic to u−nZ[[u0]] for any integer
n, whereas KO2n+1(CP∞) is zero. For any complex line bundle γ over a 2–
generated complex X, it is convenient to interpret the pull-back of ui along the
classifying map of γ as a characteristic class ui(γ) in KO−2i(X).
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It follows from (4.4) that KO∗(CP∞) is torsion free, and that KO ∧CP∞ is
homotopy equivalent to the wedge KO∧

(∨
k≥0 Σ4kCP2

)
. This equivalence may

also be deduced from the fact that a vector bundle is KO-orientable precisely
when it is Spin [1].

We consider ζ2 over CP∞, which is universal for complex line bundles with
Spin-structure, and utilise the Thom class tK of Lemma 7.2 in K2(T (ζ2)).

Lemma 4.5. There is a unique element t� in KO2(T (ζ2)) whose complexifi-
cation is given by c(t�) = ζtK ; it is a Thom class, and satisfies t2� = u−1t� in
KO4(T (ζ2)).

Proof. The existence of a Thom isomorphism KO∗−2(CP∞
+ ) ∼= KO∗(T (ζ2))

confirms that KO2n(T (ζ2)) is torsion free for n 6≡ 3 mod 4. So (4.1) reduces to
a short exact sequence

0 −→ KO2n(T (ζ2))
χ−→ K2n+2(T (ζ2)) r−→ KO2n+2(T (ζ2)) −→ 0,

for n = 1 and 2; thus c is monic, and if t� exists, it is unique.
The construction of tK implies that tK = ζ

2
tK , so that

c · r(z−1ζtK) = z−1(ζtK − ζtK) = 0;

hence r(z−1ζtK) = 0, and t� exists as required. It is a Thom class because ζtK

is a Thom class and c is a map of ring spectra. Moreover, (tK)2 = z−1(ζ2−1)tK ,
whence

c(t2�) = z−1(1− ζ
2)tK = z−1(ζ − ζ)c(t�) = c(u−1t�).

Thus t2� = u−1t� in KO4(T (ζ2)). �

The calculation of KO∗(T (a)) depends on the parity of a. When a = 2b
is even, ζ(1)a is Spin(2)-bundle, and is the pull-back of the universal example
along the map CP1 → CP∞ of degree b; thus t� pulls back to a Thom class
t in KO2(T (a)). We recall that KO∗(Sn) is a free KO∗-module on the single
generator sKO

n = sn ∈ KOn(Sn), such that s2
n = 0 for each n ≥ 0.

Proposition 4.6. When a is even, KO∗(T (a)) is isomorphic to

KO∗[s2, t]
/
(s2

2, t
2 − as2t)

as KO∗-algebras. When a is odd, there are elements mi in KO−2i(T (a)) such
that KO∗(T (a)) is isomorphic to

KO∗[mi : i ∈ Z]/F (a,m)

as KO∗-algebras, where F (a,m) is the ideal(
emi, xmi − 2mi+2, mim2j , m2i+1m2j−1 − 4am2(i+j) : all i, j

)
.

Proof. When a is even, the Thom isomorphism identifies KO∗(T (a)) with the
free KO∗-module on generators t and s2t. It therefore remains to evaluate
t2 in KO4(T (a)). But u−1(ζ(1)b) = r(z−1(ζ(1)b − 1)) in KO2(CP1), so t2 =
br(z−1(ζ(1)− 1))t = as2t, as required.

When a = 2b + 1 is odd, ζ(1)a is no longer KO-orientable. We proceed
by comparing the KO-theory of the cofibre sequences of S2 ∪aη e4 and CP2,
using the map f(a) : T (a) → CP2 which classifies ζ(1)a. We define mi as
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r(zi+1(1 − bzsK
2 )tK) when i is even, and r(zi+1tK) when i is odd. The action

of f(a)∗ then yields the algebra structure, by appeal to (4.3); alternatively, we
may apply complexification. �

A few observations are in order. Firstly, when a is even the suspension of aη is
null homotopic, so that ΣT (a) is homotopy equivalent to S3 ∨S5; equivalently,
the SO(3)-bundle R⊕ ζ(1)a is trivial. Secondly, the relations of Proposition 4.6
imply that t3 = 0. Thirdly, the action of f(a)∗ is computed from (4.1), and is
given by

(4.7) f(a)∗(ui) =


(2 + be2s2)t i = −1
bxs2t i = 0
xt i = 1
ays2t i = 2

and f(a)∗(ui) =

{
ami i ≡ 0(2)
mi i ≡ 1(2)

for a = 2b and 2b + 1 respectively. Fourthly, when a is odd, the generators
mi may be defined more systematically as r(zi+1ζ(1)btK); this description is
central to Theorem 5.7 below.

Proposition 4.6 shows that KO∗(T (a)) is free over KO∗ when a is even, and
over K∗ when a is odd. It may be interpreted in terms of spectra as providing
homotopy equivalences

(4.8) KO ∧ T (2b) ' KO ∧
(
S2 ∨ S4

)
and KO ∧ T (2b + 1) ' KO ∧CP2.

We may now proceed to M2 via Proposition 3.3, which ensures that there is
an additive isomorphism

(4.9) KO∗(M2) ∼= KO∗(S2)⊕KO∗(T (a))

of KO∗-modules. It remains to describe the products in KO∗(M2). To prepare
for our eventual notation, we write p∗2s2 as d1 in KO2(M2) and q∗2t as d2 in
KO2(M2), when a is even; when a is odd, we write q∗2mi as ni in KO−2i(M2),
for all i.

Proposition 4.10. When a is even, KO∗(M2
+) is isomorphic to

KO∗[d1, d2]
/
(d2

1, d2
2 − ad1d2)

as KO∗-algebras; when a is odd, it is isomorphic to

KO∗[d1, ni : i ∈ Z]
/(

F (a, n), d2
1, d1n2i, d1n2i+1 − 2n2i

)
.

Proof. It suffices to combine Proposition 4.6 with (4.9). When a is odd, the
extra relations follow by applying complexification, and noting that ni restricts
to 0 on M1 for all i. �

The odd case is crucial for Theorem 5.7, where it acts as base case (and
motivating example) for the inductive proof. The following corollary helps us
to enumerate stably complex structures on M2 in Section 6, and is immediate.

Corollary 4.11. In both cases, KO−2(M2) is isomorphic to Z2 as abelian
groups; bases are given by {xd1, xd2} when a is even, and {xd1, n1} when a is
odd.
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The isomorphisms of (3.4) extend to KO∗(M2), and may be described in
terms of (4.8) and Proposition 4.10.

5. KO-Theory of Bott Towers

We now return to the Bott tower (Mk : k ≤ n), determined by the list
a = (a1, . . . , an−1), and study inductive procedures for computing the KO∗-
algebra structure of KO∗(Mk) in favourable cases.

The work of Bahri and Bendersky [2] identifies the effect of smashing Mk

with the spectrum KO , and leads to a homotopy equivalence

(5.1) KO ∧N2n
+ ' KO ∧

n,n−2∨
p,q=0

αp∨
S2p ∨

βq∨
Σ2qCP2


for any toric manifold N2n. The BB-numbers αp and βq enumerate the sum-
mands for each p and q respectively. Bahri and Bendersky prove that their num-
bers are determined by the structure of H∗(N2n; F2) over A(1), the subalgebra
of the Steenrod algebra generated by Sq1 and Sq2. Two types of A(1)-module
are involved; the first is Σ2pM1, with one 2p–dimensional generator on which
Sq1 and Sq2 act trivially, and the second is Σ2qM2, with one 2q–dimensional
generator x such that Sq1x = 0 and Sq2x 6= 0. Then H∗(N2n; F2) decomposes
as a direct sum of these two types; the number of summands Σ2pM1 is αp, and
the number of summands Σ2qM2 is βq.

The additive part of our calculations recover (5.1) for two particular fam-
ilies of Bott towers, and provide representative bundles for the generators of
KO∗(Mk) as a geometrical bonus. We also point out how the BB-numbers
depend on the parity of the entries in a. Our families actually illustrate the
extreme cases, which range from βq = 0 for all q, to αp = 0 for all p > 1.

We begin by reverting to the notation of Section 7, and consider the complex
line bundle γ = γ

a(1)
1 ⊗ · · · ⊗ γ

a(m)
m over the 2–generated complex X.

When a(j) = 2b(j) is even for all 1 ≤ j ≤ m, we write γ
b(1)
1 ⊗· · ·⊗γ

b(m)
m as γ1/2.

So γ is Spin(2), and is obtained by pulling the universal example of Lemma 4.5
back along the classifying map for γ1/2. In particular, we obtain a Thom class
t ∈ KO2(T (γ)); it satisfies t2 = u−1(γ1/2)t, where u−1(γ1/2) = r(z−1(γ1/2− 1))
in KO2(X), and

c(t) =
∏
j≤m

(1 + zgj)−b(j)tK

in K0(T (γ)). We may now generalise the even case of Proposition 4.10.

Proposition 5.2. The KO∗-algebra KO∗(Y+) is a free module over KO∗(X+)
on generators 1 and dm+1, which have dimensions 0 and 2 respectively; the
multiplicative structure is determined by the single relation

(5.3) d2
m+1 = r

(
z−1
( ∏

j≤m

(1 + zgj)b(j) − 1
))

dm+1,

and dm+1 restricts to a generator on the fibre S2 ⊂ Y .
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Proof. We repeat the arguments of Lemma 7.2(2) with q∗t = dm+1 in KO2(Y ),
and apply the remarks above. �

It is sometimes preferable to leave (5.3) in the form d2
m+1 = u−1(γ1/2)dm+1,

and aim to express u−1(γ1/2) as a polynomial in the elements r(zigj). This
does not follow automatically from (5.3), because r is not multiplicative. The
simplest example is X = S2, where γ1/2 is given by ζb(1) and u−1(ζb(1)) reduces
to 2b(1)s2 in KO2(S2). We then recover the first part of Proposition 4.10.

If one or more of the integers a(j) is odd, the situation is less amenable. For
our current purposes, it is enough to recall that T (γ) admits a canonical complex
line bundle λ, defined by vH(λ) = tH . So tK is represented by z−1(λ − 1) in
K2(Tγ). The classes ui(λ) in KO−2i(T (γ)) play a major rôle in describing
KO∗(Y+).

Our main structure theorems refer to two particular families of Bott towers.
They are the totally even towers, for which the integers a(i, j) = 2b(i, j) are
even for all values of 1 ≤ i < j ≤ n, and the terminally odd towers, for which
the integers a(j − 1, j) = 2c(j) + 1 are odd for every 1 ≤ j ≤ n. It is possible
to deal with other cases by combining the two approaches.

Theorem 5.4. For any totally even Bott tower (Mk : k ≤ n), the KO∗-algebra
KO∗(Mk

+) is isomorphic to KO∗[d1, . . . , dk]/J te
k , where J te

k denotes the ideal(
d2

j − r
(
z−1
(∏

i<j

(1 + zgi)b(i,j) − 1
))

dj : 1 ≤ j ≤ k
)
;

for each 1 ≤ k ≤ n, the homotopy equivalence hk induces the KO∗-module
isomorphism

KO∗(Mk) ∼= 〈d≤1〉 ⊕ · · · ⊕ 〈d≤k〉,
where 〈d≤j〉 denotes the free submodule generated by those monomials dR for
which R ⊆ [j] and j ∈ R.

Proof. In this case the proof of Theorem 3.2 adapts directly, since all the rele-
vant KO∗-modules are free. �

As before, it may be preferable to rewrite the relations of J te
k as

(5.5) d2
j = u−1(γ

b(1,j)
1 ⊗ · · · ⊗ γ

b(j−1,j)
j−1 ) dj ,

and calculate u−1(γ
b(1,j)
1 ⊗ · · · ⊗ γ

b(j−1,j)
j−1 ) as a polynomial in d1, . . . , dj−1 for

each 1 ≤ j ≤ k. Amongst other formulae in KO∗(Mk), this approach yields

dj+1
j = 0 and d2

j =
(
a(1, j)d1 + · · ·+ a(j − 1, j)dj−1

)
dj modulo P∗,

where P∗ denotes the ideal generated by triple products.
Calculations for terminally odd towers are more intricate, and we begin with

the additive structure. It is convenient to index the generators by finite sets R
of positive integers. For every such R, we construct R+ by adding 1 to each
element, and 1; R+ by adjoining the integer 1 to the result. We obtain the
coproduct decomposition

(5.6) 2[k−1] e1−−→ 2[k] e2←−− 2[k−1],
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of power sets, where e1(R) = R+ and e2(R) = 1;R+. Given R ⊆ [k − 2] for
k ≥ 2, we construct R; k ⊂ [k] by adjoining the integer k.

So far as complex K-theory is concerned, we may apply this notation to the
ladder (3.8). The elements gRtKk in K∗(T (ak−1)) are of two types; those for
which R takes the form S+ for some S ⊆ [k − 3], so that i∗(gRtKk ) = g′S(t′)K

k−1,
and those for which R takes the form 1;S+, so that f∗(Σ2g′S(t′)K

k−1) = gRtKk .
The decomposition (5.6) then corresponds to the splitting (3.9). Of course,
q∗k(gRtKk ) = gR;k in K∗(Mk).

We may now construct the elements we need in KO-theory. For every integer
i, we define

m(R; k)i = r
(
zi+1γ

b(k)
k−1 gRtKk

)
in KO2(|R|−i)(T (ak−1)), as R ranges over subsets of [k − 2], and

n(R; j)i = r
(
zi+1γ

b(j)
j−1 gR;j

)
in KO2(|R|−i)(Mk), as R ranges over subsets of [j − 2], with 2 ≤ j ≤ k. Thus
q∗km(R; k)i = n(R; k)i for every R ⊆ [k − 2].

Theorem 5.7. For any terminally odd Bott tower (Mk : k ≤ n), the KO∗-
module KO∗(Mk

+) is generated by the elements{
d1, n(R; j)i : 2 ≤ j ≤ k

}
,

where R ranges over the subsets of [j− 2] and i ∈ Z; the submodule of relations
is generated by {

en(R; j)i, xn(R; j)i − 2n(R; j)i+2

}
for all R, j and i.

Proof. We proceed inductively, using the commutative ladder (3.8). We assume
that the result holds for terminally odd towers of height ≤ n− 1, where n ≥ 2,
and consider (Mk : k ≤ n), determined by a list (a1, . . . , an−1). The tower
((M ′)k : k ≤ n − 1) is determined by the list (a′1, . . . , a

′
n−2), where a′j−1 is

obtained from aj by deleting the first element; so it is also terminally odd, and
the inductive hypothesis applies.

We may therefore assume that KO∗(T (a′k−2)) is a free abelian group, gen-
erated by the elements m(S; k − 1)′i for S ⊆ [k − 3] and 0 ≤ i ≤ 3. So
KO∗(Σ2T (a′k−2)) is generated by their double suspensions, and both groups
are zero in odd dimensions. Since i∗γj = γ′j−1 in KO0((M ′)k−2 for every
2 ≤ j ≤ k − 1, it follows from Corollary 3.7 that i∗m(S+; k)i = m(S; k − 1)′i in
KO0((M ′)k−2, and f∗(Σ2m(S; k− 1)′i = m(1;S+; k)i in KO∗(T (ak)), for every
S ⊆ [k − 3] . Applying KO∗(−) to the ladder yields

δ←−−−− KO∗(T (a′k−2))
i∗←−−−− KO∗(T (ak−1))

f∗←−−−− KO∗(Σ2T (a′k−2))
δ←−−−−

(q′k−1)∗
y q∗k

y yΣ2(q′k−1)∗

←−−−−
δ

KO∗((M ′)k−1) ←−−−−
i∗

KO∗(Mk) ←−−−−
f∗

KO∗(Σ2(M ′)k−1
+ )←−−−−

δ

,

ensuring that the upper coboundary maps δ are zero for k ≥ 2, and that
the upper sequence splits as abelian groups. So KO∗(T (ak−1)) is also zero
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in odd dimensions, and generated by the m(S+; k)i and m(1;S+; k)i in even
dimensions; but these are precisely the elements m(R; k)i for R ⊆ [k − 2]. It
follows from Proposition 3.3 that q∗k injects KO∗(T (ak−1)) into KO∗(Mk) as
the summand generated by the elements n(R; k)i, for R ⊆ [k− 2]. The abelian
group structure of KO∗(T (ak−1)) ensures that complexification is monic, and
therefore that

en(R; k)i = 0 and xn(R; k)i = 2n(R; k)i+2

for all 2 ≤ j ≤ k. The remainder of the additive structure then follows from
the inductive hypothesis. The base case k = 2 is resolved by Proposition 4.10,
with m(∅; 2)i = mi and n(∅; 2)i = ni for all i. �

It follows from Theorem 5.7 that KO∗(Mk) is torsion free, except for a single
copy of Z/2 in each of the dimensions 0 and 1 mod 8, generated by e2yid1

and eyid1 respectively. This generalises the results obtained for Bk in [9], and
outlined in Example 5.13 below. Theorem 5.7 also implies that yn(R; j)i =
n(R; j)i+4 in KO∗(Mk), for any R, j, and i. We may therefore restrict the
choice of generators to i = 0, 1 2, and 3, for example; nevertheless, we usually
allow i to be arbitrary for notational convenience.

In order to understand the multiplicative structure of KO∗(Mk), we need to
evaluate products of the generators described in Theorem 5.7.

Proposition 5.8. For any R ⊆ [j − 2] and j > 2, we have that

d1n(R; j)i =

{
0 if 1 ∈ R

n(1;R; j)i otherwise
;

for any R′ ⊆ [j′ − 2], we have that

n(R; j)i n(R′; j′)i′ =

r
(
zi+j+2 γ

b(j)
j−1 gR;j

(
γ

b(j′)
j′−1gR′;j′ + (−1)j+1γ

b(j′)
j′−1 gR′;j′

))
.

(5.9)

In particular, n(R; j)i n(R′; j)i′ = 0 whenever 1 ∈ R ∩R′.

Proof. Theorem 5.7 implies that complexification is monic, modulo the sum-
mand KO∗(M1). Since n(R; j)i restricts to 0 in KO∗(M1) for every R, j, and
i, it suffices to prove the relations by applying c.

Now c(di) = g1, and c(n(R; j)i) = zi+1(γ b(j)
j−1 gR;j + (−1)i+1γ

b(j)
j−1 gR;j) in

K∗(Mk). Moreover, g2
1 = 0, so g1 = g1 and the first set of relations follows.

The second set is proven similarly, by noting that

c
(
r(x)r(y)

)
= cr(x(y + y))

for any elements x and y in KO∗(Mk). �

We would like to write (5.9) as an explicit KO∗-linear combination of the
generators d1 and n(R; j)i. In principle, this may be achieved by using the
expressions for gm and g2

m of (7.7) and (7.8) respectively; in practice, the cal-
culations increase rapidly in complexity. Examples 5.11 and 5.13 give a more
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detailed glimpse of the difficulties which characterise the multiplicative struc-
tures described in Theorem 5.4 and Proposition 5.8. Related calculations will
be presented in [11].

The following observations flow directly from Theorems 5.4 and 5.7.

Corollary 5.10. In the totally even case, the equivalence (5.1) reduces to

KO ∧Mk
+ ' KO ∧

∨
R⊆ [k]

S2|R| ;

thus αp =
(
k
p

)
for all 1 ≤ p ≤ k, and βq = 0 for all q. In the terminally odd

case, we have

KO ∧Mk
+ ' KO ∧

S2
+ ∨

k−2∨
h=0

∨
R⊆[h]

Σ2|R|CP2

 ;

thus αp = 0 for 2 ≤ p ≤ k, and βq =
∑k−2

h=q

(
h
q

)
for all 0 ≤ q ≤ k − 2.

Proof. In the totally even case, Theorem 5.4 confirms that KO∗(Mk
+) is addi-

tively generated over KO∗ by the monomials dR =
∏

R gj , as R ranges over the
subsets of [k].

In the terminally odd case, the torsion subgroup of KO∗(Mk) corresponds
to the summand KO ∧ S2. The proof of Theorem 5.7 combines with (4.8) to
show that

KO ∧ T (aj−1) ' KO ∧
(
(S2

+)∧(j−2) ∧ CP2
)

for all 1 ≤ j ≤ k, where the elements n(R; j)i correspond to the summand
Σ2|R|CP2 for every R ⊆ [j − 2]. The result now follows from Proposition
3.3. �

Corollary 5.10 illustrates the relationship between the BB-numbers and en-
tries in the list a. In the totally even case, Proposition 3.2 confirms that every
square is zero in H∗(Mk; F2), so Sq2 = 0; thus Σ2qM2 cannot occur in its
decomposition, and βq = 0 for all 1 ≤ j ≤ k, as required. In the terminally
odd case, we write the mod 2 reduction of the class xi as x′i. Then Proposition
3.2 confirms that Sq2x′1 = 0, and Sq2x′j ≡ x′j−1x

′
j modulo terms of the form

x′ix
′
j with i ≤ j − 2, for every 2 ≤ j ≤ k. Thus α1 = 1. A simple inductive

calculation reveals that H2q+2(Mk; F2) decomposes as

Sq2H2q(Mk; F2)⊕H2q+2,

where H2q+2 is generated by all monomials of the form x′Rx′j such that R ⊆
[j − 2] and |R| = q. Since Sq2 is injective on H2q+2, it follows that αp = 0 for
2 ≤ p ≤ k, and βq =

∑k−2
h=q

(
h
q

)
for all q, as required.

In order to illustrate these results, we discuss two examples.

Example 5.11. Let (Ak : k ≥ 0) be the totally even tower determined by the
integers a(i, j) = 0 for i ≤ j − 2, and a(j − 1, j) = 2, for any j ≥ 1. The
relation (5.5) reduces to d2

j = u−1(γj−1)dj , so we have to compute u−1(γj−1)
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in KO2(M j); this follows inductively from an understanding of the homomor-
phism f∗ : KO∗(CP∞)→ KO∗(T (ζ2)), where f is the map of Thom complexes
classifying ζ2. To calculate f∗, we extend the formulae of (4.7) in case b = 1,
and find

(5.12) f∗(ui) =


(2 + u0)t� i = −1
(e2 + u1)t� i = 0
(x + u2)t� i = 1
u3t� i = 2

.

We deduce that u−1(γj−1) is given by

b j−1
4
c∑

s=0

2ysdj−1 . . . dj−4s +
b j−2

4
c∑

s=0

e2ysdj−1 . . . dj−4s−1 +
b j−4

4
c∑

s=0

xysdj−1 . . . dj−4s−3.

Example 5.13. Let (Bk : k ≥ 0) denote the terminally odd tower of bounded
flag manifolds, determined by integers a(i, j) = 0 for i ≤ j−2 and a(j−1, j) = 1,
for all j ≥ 1. Then each b(j) is zero, and the generators n(R; j)i are defined by
r(zi+1gR;j) for every R ⊆ [j − 2]. Products of the form n(R; j)i · n(R′; j′)i′ are
given by

r
(
zi+j+2(gR;j gR′;j′ + (−1)j+1gR;j gR′;j′)

)
,

and are evaluated using the formulae

g2
m =

( ∑
∅ 6=S⊆[m−1]

z|S|−1gS

)
gm and gm = gm/(1 + zgm)

in K∗(Bk), for every 1 ≤ m ≤ k.

We may combine Theorems 5.4 and 5.7 to identify KO−2(Mk). As explained
in Section 6, these groups classify the stably almost complex structures on Mk.

Theorem 5.14. If the tower is totally even, then KO−2(Mk) is isomorphic to( ⊕
|R|≡1,−1(4)

Z
)
⊕
( ⊕
|R|≡0(4)

Z/2
)
,

where R ⊆ [k]; a basis is given by{
xy(|R|−1)/4dR, y(|R|+1)/4dR, e2y|R|/4dR

}
.

If the tower is terminally odd, then KO−2(Mk) is isomorphic to Z2k−1
; a basis

is given by
{
xd1, n(R; j)i

}
, where R ⊆ [j − 2] for 2 ≤ j ≤ k and i = |R|+ 1.

6. Stably Complex Structures

By way of conclusion, we apply our results to the study of stably complex
structures on certain families of Bott towers. We consider the enumeration
of those which arise from omniorientations, and discuss two particular special
cases; those which restrict to almost complex structures, and those which are
null-cobordant in ΩU

∗ . We summarise the appropriate definitions in order to
establish our notation.
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Full details of the results for (Bk : k ≥ 0) in Theorems 6.3, 6.6 and 6.8 are
provided in [8].

We write BU and BO respectively for the classifying spaces of the infinite
unitary and orthogonal groups, and let r : BU → BSO ⊂ BO denote a specific
choice of realification. The resulting maps

SO/U
f−→ BU r−→ BO

induce the K-theory exact sequence (4.1) for connected spaces X. Given a
smooth oriented manifold N , we assume that the stable tangent bundle is rep-
resented by a map τS : N → BSO, which we fix henceforth. A complex structure
on τS is given by a lift τ to BU, and is known as a stably complex structure, or
U-structure, on N ; it therefore consists of a factorisation τS = r · τ . We deem
two U -structures τ and τ ′ to be equivalent, or homotopic, whenever they are
homotopic through lifts of τS . Once τ is chosen, it leads to a complementary
lift of the stable normal bundle νS of N , and conversely; this correspondence
preserves homotopy classes.

If we begin with the opposite orientation for N , we obtain a second set of
U -structures and homotopy classes. They are distinct from those described
above, but correspond to them bijectively.

An almost complex structure on N is given by a complex structure on the tan-
gent bundle τ(N), and determines a compatible orientation. When N is a com-
plex manifold, it therefore admits a corresponding almost complex structure,
which stabilises to the underlying U -structure τC. An arbitrary U -structure
need not, of course, destabilise to τ(N), just as an almost complex structure
need not be integrable. Henceforth, we will deal only with complex connected
N , oriented compatibly, and will take τC to be the distinguished U -structure.
As explained in [20], we may then define a bijection between KO−2(N) and the
homotopy classes of U -structures on N . To each ∆ ∈ KO−2(N) there corre-
sponds a homotopy class of complex structures on the trivial bundle R2L, for
suitably large L, and the bijection associates the U -structure τ := τC ⊕ R2L to
∆. In other words, ∆(τ, τC) is the difference element of τ ; its image under χ is
represented by the virtual bundle τ − τC in K0(N).

So Theorem 5.14 identifies the totality of U -structures on the Bott tower
(Mk : k ≤ n). In the terminally odd case, χ is monomorphic and the structures
may be enumerated by identifying τC as an element of K0(Mk), then varying
τ − τC over the image of χ. This strategy was applied to the tower of bounded
flag manifolds (Bk : 0 ≤ k) in [9].

For more general purposes, it helps to follow the lead of Section 2, and define
a complex structure on an arbitrary vector bundle θ as an isomorphism g from
θ to a complex vector bundle ξ. The action of i on the fibres of θ is given
by conjugating its action on ξ by g, and homotopy classes of isomorphisms
correspond to homotopy classes of complex structures. An isomorphism of the
form τ(N)⊕Rm ∼= ξ therefore specifies a U -structure on N ; for example, (2.15)
defines the U -structure τC underlying the projective form of Mk.

A second isomorphism g′ : θ ∼= ξ defines a second complex structure θ′, which
differs stably from the first by a unique difference element ∆(θ′, θ) in KO−2(N).
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As above, its image under χ is represented by the virtual bundle θ′−θ in K0(N).
Whether or not χ is monic, ∆(θ′, θ) is constructed by expressing the trivial
bundle R2L as θ ⊕ θ⊥ for suitably large L, then taking the complex structure
induced by g′ on θ and by the Hermitian complement of g on θ⊥. We are
particularly interested in this situation when g′ is obtained from g by complex
conjugation; the difference element may then be described as follows.

Lemma 6.1. For any complex vector bundle ξ over N , the difference element
∆(ξ, ξ) is given by r(z(ξ − 1)) in KO−2(N).

Proof. It is sufficient to consider the universal bundle υ over a complex Grass-
mannian of the form U(W ⊕W ′)/U(W )×U(W ′), where W ⊕W ′ is isomorphic
to CL for suitably large L. Both ∆(υ, υ) and r(z(υ−C)) may be represented by
maps into Ω2SO(W ⊕W ′), obtained by adjointing Bott’s original periodicity
maps. Details of these are in [7], as are the techniques for proving that the two
maps are homotopic. �

For any Bott tower (Mk : k ≤ n), we write o(a, k) (or o(k) when the list a is
understood or irrelevant) for the number of homotopy classes of U -structures
which arise from an omniorientation on Mk. Thus 1 ≤ o(k) ≤ 22k. Applying
Lemma 6.1 and the splitting (7.9) to the U -structure τC of (2.15) identifies the
corresponding difference elements as

k∑
j=1

δj∆(γj , γj) +
k∑

j=1

εj∆
(
(γ(aj−1)− γj), (γ(aj−1)− γj)

)
=

k∑
j=1

(δj + εj)r(z2gj)−
k∑

j=1

εjr
(
z2
∏
i<j

(gi + 1)a(i,j)
)
,

(6.2)

where δj and εj are 0 or 1 for all 1 ≤ j ≤ k.
When k = 1, these reduce to 0, xd1 and 2xd1 in KO−2(M1), so that o(1) = 3.

When k = 2, Corollary 4.11 shows that we obtain the same elements, together
with their translates by

xd2, x(d2 − a(1, 2)d1), and x(2d2 − a(1, 2)d1)

when a(1, 2) is even, and

n2,1, n2,1 − a(1, 2)xd1, and 2n2,1 − a(1, 2)xd1

when a(1, 2) is is odd. So o(a, 2) = 9, 10, 11, and 12, as a(1, 2) = 0, ±1, ±2,
and |a(1, 2)| ≥ 3 respectively.

The calculations increase rapidly in complexity for general values of a(i, j).
Nevertheless, certain families of special cases yield interesting conclusions.

Theorem 6.3. For any Bott tower (Mk : k ≤ n), we have that

3k ≤ o(k) ≤ 3 · 4k−1

for each 1 ≤ k ≤ n. The maximum is attained by any tower for which the
inequality |a(k − 1, k)| ≥ 3 holds for all k, and the minimum by the tower
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((CP1)k : k ≥ 0); the tower of bounded flag manifolds (Bk : k ≥ 0) satisfies

o(k) =
dk/2e∑
i=0

(
k + 1

2i

)
2k−i.

Proof. We proceed by induction on k, having resolved the cases k = 1 and 2
above. We assume first that |a(k−1, k)| ≥ 3 for all k, and that o(k−1) = 3·4k−2.
For Mk, the difference elements (6.2) consist of pullbacks from Mk−1, plus their
translates by the three nonzero elements

(6.4) (δk + εk)r(z2gk) + δkr
(
z2
∏
j<k

(gj + 1)a(j,k)
)
.

These map to (δk+εk)(gk−gk)+δk

(∏
j<k(gj+1)a(j,k)−

∏
j<k(gj+1)a(j,k)

)
under

complexification, where −δka(k − 1, k)(gk−1 − gk−1) is the only term involving
gk−1. It follows that no such translates can result in coincident difference ele-
ments when |a(k − 1, k)| ≥ 3, and the initial induction is complete.

The tower ((CP1)k : k ≥ 0), on the other hand, has a(i, j) = 0 for all
values of i and j, and is totally even. The translation elements (6.4) then
reduce to (δk + εk)xdk, creating one coincidence for each element pulled back
from (CP1)k−1; this maximises the possible coincidences, and leads to o(k) =
3o(k − 1). So o(k) = 3k, represented by the difference elements

∑k
j=1 ωjxdj ,

where ωj = 0, 1, or 2 for each j.
The tower (Bk : k ≥ 0) has a(j − 1, j) = 1 for all j < k, and a(i, j) = 0

otherwise. Being terminally odd, we may follow Theorem 5.14, and work with
the complexifications

gk − gk, −(gk−1 − gk−1) + (gk − gk), and −(gk−1 − gk−1) + 2(gk − gk),

of the translation elements (6.4). These yield two coincidences for each element
of the (k − 2)th stage. In other words, o(k) satisfies the difference equation
o(k) = 4o(k − 1) − 2o(k − 2) for each k ≥ 2. Using the initial conditions
provided by k = 1 and 2, we may then apply standard techniques [17] to
deduce the required formula. The same arguments work when a(j − 1, j) = −1
and a(i, j) = 0 for i 6= j − 1. �

We emphasise that these results assume that an orientation has been fixed
for Mk, as do Theorems 6.6 and 6.8 below.

It transpires that the U -structure τ ′ of (3.5) is amongst those induced by an
omniorientation, whose difference element satisfies δj = 1 and εj = 0 in (6.2),
for all 1 ≤ j ≤ k.

Theorem 6.5. For any Bott tower (Mk : k ≤ n), the difference element
∆(τ ′, τC) is given by

∑k
j=1 r(z2gj) in KO−2(Mk).

Proof. We proceed by induction on k, choosing k = 0 as the base case because
the elements in question are both zero.

So we assume that the result is true For Mk−1, and consider the construction
of Mk. We observe that τ ′ and τC both arise by pulling back the corresponding
U -structures on Mk−1, and adding the bundle of tangents along the fibres.
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By induction, the structures on Mk−1 differ by
∑k−1

j=1 r(z2gj). Moreover, the
tangents along the fibres pull back from the corresponding bundles along the
fibres of the universal example over CP∞. In this case, KO∗(CP∞) is torsion
free, so that χ is monic and we may work in K0(CP∞). The relevant difference
element is therefore r(z2u), and pulls back to r(z2gk) over Mk. Adding the
results yields the required formula. �

The structure τC is the stabilisation of an almost complex structure, and we
would like to estimate how many others that are induced by an omniorientation
share this property. We recall from Section 3 our observation that the Euler
characteristic e(Mk) is 2k.

According to Thomas [23], the structures we seek are precisely those whose
kth Chern class coincides with e(Mk), and therefore with ck(τC). We may
compute the latter by combining (7.9) with (2.15) and writing the total Chern
class c(τC) as

(1− 2x1)
k∏

j=2

(1 + a(1, j)x1 + · · ·+ a(j − 1, j)xj−1 − 2xj).

We deduce that ck(τC) = (−2)kx1 . . . xk. This confirms the value of e(Mk),
and shows that the orientation class defined by the complex structure on the
projective form of Mk is the dual of (−1)kx1 . . . xk in H2k(Mk : Z).

Theorem 6.6. For any Bott tower (Mk : k ≤ n), the omniorientations induce
2k−1 distinct almost complex structures on Mk, for each 1 ≤ k ≤ n.

Proof. We may build up the total Chern class of every U -structure on Mk by
analogy with the proof of Theorem 6.3; when k = 1 we obtain 1− 2x1, 1 + 2x1

or 1. Only the first of these has the required c1, confirming the result for k = 1.
To obtain the kth stage, we multiply the (k − 1)th stage by one of the four

possible factors

1±
(
a(1, k)x1 + . . . + a(k − 1, k)xk−1

)
or

1±
(
a(1, k)x1 + · · ·+ a(k − 1, k)xk−1 − 2xk

)
.

(6.7)

The only way in which the monomial x1 . . . xk (or any of its equivalent forms
such as xk

k) can occur in the final product is by selecting one of the latter two
factors at this, and every previous, stage. There are 2k such possibilities in all,
distributed equally between ±2kx1 . . . xk.

It remains only to prove that there are no repetitions amongst the 2k−1

products with sign (−1)k. In fact all 2k structures have distinct c1, as a simple
computation shows. �

The relevance of bounded flag manifolds to complex cobordism theory was
first highlighted in [19]. Somewhat surprisingly, the most important U -structure
from this point of view is τ ′, which bounds. We would therefore like to know
how many bounding U -structures arise from the omniorientions of Mk. We
denote this number by b(k), and conclude with a brief analysis of its possible
values.
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Theorem 6.8. For any Bott tower (Mk : k ≤ n), we have that

3k−1 ≤ b(k) ≤ 3 · 4k−1 − 2k

for each 1 ≤ k ≤ n. The towers ((CP1)k : k ≥ 0) and (Bk : k ≥ 1) satisfy

b(k) = 3k − 2k and b(k) =
dk/2e∑
i=0

(
k

2i− 1

)
2k−i

respectively.

Proof. The lower bound arises from Theorem 6.3 by applying Szczarba’s con-
struction [22] to deduce that every U -structure on Mk−1 lifts to a bound-
ing U -structure on Mk. The upper bound arises from the fact that the kth
Chern number ck[Mk] of every bounding U -structure is zero. Applying (6.7)
shows that ck[Mk] 6= 0 for precisely 2k distinct U -structures, and the inequality
b(k) ≤ 3 · 4k−1 − 2k then follows from Theorem 6.3.

The 3k distinct U -structures on (CP1)k arise by choosing one of the three
possible structures for each factor CP1; one bounds, the other two do not. A
structure on the product bounds precisely when one or more of these k choices
bound, yielding b(k) = 3k− 2k. For Bk, we note from the proof of Theorem 6.3
that

b(k) = 2o(k − 1)− 2o(k − 2),
so b(k) satisfies b(k) = 4b(k − 1) − 2b(k − 2). But there are no bounding U -
structures on a point, and only one on M1; so b(0) = 0 and b(1) = 1. Solving
the difference equation gives the required formula. �

Many interesting questions remain to be answered about the rôle of Bott
towers in complex cobordism theory. We hope to return to these in future.

7. Appendix: 2–Generated Complexes

Most of the spaces with which we work are connected CW-complexes X whose
integral cohomology rings H∗(X; Z) are generated by a linearly independent
set of 2–dimensional elements x1, . . . , xm. We describe such an X as being
2–generated, and note that H2(X; Z) is isomorphic to the integral lattice Zm;
we refer to the elements xj as the 2–generators of X, and to m as its 2–rank.
We follow combinatorial convention by abbreviating the set {1, . . . ,m} to [m],
and denote the product

∏
R xj by xR for any subset R ⊆ [m]. The first Chern

class vH defines a canonical isomorphism between the multiplicative group of
complex line bundles over X and H2(X; Z), and so determines line bundles
γj such that vH(γj) = xj , for 1 ≤ j ≤ m. In general, it assigns the m-tuple
(a(1), . . . , a(m)) to the tensor product

(7.1) γ
a(1)
1 ⊗ · · · ⊗ γa(m)

m .

By definition, X lies in the category of CW-complexes whose cells are even
dimensional. Various observations of Hoggar [15] therefore apply to the abelian
group structure of KO∗(X), and are relevant to parts of Sections 4 and 5.

Given any of our complex oriented ring spectra E, the Chern classes vE(γj) =
vE
j lie in E2(X) for all 1 ≤ j ≤ m. The corresponding Atiyah-Hirzebruch
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spectral sequence collapses for dimensional reasons, and identifies E∗(X) as a
free E∗-module, spanned by the monomials vE

R ; in other words, it is generated
by vE

1 , . . . , vE
m as an E∗-algebra. An important, if atypical, example is provided

by CPn, which has a single 2–generator by (1.1).
The following results are well-known, and are usually obtained by applying

standard methods of Borel and Hirzebruch [3]. Our interests here, however, are
homotopy theoretic, and involve the stable triviality of certain cofibre sequences
of 2–generated complexes and associated Thom spaces. We therefore take the
opportunity to establish our notation by outlining proofs in this alternative
language.

We assume that X is 2–generated, and write γ for the line bundle (7.1). We
let Y denote the total space S(R⊕ γ) of the 2–sphere bundle obtained from γ
by the addition of a trivial real line bundle, and write p for the projection onto
X. Whenever X is a smooth manifold, we may assume that Y is also.

Lemma 7.2. The E∗-algebra E∗(Y+) is a free module over E∗(X+) on genera-
tors 1 and vE

m+1, which have dimensions 0 and 2 respectively; the multiplicative
structure is determined by the single relation

(7.3) (vE
m+1)

2 = vE(γ)vE
m+1,

and vE
m+1 restricts to sE

2 on the fibre S2 ⊂ Y .

Proof. The sphere bundle S(R ⊕ γ) admits a section r, given by +1 in the
summand R, and the quotient of the total space by the image of r is canonically
homeomorphic to the Thom complex T (γ) [21, page 66]. In the resulting cofibre
sequence

(7.4) X
r−→ Y

q−→ T (γ),

the quotient map q identifies the fibres S2 ⊂ Y and S2 ⊂ T (γ), and r has left
inverse p. The standard coaction of X on T (γ) interacts with the diagonal on
Y by the commutative square

(7.5)

Y −−−−→
q

T (γ)

δ

y yδ

Y × Y
(p,q)−−−−→ X+ ∧ T (γ)

.

The E-cohomology sequence induced by (7.4) is split by p∗, and is therefore
short exact. The Chern class vE induces a canonical Thom class tE ∈ E2(T (γ)),
and so determines a Thom isomorphism E∗−2(X+) ∼= E∗(T (γ)), which identifies
E∗(Y+) as the free E∗(X+)–module on generators 1 and vE

m+1 = q∗tE . The
diagram (7.5) confirms that products of the form p∗(x)vE

m+1 may be written as
q∗(xtE) for any x ∈ E∗(X); so the action of vE

m+1 is by multiplication in E∗(Y ).
Since δ∗(vE(γ)⊗ tE) = (tE)2, the formula for (vE

m+1)
2 follows. �

An obvious consequence of Lemma 7.2 is that Y is also 2–generated, and has
2–rank m + 1. We may rewrite vE(γ) in terms of the basis vE

1 , . . . , vE
m as

(7.6) vE(γ) = FE([a(1)]E , . . . , [a(m)]E)
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in E2(X), using the formal group law FE .
We shall apply these facts in the particular cases E = H and K, denoting the

elements vE
j by xj and gj respectively. Thus zgj is represented by the virtual

bundle γj − C in K0(X) for 1 ≤ j ≤ m, and complex conjugation acts by

(7.7) gj = γjgj = gj/(1 + zgj) =
∞∑
i=0

(−z)igi+1
j ;

the Chern character embeds K∗(X) in the ring H∗(X; Q[z, z−1]) by ch(gj) =
z−1(ezxj − 1), for 1 ≤ j ≤ m. The cases H and K correspond to the additive
and multiplicative formal group laws respectively, so the Chern classes (7.6) are
given by

vH(γ) = a(1)x1 + · · ·+ a(m)xm and

vK(γ) = z−1
( ∏

j≤m

(1 + zgj)a(j) − 1
)
.(7.8)

These are compatible under the action of the Chern character.
The universal example of Lemma 7.2 is given by X = CP∞ and γ = ζ;

it follows that T (γ) is also homeomorphic to CP∞, and that Y is homotopy
equivalent to CP∞ ∨ CP∞. Then E∗(Y+) is free over E∗[[v]] on generators 1
and v′, with (v′)2 = vv′. The general case may be deduced from this example
by pulling back along the classifying map for γ. Of course, we may restrict the
universal example to any skeleton X = CPn, in which case T (γ) is CPn+1.

There is a second section r̃ : X → Y , defined by −1 ∈ R. The resulting
composition q · r̃ : X → T (γ) reduces to the inclusion of the zero-section, giving
r̃ ∗tE = vE(γ).

The usual approach to Lemma 7.2 proceeds by identifying S(R⊕ γ) with its
projective form CP(C ⊕ γ). The corresponding canonical line bundle has first
Chern class vE

m+1, and is isomorphic to γm+1; it restricts to the Hopf bundle
ζ(1) over the fibre CP1. So γm+1 is a summand of the pullback C⊕ γ over Y ,
and has orthogonal complement γm+1 ⊗ γ with respect to the standard inner
product. The associated splitting

(7.9) C⊕ p∗γ ∼= γm+1 ⊕
(
γm+1 ⊗ p∗γ

)
gives rise to the relation (7.3), and will be useful in Section 6.

The cofibre sequence (7.4) also leads to the familiar relationship between the
homotopy types of X and Y .

Proposition 7.10. There is a homotopy equivalence

h : ΣY −→ ΣX ∨ΣT (γ)

of suspensions.

Proof. We define h as the sum Σp + Σq, and construct a homotopy inverse
ΣX∨ΣT (γ)→ ΣY by forming the wedge of Σr with the map l : ΣT (γ)→ ΣY
which collapses the standard copy of X in T (R⊕ γ). �
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The equivalence h induces an isomorphism in E-cohomology, which realises
the module structures of Lemma 7.2 by splitting E∗(Y+) as E∗(X+)⊕(vE

m+1). In
the universal example, h is a self equivalence of ΣCP∞∨ΣCP∞ and desuspends.

We shall need an extension of Lemma 7.2, in the situation when X itself is
the total space of a bundle θ over S2, with fibre X ′. We write γ′ for the pullback
of γ to X ′, and Y ′ for the total space S(R⊕ γ′); thus Y ′ is also the fibre of the
projection Y → S2.

Proposition 7.11. With the data above, there is a homotopy commutative
ladder of cofibre sequences

(7.12)

T (γ′) i−−−−→ T (γ)
f−−−−→ Σ2T (γ′)

q′
x q

x xΣ2q′

Y ′ −−−−→
i

Y −−−−→
f

Σ2Y ′
+

,

where the maps i are induced by inclusion of the fibre, and the maps f are
quotients.

Proof. We may construct X from two copies of D2×X ′ by identifying them along
their boundaries S1 × X ′ via the characteristic function of θ. Then X/i(X ′)
is homeomorphic to Σ2X ′

+. The same argument applies to Y/i(Y ′), yielding
cofibre sequences

(7.13) X ′ i−→ X
f−→ Σ2X ′

+ and Y ′ i−→ Y
f−→ Σ2Y ′

+.

The sections r′ : X ′ → Y ′ and r : X → Y are compatible with the inclusions i,
and the ladder follows by taking quotient maps q′ and q. �

The naturality of the ladder (7.12) leads to a commutative square

(7.14)

T (γ) −−−−→
f

Σ2T (γ′)

δ

y yε

X ∧ T (γ)
f∧1−−−−→ Σ2(X ′

+) ∧ T (γ)

,

where ε is the Thom complexification of the bundle map obtained by pulling
R2×γ back along the restricted diagonal X ′ → X ′×X. Alternatively, the square
may be considered as the quotient of the reduced diagonal T (γ) → X ∧ T (γ)
by its restriction T (γ′)→ X ′ ∧ T (γ).

The first sequence of (7.13) induces the Wang long exact sequence of θ in E-
cohomology, for any multiplicative spectrum E. Standard homotopy theoretic
arguments [24, pages 316–319] show that the connecting map Σ2X ′

+ → ΣX ′ is
induced from the characteristic map S1 ×X ′ → X ′ by suspension.
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