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Chapter 5
Matrix Sign Function

The scalar sign function is defined for z € C lying off the imaginary axis by

. 1, Rez > 0,
sign(z) = —1, Rez<O.

The matrix sign function can be obtained from any of the definitions in Chapter 1.
Note that in the case of the Jordan canonical form and interpolating polynomial
definitions, the derivatives sign'®)(z) are zero for k > 1. Throughout this chapter,
A € C™*™ is assumed to have no eigenvalues on the imaginary axis, so that sign(A)
is defined. Note that this assumption implies that A is nonsingular.

As we noted in Section 2.4, if A = ZJZ~! is a Jordan canonical form arranged
so that J = diag(Jy, J2), where the eigenvalues of J; € CP*P lie in the open left
half-plane and those of Jo € C7%? lie in the open right half-plane, then

sign(A) = Z [_OIP IO } zZ L (5.1)

q

Two other representations have some advantages. First is the particularly concise
formula (see (5.5))
sign(A) = A(A%)~Y2 (5.2)

which generalizes the scalar formula sign(z) = 2/(22)/2. Recall that B/? denotes the
principal square root of B (see Section 1.7). Note that A having no pure imaginary
eigenvalues is equivalent to A% having no eigenvalues on R~. Next, sign(A) has the
integral representation (see Problem 5.3)

2 o0
sign(A) = —A/ (t*1 + A%)~ ' dt. (5.3)
™ Jo
Some properties of sign(A) are collected in the following theorem.

Theorem 5.1 (properties of the sign function). Let A € C"*™ have no pure imagi-
nary eigenvalues and let S = sign(A). Then

(a) S? =1 (S is involutory);

(b) S is diagonalizable with eigenvalues +1;
(c) SA=AS;

(d) if A is real then S is real;

(

h

e) (I+5)/2 and (I —5S)/2 are projectors onto the invariant subspaces associated
the eigenvalues in the right half-plane and left half-plane, respectively.
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108 MATRIX SIGN FUNCTION

Proof. The properties follow from (5.1)—(5.3). Of course, properties (c) and (d)
hold more generally for matrix functions, as we know from Chapter 1 (see Theo-
rem 1.13 (a) and Theorem 1.18). 0

Although sign(A) is a square root of the identity matrix, it is not equal to I or
—1I unless the spectrum of A lies entirely in the open right half-plane or open left
half-plane, respectively. Hence, in general, sign(A) is a nonprimary square root of I.
Moreover, although sign(A) has eigenvalues £1, its norm can be arbitrarily large.

The early appearance of this chapter in the book is due to the fact that the sign
function plays a fundamental role in iterative methods for matrix roots and the polar
decomposition. The definition (5.2) might suggest that the sign function is a “special
case” of the square root. The following theorem, which provides an explicit formula
for the sign of a block 2 x 2 matrix with zero diagonal blocks, shows that, if anything,
the converse is true: the square root can be obtained from the sign function (see
(5.4)). The theorem will prove useful in the next three chapters.

Theorem 5.2 (Higham, Mackey, Mackey, and Tisseur). Let A, B € C"*"™ and sup-
pose that AB (and hence also BA) has no eigenvalues on R™. Then

(3 11 <)

Proof. The matrix P = [

axis, because if it did then P?
sign(P) is defined and

where C' = A(BA)~1/2.

cannot have any eigenvalues on the imaginary

[AB 0

0
B
=" B A] would have an eigenvalue on R™. Hence

sign(P) = P(P?)~1/2 = g ﬂ {Af BOA]_1/2
_[o A} [(AB)W 0 ]
1B 0 0 (BA)~1/2
[ o ABA-2] [0 ¢
= | BaB)-? 0 ] _. [D 0}

Since the square of the matrix sign of any matrix is the identity,

2
o o |0 C|” _|CD 0
=yt = |} 0] =1 el
so D = C~'. Alternatively, Corollary 1.34 may be used to see more directly that
CD = A(BA)"Y?B(AB)~'/2 is equal to I. O
A special case of the theorem, first noted by Higham [274, 1997], is

sign({? S‘D - [AOI/Q A(lﬂ . (5.4)

In addition to the association with matrix roots and the polar decomposition
(Chapter 8), the importance of the sign function stems from its applications to Ric-
cati equations (Section 2.4), the eigenvalue problem (Section 2.5), and lattice QCD
(Section 2.7).
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5.1 SENSITIVITY AND CONDITIONING 109

In this chapter we first give perturbation theory for the matrix sign function and
identify appropriate condition numbers. An expensive, but stable, Schur method for
sign(A) is described. Then Newton’s method and a rich Padé family of iterations,
having many interesting properties, are described and analyzed. How to scale and how
to terminate the iterations are discussed. Then numerical stability is considered, with
the very satisfactory conclusion that all sign iterations of practical interest are sta-
ble. Numerical experiments illustrating these various features are presented. Finally,
best L, rational approximation via Zolotarev’s formulae, of interest for Hermitian
matrices, is described.

As we will see in Chapter 8, the matrix sign function has many connections with
the polar decomposition, particularly regarding iterations for computing it. Some
of the results and ideas in Chapter 8 are applicable, with suitable modification, to
the sign function, but are not discussed here to avoid repetition. See, for example,
Problem 8.26.

5.1. Sensitivity and Conditioning
Associated with the matrix sign function is the matriz sign decomposition
A=SN, S=sign(4), N=(4%)Y2 (5.5)

To establish the decomposition note that N = S~'A = SA. Since S commutes
with A, N2 = A2, and since the spectrum of SA lies in the open right half-plane,
N = ( A2)1 /2.

The matrix sign factor N is useful in characterizing the Fréchet derivative of the
matrix sign function.

Let S+ AS = sign(A + AA), where the sign function is assumed to be defined in
a ball of radius ||AA| about A. The definition (3.6) of Fréchet derivative says that

AS — L(A, AA) = o(|| AA]), (5.6)

where L(A, AA) is the Fréchet derivative of the matrix sign function at A in the
direction AA. Now from (A + AA)(S + AS) = (S + AS)(A + AA) we have

AAS — ASA=SAA— AAS + ASAA— AAAS = SAA — AAS + o(||AA])), (5.7)
since AS = O(||AA]|). Moreover, (S + AS)? = I gives
SAS + ASS = —AS? = o(||AA]).
Premultiplying (5.7) by S and using the latter equation gives

NAS + ASN = AA — SAAS + o(|| AA])). (5.8)

Theorem 5.3 (Kenney and Laub). The Fréchet derivative L = Lggn(A, AA) of the
matriz sign function satisfies

NL + LN = AA — SAAS, (5.9)

where A = SN is the matriz sign decomposition.
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110 MATRIX SIGN FUNCTION

Proof. Since the eigenvalues of N lie in the open right half-plane, the Sylvester
equation (5.9) has a unique solution L which is a linear function of AA and, in view
of (5.8), differs from AS = sign(A + AA) — S by o(|| AA]|). Hence (5.6) implies that
L=L(A AA). O

By applying the vec operator and using the relation (B.16) we can rewrite (5.9)

as
Pvec(L) = (I, — ST® S) vec(AA),
where
P=IoN+N'®I.
Hence

max ||L(A, AA)||r = max ||[P7 (I, — ST® S)vec(AA)|2
|AAlF=1 AAlF=1

=P (L2 — ST® 9|2
The (relative) condition number of sign(A) in the Frobenius norm is therefore

1Al
EE

Fsign(A) = condyel(sign, A) = |[P7' (1,2 — ST® S)||2 (5.10)
If S = I, which means that all the eigenvalues of A are in the open right half-plane,
then cond(S) = 0, which corresponds to the fact that the eigenvalues remain in this
half-plane under sufficiently small perturbations of A.

To gain some insight into the condition number, suppose that A is diagonalizable:
A =Z7ZDZ ' where D = diag()\;). Then S = ZDsZ ' and N = ZDyZ ™', where
Dg = diag(o;) and Dy = diag(o;\;), with o; = sign()\;). Hence

1Al

(A =(ZT22)-I®DNy+Dy@I) (1,2 — DL® Ds)- (ZT @ Z71)|2 S

R,

sign
The diagonal matrix in the middle has elements (1 — 0;0;)/(0;\; + 0jA;), which are

either zero or of the form 2/|\; — A;|. Hence

Al
I51lF

Kgign(A) < 2r9(Z)? max{ :ReXjRe ) < 0} (5.11)

1
A = Al
Equality holds in this bound for normal A, for which Z can be taken to unitary.
The gist of (5.11) is that the condition of S is bounded in terms of the minimum
distance between eigenvalues across the imaginary axis and the square of the condition
of the eigenvectors. Note that (5.11) is precisely the bound obtained by applying
Theorem 3.15 to the matrix sign function.

One of the main uses of gy, is to indicate the sensitivity of sign(4) to perturba-
tions in A, through the perturbation bound (3.3), which we rewrite here for the sign
function as

[ sign(A + E) — sign(A)|| r
| sign(A)||r
This bound is valid as long as sign(A +tFE) is defined for all ¢ € [0,1]. It is instructive

to see what can go wrong when this condition is not satisfied. Consider the example,
from [347, 1995,

1E]lF
< by (A +o(|lE||p). 5.12
= Fsig ( )”A”F 0(” ||F) ( )

A = diag(1, —€?), E = diag(0, 2¢?), 0<e<xl.
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5.1 SENSITIVITY AND CONDITIONING 111

We have sign(A4) = diag(1,—1) and sign(A + E) = I. Because A is normal, (5.11)
gives Ky, (A) = (2/(1 4+ €2))||Al|r/V/2. Hence the bound (5.12) takes the form

sign
2 2

—_— <

V2 T V2(1+€2)

This bound is clearly incorrect. The reason is that the perturbation F causes eigenval-
ues to cross the imaginary axis; therefore sign(A + tE) does not exist for all ¢ € [0, 1].
Referring back to the analysis at the start of this section, we note that (5.7) is valid
for [|AA||r < ||E||r/3, but does not hold for AA = E, since then AS # O(||AA]).

Another useful characterization of the Fréchet derivative is as the limit of a matrix
iteration; see Theorem 5.7.

Consider now how to estimate rg,,(4). We need to compute a norm of B =
P=1(1,.— ST ®S). For the 2-norm we can use Algorithm 3.20 (the power method).
Alternatively, Algorithm 3.22 can be used to estimate the 1-norm. In both cases we
need to compute L(A, F), which if done via (5.9) requires solving a Sylvester equation
involving N; this can be done via a matrix sign evaluation (see Section 2.4), since N
is positive stable. We can compute L*(X, E) in a similar fashion, solving a Sylvester
equation of the same form. Alternatively, L(A, E) can be computed using iteration
(5.23) or estimated by finite differences. All these methods require O(n?) operations.

It is also of interest to understand the conditioning of the sign function for A ~
sign(A), which is termed the asymptotic conditioning. The next result provides useful
bounds.

2¢2 + 0(€?) = 2v/2€% + o(€?).

Theorem 5.4 (Kenney and Laub). Let A € C*"*" have no pure imaginary eigenval-
ues and let S = sign(A). If |(A = S)S|l2 < 1, then

2(1+[I(A=5)Sll2) — [[All2/lISIle — 2(1 = I(A = 5)S]l2)
In particular,
IS]3 — 1 15113 + 1
+ S Hsign(s) S + (514)

Proof. We need to bound |[|Lsign(A)|lF = g (AISIF/Allp.  Let AS =
Lgign(A, AA). Then by (5.9),

NAS + ASN = AA - SAAS,
where N = SA = AS. Defining G = AS — S? = N — I, we have
2A8 = AA — SAAS — GAS — ASG. (5.15)
Taking norms, using (B.7), leads to

(IIS113 + DI AA| F

AS||F < 5
145l < =5 e

which gives the upper bound.
Now let o = ||S]|2 and Sv = ou, u*S = ov*, where u and v are (unit-norm) left
and right singular vectors, respectively. Putting AA = vu™ in (5.15) gives

2AS = vu* — Svu*S — GAS — ASG = vu* — o?uv* — GAS — ASG.
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112 MATRIX SIGN FUNCTION

Hence
(IS13 = DIIAA[F = (0% = 1)[[AA|lF < 2| AS|p(1 + [|G]2),

which implies the lower bound.
Setting A = S in (5.13) gives (5.14). 0

Theorem 5.4 has something to say about the attainable accuracy of a computed
sign function. In computing S = sign(A) we surely cannot do better than if we
computed sign(f1(.5)). But Theorem 5.4 says that relative errors in S can be magnified
when we take the sign by as much as ||S||?/2, so we cannot expect a relative error in
our computed sign smaller than ||S||?u/2, whatever the method used.

5.2. Schur Method

The first method that we consider for computing sign(A) is expensive but has excellent
numerical stability. Because the method utilizes a Schur decomposition it is not
suitable for the applications in Sections 2.4 and 2.5, since those problems can be
solved directly by the use of a Schur decomposition, without explicitly forming the
sign function.

Let A € C™ "™ have the Schur decomposition A = QTQ*, where @ is unitary
and T is upper triangular. Then sign(A) = @ sign(T)Q* (see Theorem 1.13 (c)).
The problem therefore reduces to computing U = sign(T'), and clearly U is upper
triangular with w;; = sign(¢;;) = %1 for all i. We will determine u,; from the equation
U? = I when possible (namely, when u;; + u;; # 0), and from TU = UT otherwise
(in which case t;; # t;;), employing the Parlett recurrence (Algorithm 4.13) in this
second case.

Algorithm 5.5 (Schur method). Given A € C™"*™ having no pure imaginary eigen-
values, this algorithm computes S = sign(A4) via a Schur decomposition.

1 Compute a (complex) Schur decomposition A = QTQ*.
2wy =sign(ty), 1= Lin
3 forj=2n
4 fori=75—-1:-1:1
j—1
. Uik Uk 5
k=it P wii + uj; # 0,
j—
i — Ujj a1 Uity — gy
A Loimien (vt — Fiktiy), wii + uj; = 0.
tii = tjj tii —tj;
6 end
7 end
8 S=QUQ*

Cost: 25n2 flops for the Schur decomposition plus between n3/3 and 2n3/3 flops for
U and 3n? flops to form S: about 28%713 flops in total.

It is worth noting that the sign of an upper triangular matrix 7" will usually
have some zero elements in the upper triangle. Indeed, suppose for some j > i that
tii, tit1,i+1, - .-, tj; all have the same sign, and let T;; = T'(4: j,4: j). Then, since
all the eigenvalues of T;; have the same sign, the corresponding block S(i: j,i: j) of
S = sign(T) is +1. This fact could be exploited by reordering the Schur form so that
the diagonal of T is grouped according to sign. Then sign(T") would have the form

Copyright ©2008 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham.
This book is available for purchase at www.siam.org/catalog.



5.3 NEWTON’S METHOD 113

[iOI 31;111]7 where W is computed by the Parlett recurrence. The cost of the reordering

may or may not be less than the cost of (redundantly) computing zeros from the first
expression for u;; in Algorithm 5.5.

5.3. Newton’s Method

The most widely used and best known method for computing the sign function is the
Newton iteration, due to Roberts:

Newton iteration (matrix sign function):

1 _
Xir1 = 5 (Xe + Xy b, Xo=A (5.16)

The connection of this iteration with the sign function is not immediately obvious,
but in fact the iteration can be derived by applying Newton’s method to the equation
X? = I (see Problem 5.8), and of course sign(A) is one solution of this equation
(Theorem 5.1 (a)). The following theorem describes the convergence of the iteration.

Theorem 5.6 (convergence of the Newton sign iteration). Let A € C"*™ have no
pure imaginary eigenvalues. Then the Newton iterates Xy, in (5.16) converge quadrat-
ically to S = sign(A), with

1.
X1 = 1 < S 11X, X — S (5.17)

for any consistent norm. Moreover, for k > 1,
Xe=(I—-G¥)y" M I+G2)S, where Go=(A—S)(A+S)~L. (5.18)

Proof. For A = 7¢? we have \+\A~! = (r+7r~!) cos@+i(r —r~1)sin 6, and hence
eigenvalues of X}, remain in their open half-plane under the mapping (5.16). Hence
X}, is defined and nonsingular for all k. Moreover, sign(X}) = sign(Xy) = S, and so
X+ S = X, + sign(Xy) is also nonsingular.

Clearly the X}, are (rational) functions of A and hence, like A, commute with S.
Then

Xpp1 £8 =< (X + X, ' £29)

XN (XR£2X,S +1)

X (X, £ 9)%, (5.19)

NN~ DN

and hence

(Xp1 — ) (Xip1 +9) 7 = (Xk — S)(Xp +9) 1),
Defining Gy, = (Xp — S)(Xx + S)7!, we have Gyy1 = G2 = -+ = G2 Now
Go = (A—S)(A+ S)~! has eigenvalues (A —sign(\))/(\ +sign(A)), where X € A(A),
all of which lie inside the unit circle since A is not pure imaginary. Since Gy = G%k
and p(Gy) < 1, by a standard result (B.9) G, — 0 as k — co. Hence

X, =T —-GL) I +Gr)S — S ask— occ. (5.20)
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114 MATRIX SIGN FUNCTION

The norm inequality (5.17), which displays the quadratic convergence, is obtained by
taking norms in (5.19) with the minus sign. 0

Theorem 5.6 reveals quadratic convergence of the Newton iteration, but also dis-
plays in (5.18) precisely how convergence occurs: through the powers of the matrix
Gy converging to zero. Since for any matrix norm,

. 2k
ok ok |)\ - s1gn(/\)\
> =( m _— 21
I1Go Il = p(Go ) <)\€Aa(}§1) I\ + sign(\)| ’ (5.21)

It is clear that convergence will be slow if either p(A4) > 1 or A has an eigenvalue
close to the imaginary axis. We return to the speed of convergence in Section 5.5.
For the behaviour of the iteration when it does not converge, see Problem 5.11.

The Newton iteration provides one of the rare circumstances in numerical analysis
where the explicit computation of a matrix inverse is required. One way to try to
remove the inverse from the formula is to approximate it by one step of Newton’s
method for the matrix inverse, which has the form Yy = Y3 (2] — BY}) for computing
B~1; this is known as the Newton—Schulz iteration [512, 1933] (see Problem 7.8).
Replacing X, ' by X;,(21 — X?) in (5.16) (having taken Y}, = B = X},) gives

Newton—Schulz iteration:

1
Xpp1 = §Xk(3l - X?), Xo=A (5.22)

This iteration is multiplication-rich and retains the quadratic convergence of Newton’s
method. However, it is only locally convergent, with convergence guaranteed for
|I — A%|| < 1; see Theorem 5.8.

The Newton iteration also provides a way of computing the Fréchet derivative of
the sign function.

Theorem 5.7 (Kenney and Laub). Let A € C"*™ have no pure imaginary eigenval-
ues. With Xy, defined by the Newton iteration (5.16), let

1 - _
Yip = 5 (Y — X; 'YX Y, Yo=E. (5.23)
Then limy_,oo Y, = Lgign (4, E).

Proof. Denote by By, the Newton sign iterates (5.16) for the matrix B = [‘3 ﬁ],

which clearly has no pure imaginary eigenvalues. It is easy to show by induction that
By = [X’“ Y’“]. By Theorem 5.6 and (3.16) we have

0 Xy
. | sign(A) Lgign(4A, E)
By, — sign(B) = 0 sign(A)
The result follows on equating the (1,2) blocks. 0
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5.4 THE PADE FAMILY OF ITERATIONS 115

5.4. The Padé Family of Iterations

The Newton iteration is by no means the only rational matrix iteration for computing
the matrix sign function. A variety of other iterations have been derived, with various
aims, including to avoid matrix inversion in favour of matrix multiplication, to achieve
a higher order of convergence, and to be better suited to parallel computation. Ad hoc
manipulations can be used to derive new iterations, as we now indicate for the scalar
case. By setting yi = m,;l in the Newton formula 11 = (2 + x;l)/Q, we obtain
the “inverse Newton” variant

2y

Ik =a, 5.24
yz 1 Yo ( )

Ye+1 =

which has quadratic convergence to sign(a). Combining two Newton steps yields
Yk+2 = (Y +6y2 +1)/(4y, (v + 1)), and we can thereby define the quartically con-
vergent iteration

Y+ 6y + 1
4y, (yp +1)°

While a lot can be done using arguments such as these, a more systematic development
is preferable. We describe an elegant Padé approximation approach, due to Kenney
and Laub [343, 1991], that yields a whole table of methods containing essentially all
those of current interest.

For non—pure imaginary z € C we can write

Yk+1 = Yo = a.

R P I e TR DEAR (O e

(5.25)

where £ = 1 — 22, Hence the task of approximating sign(z) leads to that of approxi-
mating

h(g) = (1-¢7 V2, (5.26)

where we may wish to think of £ as having magnitude less than 1. Now A is a
particular case of a hypergeometric function and hence much is known about [¢/m]
Padé approximants 7,,. () = P (§)/8., (&) to h, including explicit formulae for pey,
and gg,. (See Section 4.4.2 for the definition of Padé approximants.) Kenney and
Laub’s idea is to set up the family of iterations

p@m(l — !Ei)
Tet1 = fom(Th) = 28 =" —37, Ty = a. (5.27)
Table 5.1 shows the first nine iteration functions fg,, from this family. Note that fi;
gives Halley’s method (see Problem 5.12), while f1o gives the Newton—Schulz iteration
(5.22). The matrix versions of the iterations are defined in the obvious way:

Padé iteration:

X1 = kaém(l - X/%)Qem(l - Xlg)ila Xo = A. (528)

Two key questions are “what can be said about the convergence of (5.28)?” and “how
should the iteration be evaluated?”
The convergence question is answered by the following theorem.
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116 MATRIX SIGN FUNCTION

Table 5.1. Iteration functions fem from the Padé family (5.27).

m=0 m=1 m =2
2x 8x
t=0 v 1+ z2 3+ 6x2 — 24
=1 T (3 42) z(3 4 2?) 4a(1 + 2?)
1+ 3z2 1+ 622 + a4
x x (1541022 — ) x(5 4 1022 + z*)
=2 | Z(15— 102> HoZ
¢ g =107 +30) s 1+ 1022 + 524

Theorem 5.8 (convergence of Padé iterations). Let A € C"*"™ have no pure imagi-
nary eigenvalues. Consider the iteration (5.28) with £ +m > 0 and any subordinate
matrix norm.

(a) For¢>m—1, if |I—A?%| <1 then Xy — sign(A) as k — oo and |[I — X}|| <
1= Az e,

(b) For{=m—1 and £ =m,

(S = Xp)(S + X3) 7! = [(5 — A)(5 + 4) 7] T

and hence X, — sign(A) as k — oo.

Proof. See Kenney and Laub [343, 1991]. O

Theorem 5.8 shows that the iterations with £ = m — 1 and ¢ = m are globally
convergent, while those with £ > m 4+ 1 have local convergence, the convergence rate
being ¢ +m + 1 in every case.

We now concentrate on the cases ¢ = m — 1 and £ = m which we call the principal
Padé iterations. For these ¢ and m we define

9r(%) = Gom41(2) = fom (). (5.29)

The g, are the iteration functions from the Padé table taken in a zig-zag fashion from
the main diagonal and first superdiagonal:

2 (3 + 2?%)
qi(z) ==, g2(z) = 1+ a2 g3(z) = 1+ 322
4z(1 + 2?) 2(5 + 1022 + z4) 2(6 + 2022 + 624)
94(r) = ———5—"2, gs(x) = s =1 96(@)= 5 6
14622+« 1+ 10x% + bx 1+ 1522 + 152* +

We know from Theorem 5.8 that the iteration Xj11 = g,(X)) converges to sign(Xp)
with order r whenever sign(Xj) is defined. These iterations share some interesting
properties that are collected in the next theorem.

Theorem 5.9 (properties of principal Padé iterations). The principal Padé iteration
function g, defined in (5.29) has the following properties.

(42 =1 =)
(a) gr(‘r) - (1 + LL’)T + (1 _ l‘)r .
pr(x) and q.(x) are, respectively, the odd and even parts of (1 + x)".

In other words, g.(x) = p.(x)/q-(x), where

Copyright ©2008 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham.
This book is available for purchase at www.siam.org/catalog.



5.4 THE PADE FAMILY OF ITERATIONS 117

(b) g,(z) = tanh(r arctanh(x)).

(¢) g9,.(95(x)) = g,s(x) (the semigroup property).
(d) g, has the partial fraction expansion

7521
2 / T
g,(x) = - 2( (2i+1) (2i4+1)7
r i=0 sin (Tﬂ') + COS2 (T) 1'2

, (5.30)

where the prime on the summation symbol denotes that the last term in the sum is
halved when r is odd.

Proof.
(a) See Kenney and Laub [343, 1991, Thm. 3.2].
(b) Recalling that tanh(z) = (e* —e™®)/(e” + e~ %), it is easy to check that
1 1
arctanh(x) = 3 log ( + :1:) .

1—x

Hence

1 +x)r/2

rarctanh(z) = log (1
-z

Taking the tanh of both sides gives

(1+J}>T/2_ (1_x>r/2
tanh(r arctanh(z)) = L L _a

(1+x)"/2+ (1 —x>’“/2 (112)% (1—z)r

1—2

(c) Using (b) we have

9, (g5(x)) = tanh(r arctanh(tanh(s arctanh(x)))) = tanh(rs arctanh(x))
= 9rs (x)

(d) The partial fraction expansion is obtained from a partial fraction expansion for
the hyperbolic tangent; see Kenney and Laub [345, 1994, Thm. 3]. 0

Some comments on the theorem are in order. The equality in (a) is a scalar equiv-
alent of (b) in Theorem 5.8, and it provides an easy way to generate the g,.. Property
(c) says that one rth order principal Padé iteration followed by one sth order iteration
is equivalent to one rsth order iteration. Whether or not it is worth using higher order
iterations therefore depends on the efficiency with which the different iterations can
be evaluated. The properties in (b) and (c) are analogous to properties of the Cheby-
shev polynomials. Figure 5.1 confirms, for real x, that g,(x) = tanh(r arctanh(x))
approximates sign(z) increasingly well near the origin as r increases.

Some more insight into the convergence, or nonconvergence, of the iteration 1 =
gr(xy) from (5.29) can be obtained by using Theorem 5.8 (b) to write, in polar form,

1€ = (s = wpp)(s F o) "= (s — ) (s + )T = [oee’™ ]
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Figure 5.1. The function g,.(z) = tanh(r arctanh(z)) for r = 2,4, 8,16.

where s = sign(zp). Hence
Pl+1 = P Ok+1 = rb.

These relations illustrate the convergence of xj to s for zg off the imaginary axis,
since pp < 1. But they also reveal a chaotic aspect to the convergence through 6,
which, in view of the periodicity of e*, can be written

Ox+1 = r0x mod 2. (5.31)

This recurrence can be described as a linear congruential random number generator
[211, 2003, Sec. 1.2], [357, 1998, Sec. 3.2], though with a real, rather than integer,
modulus. If zg is pure imaginary then the iteration does not converge: pp = 1, oy
remains pure imaginary for all k, and (s — x,)(s + x3) ~! wanders chaotically around
the circle of radius 1 centred at the origin; see also Problem 5.11.

We turn now to evaluation of the matrix iteration X; 1 = g,(X;). As discussed
in Section 4.4.2, several approaches are possible, based on different representations of
the rational iteration function g,. Evaluating gi(X;) as the ratio of two polynomials
may require more flops than via the partial fraction expansion (5.30). For example,
evaluating gs from the formula (3 + #%)/(1 + 32?) at an n x n matrix requires 62n?
flops, whereas (5.30) can be written as

g3(z) = % (x + %) (5.32)

and evaluated in 4§n3 flops. An attractive feature of the partial fraction expansion

(5.30) is that it comprises [752] independent matrix inversions (or multiple right-

hand side linear systems), which can be carried out in parallel.

Copyright ©2008 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham.
This book is available for purchase at www.siam.org/catalog.
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5.5. Scaling the Newton Iteration
For scalar a, the Newton iteration (5.16) is
1 _
Tpy1 = §(xk + ), X = a, (5.33)

which converges to sign(a) = +£1 if a is not pure imaginary. This is precisely Newton’s
method for the square root of 1 and convergence is at a quadratic rate, as described by
(5.17). Once the error is sufficiently small (in practice, less than, say, 0.5), successive
errors decrease rapidly, each being approximately the square of the previous one (see
(5.19)). However, initially convergence can be slow: if |zx| > 1 then g1 ~ 4/2
and the iteration is an expensive way to divide by 2! From (5.18) and (5.21) we also
see that slow convergence will result when a is close to the imaginary axis. Therefore
a way is needed of speeding up the initial phase of convergence in these unfavourable
cases. For matrices, the same comments apply to the eigenvalues, because the New-
ton iteration (5.16) is effectively performing the scalar iteration (5.33) independently
on each eigenvalue. However, the behaviour of the matrix iteration is not entirely
determined by the eigenvalues: nonnormality of A can delay, though not prevent,
convergence, as the following finite termination result shows.

Theorem 5.10 (Kenney and Laub). For the Newton iteration (5.16), if Xj, has eigen-
values £1 for some k then Xy, = sign(A) for 27 > m, where m is the size of the
largest Jordan block of Xy, (which is no larger than the size of the largest Jordan block

of A).

Proof. Let X, have the Jordan form X, = ZJ,Z~', where J, = D + N, with
D = diag(£1) = sign(Jy) and Ny, strictly upper triangular. Ny has index of nilpotence
m, that is, N;* = 0 but all lower powers are nonzero. We can restrict our attention
to the convergence of the sequence beginning with Jj to diag(£1), and so we can set
7 = I. The next iterate, X1 = D + Ni1, satisfies, in view of (5.19),

1.
Niy1 = §Xk INZ.

Since Ny has index of nilpotence m, N1 must have index of nilpotence [m/2]. Ap-
plying this argument repeatedly shows that for 2P > m, Nj, has index of nilpotence
1 and hence is zero, as required. That m is no larger than the order of the largest
Jordan block of A follows from Theorem 1.36. O

An effective way to enhance the initial speed of convergence is to scale the iterates:
prior to each iteration, Xy is replaced by pur Xk, giving the scaled Newton iteration

Scaled Newton iteration:

X1 = = (X + ' XY, Xo=A (5.34)

N | —

As long as py is real and positive, the sign of the iterates is preserved. Three main
scalings have been proposed:

determinantal scaling: gz = | det(Xy)|~Y/™, (5.35)

spectral scaling: u = \/p(Xz ")/p(X4), (5.36)
norm scaling: i = /|| X |/ Xl (5.37)
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For determinantal scaling, | det(u;X%)| = 1, so that the geometric mean of the eigen-
values of Xy has magnitude 1. This scaling has the property that g minimizes
d(ukXy), where

n
d(X) = > (log |Ail)?
i=1
and the are \; the eigenvalues of X. Hence determinantal scaling tends to bring the
eigenvalues closer to the unit circle; see Problem 5.13.

When evaluating the determinantal scaling factor (5.35) some care is needed to
avoid unnecessary overflow and underflow, especially when n is large. The quan-
tity pgr should be within the range of the floating point arithmetic, since its re-
ciprocal has magnitude the geometric mean of the eigenvalues of X} and hence
lies between the moduli of the smallest and largest eigenvalues. But det(X}) can
underflow or overflow. Assuming that an LU factorization PX) = LiUj is com-
puted, where Uy, has diagonal elements u;;, we can rewrite px = |uqy .. . unn\*l/” as
i = exp((—=1/n) Y1 log|ui;|). The latter expression avoids underflow and over-
flow; however, cancellation in the summation can produce an inaccurate computed
Uk, SO it may be desirable to use one of the summation methods from Higham [276,
2002, Chap. 4].

For spectral scaling, if A,,,..., A1 are the eigenvalues of X} ordered by increasing
magnitude, then pp = [A1 )\n|*1/ 2 and so i Xp has eigenvalues of smallest and largest
magnitude |uxAn| = [An/M |2 and |pupAi] = |A1/Aa|'/2. If A\; and A, are real, then
in the Cayley metric

. ~ flz—=1]/lz+1], Rez >0,
C(x,sign(x)) := { |z +1|/|z — 1|, Rez <0,

kA is the same distance from sign(\,) as ppA; is from sign(A;1), so in this case
spectral scaling equalizes the extremal eigenvalue errors in the Cayley metric. The
norm scaling (5.37) can be regarded as approximating the spectral scaling.
What can be said about the effectiveness of these scaling strategies? In general,
all of them work well, but there are some specific advantages and disadvantages.
Spectral scaling is essentially optimal when all the eigenvalues of A are real; indeed
it yields finite termination, as the following result shows.

Theorem 5.11 (Barraud). Let the nonsingular matriz A € C™*™ have all real eigen-
values and let S = sign(A). Then, for the Newton iteration (5.34) with spectral scaling,
Xi+p—1 = sign(A), where d is the number of distinct eigenvalues of A and 2P > m,
where m is the size of the largest Jordan block of A.

Proof. We will need to use the following easily verified properties of the iteration
function f(z) = §(z + 1/z):

flz) = f(1/2), (5.38a)

0<zo<z1 <1 or 1<z <z = 1< f(x1)< f(z2). (5.38Db)

Let the eigenvalues of Xy = A, which we know to be real, be ordered [A,| < -+ < |\q].
Then, from (5.36), o = |AnA1|~/2, and the eigenvalues of 1o Xy have moduli lying
between |poAn| = [An/A1|Y? and |poA1| = [M1/An|'/?. These values are reciprocals,
and hence by (5.38a), and since the eigenvalues are real, A, and A; are mapped
to values with the same modulus. By (5.38b) these values are the eigenvalues of
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5.6 TERMINATING THE ITERATIONS 121

X; of largest modulus. Hence X; has eigenvalues )\51) satisfying |)\£11)\ < - <
|/\él)| = |/\§1)|. Each subsequent iteration increases by at least 1 the number of

eigenvalues with maximal modulus until, after d — 1 iterations, X4;_1 has eigenvalues
of constant modulus. Then py—1X4—1 has converged eigenvalues +1 (as does Xg).
By Theorem 5.10, at most a further p iterations after Xy 1 are needed to dispose of
the Jordan blocks (and during these iterations uyx = 1, since the eigenvalues are fixed
at £1). 0

For 1 x 1 matrices spectral scaling and determinantal scaling are equivalent, and
both give convergence in at most two iterations (see Problem 5.14). For 2 x 2 matrices
spectral scaling and determinantal scaling are again equivalent, and Theorem 5.11
tells us that we have convergence in at most two iterations if the eigenvalues are
real. However, slightly more is true: both scalings give convergence in at most two
iterations for any real 2 x 2 matrix (see Problem 5.14).

Determinantal scaling can be ineffective when there is a small group of outlying
eigenvalues and the rest are nearly converged. Suppose that A has an eigenvalue
109 (¢ > 1) with the rest all 1. Then determinantal scaling gives p = 1079/,
whereas spectral scaling gives pj, = 10~%/2; the former quantity is close to 1 and hence
the determinantally scaled iteration will behave like the unscaled iteration. Spectral
scaling can be ineffective when the eigenvalues of A cluster close to the imaginary
axis (see the numerical examples in Section 5.8).

All three scaling schemes are inexpensive to implement. The determinant det(X})
can be computed at negligible cost from the LU factorization that will be used to
compute X, !, The spectral scaling parameter can be cheaply estimated by applying
the power method to X and its inverse, again exploiting the LU factorization in the
latter case. Note, however, that for a real spectrum spectral scaling increases the
number of eigenvalues with maximal modulus on each iteration, which makes reliable
implementation of the power method more difficult. The norm scaling is trivial to
compute for the Frobenius norm, and for the 2-norm can be estimated using the power
method (Algorithm 3.19).

The motivation for scaling is to reduce the length of the initial phase during
which the error is reduced below 1. Should we continue to scale throughout the whole
iteration? All three scaling parameters (5.35)—(5.37) converge to 1 as Xy — 5, so
scaling does not destroy the quadratic convergence. Nor does it bring any benefit, so
it is sensible to set ur = 1 once the error is sufficiently less than 1.

5.6. Terminating the Iterations

Crucial to the success of any sign iteration is an inexpensive and effective way to decide
when to terminate it. We begin with a lemma that provides some bounds that help
guide the choice of stopping criterion in both relative error-based and residual-based
tests.

Lemma 5.12 (Kenney, Laub, Pandey, and Papadopoulos). Let A € C™"*™ have no

pure imaginary eigenvalues, let S = sign(A), and let || - || be any subordinate matriz
norm. If ||S(A —S)|| = e <1 then
1—e¢ 1+e€
A-ATM<|[A-8| < A-A 5.39
(55)1a-ai<ta-si< (355 )a-a2 Ga)
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and )
(A1 _[A=S]

ISIALAL+1SH = (1S
The lower bound in (5.40) always holds.

<||A%2—1]. (5.40)

Proof. Let E = A— S. Since S? =1, we have A= S+ FE = (I + ES)S. It is
then straightforward to show that

E(2I + ES) = (A— A™Y)(I + ES),

using the fact that A and S, and hence also F and S, commute. The upper bound
in (5.39) is obtained by postmultiplying by (2I + ES)~! and taking norms, while
postmultiplying by (I + ES)~! and taking norms gives the lower bound.

The lower bound in (5.40) is obtained by taking norms in A2 —1 = (A—S)(A+59).
For the upper bound, we write the last equation as A — S = (42 — I)(A + S)~! and
need to bound [[(A + S)7!||. Since A+ 5 =2S(I + $5(A — S)), we have

1)1 g-1
| < M <|S]- 0

I(a+8)7 = 5ls7H (1 + 54— 8) 7
2

Note that since the iterations of interest satisfy sign(Xj) = sign(A), the bounds
of Lemma 5.12 are applicable with A replaced by an iterate Xy.

We now describe some possible convergence criteria, using 1 to denote a con-
vergence tolerance proportional to both the unit roundoff (or a larger value if full
accuracy is not required) and a constant depending on the matrix dimension, n. A
norm will denote any easily computable norm such as the 1-, co-, or Frobenius norms.
We begin with the Newton iteration, describing a variety of existing criteria followed
by a new one.

A natural stopping criterion, of negligible cost, is

I X1 — X
5k+1 : ||Xk+1|| S n. (541)
As discussed in Section 4.9, this criterion is really bounding the error in X}, rather
than X1, so it may stop one iteration too late. This drawback can be seen very
clearly from (5.39): since Xj41—Xj; = (X " —Xy), (5.39) shows that || Xj1—Xj| ~
IS — Xk|| is an increasingly good approximation as the iteration converges.

The test (5.41) could potentially never be satisfied in floating point arithmetic.
The best bound for the error in the computed Z = fl(Xk_l), which we assume to
be obtained by Gaussian elimination with partial pivoting, is of the form [276, 2002,
Sec. 14.3]

1Zk — X'l

X0 < cpuk(Xy), (5.42)
k

where ¢, is a constant. Therefore for the computed sequence Xy, || Xgr1 — Xi|| =
%H?k — Xi|| might be expected to be proportional to x(Xy)|| Xg|u, suggesting the
test dpr1 < K(X%)n. Close to convergence, Xpi1 ~ X ~ S = S~ and so w(Xj) ~
| Xre1]l? A test dxi1 < || Xkr1]|?n is also suggested by the asymptotic conditioning
of the sign function, discussed at the end of Section 5.1. On the other hand, a test of
the form dx41 < || X417 is suggested by Byers, He, and Mehrmann [89, 1997], based
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on a perturbation bound for the sign function. To summarize, there are arguments
for using the stopping criterion

Okt1 < [ Xg41llPn (5.43)

for each of p =0, 1, and 2.
A different approach is based on the bound (5.17): || Xp41 — S| < 21X |1 Xk —
S||2. Since || Xxi1 — Xi|| & ||S — X&|| close to convergence, as noted above,

1o
X1 = SIS S I Xkr = Xl

Hence we can expect || X1 — S|/ Xk+1] S if

1 Xl )"
s - X < (2nl32) (5.44)
X5l

This is essentially the same test as (4.25), bearing in mind that in the latter bound
c = [|S7Y/2 =~ | X;'||/2. This bound should overcome the problem of (5.41) of
stopping one iteration too late, but unlike (5.43) with p = 1,2 it takes no explicit
account of rounding error effects. A test of this form has been suggested by Benner
and Quintana-Ort{ [55, 1999]. The experiments in Section 5.8 give further insight.

For general sign iterations, intuitively appealing stopping criteria can be devised
based on the fact that trace(sign(A4)) is an integer, but these are of little practical
use; see Problem 5.16.

The upper bound in (5.40) shows that ||A — Xi||/|| Xk|| < | X7 — I|| and hence
suggests stopping when

IX% =1l < . (5.45)

This test is suitable for iterations that already form X7?, such as the Schulz iteration
(5.22). Note, however, that the error in forming fI(X? — I) is bounded at best by
cnul| Xi||? & cnul|S||?, so when ||S]| is large it may not be possible to satisfy (5.45),
and a more suitable test is then

IXe-1_
[Xkl2 —

5.7. Numerical Stability of Sign Iterations

The question of the stability of sign iterations, where stability is defined in Defini-
tion 4.17, has a particularly nice answer for all the iterations of interest.

Theorem 5.13 (stability of sign iterations). Let S = sign(A), where A € C"*" has
no pure imaginary eigenvalues. Let Xpi1 = g(Xi) be superlinearly convergent to
sign(Xo) for all Xo sufficiently close to S and assume that g is independent of Xo.
Then the iteration is stable, and the Fréchet derivative of g at S is idempotent and is
given by Ly(S,E) = L(S,E) = £(E — SES), where L(S) is the Fréchet derivative of
the matriz sign function at S.

Proof. Since the sign function is idempotent, stability, the idempotence of L,
and the equality of Ly(S) and L(S), follow from Theorems 4.18 and 4.19. The formula
for L(S, F) is obtained by taking N = I in Theorem 5.3. 0
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Theorem 5.13 says that the Fréchet derivative at S is the same for any superlinearly
convergent sign iteration and that this Fréchet derivative is idempotent. Unbounded
propagation of errors near the solution is therefore not possible for any such iteration.
The constancy of the Fréchet derivative is not shared by iterations for all the functions
in this book, as we will see in the next chapter.

Turning to limiting accuracy (see Definition 4.20), Theorem 5.13 yields || L, (S, E)| <
(14 ISP E], so an estimate for the limiting accuracy of any superlinearly conver-
gent sign iteration is ||S||?u. Hence if, for example, #x(S) = [|S]|? < u~1/2, then we
can hope to compute the sign function to half precision.

If S commutes with E then Ly(S, E) = 0, which shows that such errors E are
eliminated by the iteration to first order. To compare with what convergence con-
siderations say about FE, note first that in all the sign iterations considered here
the matrix whose sign is being computed appears only as the starting matrix and
not within the iteration. Hence if we start the iteration at S + E then the iter-
ation converges to sign(S + E), for sufficiently small |F|| (so that the sign exists
and any convergence conditions are satisfied). Given that S has the form (5.1),
any E commuting with S has the form Z diag(F11, Fee)Z ™!, so that sign(S + E) =
Z sign(diag(—1I, + Fi1, I, + F22))Z~!. Hence there is an € such that for all ||[E|| < e,
sign(S + E) = S. Therefore, the Fréchet derivative analysis is consistent with the
convergence analysis.

Of course, to obtain a complete picture, we also need to understand the effect
of rounding errors on the iteration prior to convergence. This effect is surprisingly
difficult to analyze, even though the iterative methods are built purely from matrix
multiplication and inversion. The underlying behaviour is, however, easy to describe.
Suppose, as discussed above, that we have an iteration for sign(A4) that does not
contain A, except as the starting matrix. Errors on the (k — 1)st iteration can be
accounted for by perturbing X to X + Ey. If there are no further errors then
(regarding X, + F) as a new starting matrix) sign(Xy + Ej) will be computed. The
error thus depends on the conditioning of X} and the size of Ey. Since errors will
in general occur on each iteration, the overall error will be a complicated function of
K‘sign(Xk) and B, for all k.

We now restrict our attention to the Newton iteration (5.16). First, we note that
the iteration can be numerically unstable: the relative error is not always bounded by
a modest multiple of the condition number Hsign(A), as is easily shown by example (see
the next section). Nevertheless, it generally performs better than might be expected,
given that it inverts possibly ill conditioned matrices. We are not aware of any
published rounding error analysis for the computation of sign(A) via the Newton
iteration.

Error analyses aimed at the application of the matrix sign function to invariant
subspace computation (Section 2.5) are given by Bai and Demmel [29, 1998] and By-
ers, He, and Mehrmann [89, 1997]. These analyses show that the matrix sign function
may be more ill conditioned than the problem of evaluating the invariant subspaces
corresponding to eigenvalues in the left half-plane and right half-plane. Neverthe-
less, they show that when Newton’s method is used to evaluate the sign function the
computed invariant subspaces are usually about as good as those computed by the
QR algorithm. In other words, the potential instability rarely manifests itself. The
analyses are complicated and we refer the reader to the two papers for details.

In cases where the matrix sign function approach to computing an invariant sub-
space suffers from instability, iterative refinement can be used to improve the com-

Copyright ©2008 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham.
This book is available for purchase at www.siam.org/catalog.



5.8 NUMERICAL EXPERIMENTS AND ALGORITHM 125

Table 5.2. Number of iterations for scaled Newton iteration. The unnamed matrices are
(quasi)-upper triangular with normal (0,1) distributed elements in the upper triangle.

Scaling
Matrix none determinantal spectral norm
Lotkin 25 9 8 9
Grcar 11 9 9 15
AG G+ 1,55+ 1) = [ jmyio00 O] | 24 16 19 19
aj; =1+ 1000i(j — 1)/(n — 1) 24 16 22 22
a1 = 1000, aj; =1, j > 2 14 12 6 10
a1 =141000¢, a;; =1, 5> 2 24 22 8 19

puted subspace [29, 1998]. Iterative refinement can also be used when the sign function
is used to solve algebraic Riccati equations (as described in Section 2.4) [88, 1987].

Finally, we note that all existing numerical stability analysis is for the unscaled
Newton iteration. Our experience is that scaling tends to improve stability, not worsen
it.

5.8. Numerical Experiments and Algorithm

We present some numerical experiments to illustrate the theory of the previous three
sections and to give further insight into the choice of iteration, acceleration scheme,
and stopping criterion. In all the tests, scaling was used as long as the relative change
8k = | Xk — Xp—1lloo/ | Xk ||oo exceeded 1072; thereafter uy = 1 and, where relevant,
1 is not shown in the tables.

First, we consider the effects of scaling. For a variety of matrices we ran the
Newton iteration (5.34) with no scaling and with the scalings (5.35)—(5.37), with the
2-norm used for norm scaling. We recorded how many iterations are required to
produce an error ||S — Xi|loo/||S|loc <5 x 107, The matrices are as follows:

1. The 8 x8 Lotkin matrix, MATLAB’s gallery(’lotkin’,8): badly conditioned
with many negative eigenvalues of small magnitude.

2. The 25 x 25 Grear matrix, gallery(’grcar’,25): a Toeplitz matrix with sen-
sitive eigenvalues.

3. 25 x 25 (quasi-) upper triangular matrices with elements in the upper triangle
(outside the diagonal blocks) from the normal (0,1) distribution.

Table 5.2 reports the results. The Lotkin matrix is a typical example of how scaling
can greatly reduce the number of iterations. The Grcar example shows how norm
scaling can perform poorly (indeed being worse than no scaling). The third matrix
(real) and fourth matrix (complex) have eigenvalues on a line with real part 1 and
imaginary parts between 0 and 1000. Here, spectral scaling and norm scaling are
both poor. The fifth and sixth matrices, again real and complex, respectively, have
eigenvalues all equal to 1 except for one large outlier, and they are bad cases for
determinantal scaling.

Table 5.3 illustrates the convergence results in Theorems 5.10 and 5.11 by showing
the behaviour of the Newton iteration with spectral scaling for J(2) € R*®*16 which
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Table 5.3. Newton iteration with spectral scaling for Jordan block J(2) € R*6*16,

IS = Xilloo IX2 = Il
k 5T Ok B Lk (5.41) (5.44)
1 2.5e-1 1.8e+0 3.6e-1 5.0e-1
2 2.5e-2 2.2e-1 4.8e-2 1.0e0
3 3.0e-4 2.5e-2 6.0e-4 1.0e0
4 0 3.0e-4 0 1.0e0
5 0 0 0 v v

Table 5.4. Newton iteration with determinantal scaling for random A € R**6 with ko (A) =
10'%; Kggn(A) = 3 x 10%, ||S||lF = 16.

IS = Xilloo IXE — Ilus

1 4.3e3 1.0e0 1.1e-1 1.0e5

2 1.5el 2.8e2 1.3e-1 6.8e-3

3 1.9e0 6.3e0 5.9e-2 1.4e-1

4 2.1e-1 1.7e0 2.1e-2 6.1e-1

5 6.4e-2 2.3e-1 4.3e-3 9.5e-1

6 2.0e-3 6.2e-2 1.6e-4 9.8e-1

7 4.1e-6 2.0e-3 3.3e-7 1.0e0

8 2.1e-9 4.1e-6 8.9e-13

9 2.1e-9 1.1e-11 3.2e-17 vV
10 2.1e-9 1.5e-15 3.5e-17 4 v

is a Jordan block with eigenvalue 2. Here and below the last two columns of the table
indicate with a tick iterations on which the convergence conditions (5.41) and (5.44)
are satisfied for the oo-norm, with n = n'/2u. In Theorem 5.11, d = 1 and p = 4,
and indeed Xg4p—1 = X4 = sign(J(2)). At the start of the first iteration, poXo has
eigenvalues 1, and the remaining four iterations remove the nonnormal part; it is easy
to see that determinantal scaling gives exactly the same results.

Table 5.4 reports 12 iterations for a random A € R6*16 with ko(A4) = 10%°
generated in MATLAB by gallery(’randsvd’,16,1e10,3). Determinantal scaling
was used. Note that the relative residual decreases significantly after the error has
stagnated. The limiting accuracy of ||S||3u is clearly not relevant here, as the iterates
do not approach S sufficiently closely.

Both these examples confirm that the relative change ;41 is a good estimate
of the relative error in X} (compare the numbers in the third column with those
immediately to the northwest) until roundoff starts to dominate, but thereafter the
relative error and relative change can behave quite differently.

Finally, Table 5.5 gives examples with large ||S||. The matrix is of the form
A =QTQT, where Q is a random orthogonal matrix and T € R'*16 is generated as
an upper triangular matrix with normal (0,1) distributed elements and ¢;; is replaced
by d|t;;| for i = 1:8 and by —d|t;;| for ¢« = 9:16. As d is decreased the eigenvalues
of A approach the origin (and hence the imaginary axis). Determinantal scaling was
used and we terminated the iteration when the relative error stopped decreasing sig-

Copyright ©2008 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham.
This book is available for purchase at www.siam.org/catalog.



5.8 NUMERICAL EXPERIMENTS AND ALGORITHM 127

R16><16

Table 5.5. Newton iteration with determinantal scaling for random A € with real

etgenvalues parametrized by d.

IS = Xilloo

d | no. iterations miny i3] lAllz w2(A)  |ISll2 Fsign(A)

1 6 2.7e-13 6.7 4.1e3 1.3e2 4.7e3
3/4 6 4.1e-10 6.5 5.7eb 5.4e3 6.5€e5
1/2 6 2.6e-6 6.2 2.6e8 3.9eb 6.5e7
1/3 3 7.8e-1 6.4 2.6el5 7.5ell 3.9e7

nificantly. This example shows that the Newton iteration can behave in a numerically
unstable way: the relative error can greatly exceed /isign(A)u. Note that the limiting
accuracy ||S||3u provides a good estimate of the relative error for the first three values
of d.

Our experience indicates that (5.44) is the most reliable termination criterion,
though on badly behaved matrices such as those in Table 5.5 no one test can be relied
upon to terminate at the “right moment”, if at all.

Based on this and other evidence we suggest the following algorithm based on the
scaled Newton iteration (5.34).

Algorithm 5.14 (Newton algorithm for matrix sign function). Given a nonsingular
A € C™*™ with no pure imaginary eigenvalues this algorithm computes X = sign(A)
using the scaled Newton iteration. Two tolerances are used: a tolerance tol_cgce
for testing convergence and a tolerance tol_scale for deciding when to switch to the
unscaled iteration.

1 Xy = A; scale = true

2 fork=1:00

3 Ve =X, "

4 if scale

5 Set py to one of the scale factors (5.35)—(5.37).
6 else

7 pr =1

8 end

9 Xp1 = 3 (e Xy + py 'Y
10 Sk+1 = [[Xpy1 — Xillp /1 Xt 1l p
11 if scale = true and ;41 < tol_scale, scale = false, end
12 if [ Xe1 — Xi|lr < (tolcgee|| Xiqall/[|Yal)'/? or

(041 > 0k /2 and scale = false)

13 goto line 16
14 end
15 end
16 X = Xgq1

Cost: 2kn3 flops, where k iterations are used.

The algorithm uses the unscaled Newton iteration once the relative change in the
iterates is less than tol_scale. A value of tol_scale safely less than 1 is intended and
the motivation is to avoid the (nonoptimal) scaling parameters interfering with the

Copyright ©2008 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham.
This book is available for purchase at www.siam.org/catalog.



128 MATRIX SIGN FUNCTION

quadratic convergence once the convergence has set in. The convergence test is (5.44)
combined with the requirement to stop if, in the final convergence phase, J; has not
decreased by at least a factor 2 during the previous iteration (which is a sign that
roundoff errors are starting to dominate).

We have left the choice of scale factor at line 5 open, as the best choice will depend
on the class of problems considered.

5.9. Best L., Approximation

Most applications of the matrix sign function involve nonnormal matrices of small
to medium size. An exception is the application in lattice quantum chromodynamics
(QCD) described in Section 2.7, where the action on a vector of the sign of a large,
sparse, Hermitian matrix is required. For Hermitian A, approximating sign(A) re-
duces to approximating sign(z) at the eigenvalues of A, which is a scalar problem
on the real axis. The full range of scalar approximation techniques and results can
therefore be brought into play. In particular, we can use best L., rational approxima-
tions. For the sign function and the interval [—dmax; —Omin] U [0min, Omax] an explicit
formula for the best L., approximation is known. It follows from a corresponding
result for the inverse square root. The result is phrased in terms of elliptic functions.
The Jacobi elliptic function sn(w; k) = x is defined implicitly by the elliptic integral

—/I ! dt
YT Vamea-ee)

and the complete elliptic integral (for the modulus k) is defined by

! 1
k= | T

Theorem 5.15 (Zolotarev, 1877).

(a) The best Lo approzimation T from Rp_1m to x~1/2

(§max/5min)2] 18

on the interval [1,

m—1
Hj:l (@ + c25)

F(I) - DH;nzl(.’[ T 02j71)7

where
L s(K/m)s)
I T2 (K/@m)R)

k= (1- (5min/5max)2)1/2, and K is the complete elliptic integral for the modulus k.
The constant D is determined by the condition

max (1—Vzr(x))= —

min 1—+Vzr()),
2€[1,(8min/Omax)?)] xe[l,(émin/émax)z)]( ( ))
and the extrema occur at x; = dn"2(jK/(2m)), j = 0:2m, where dn®(w; k) = 1 —
k2 sn?(w; k).
(b) The best Lo, approzimation v from Rom—1.2m to sign(z) on the interval
[~ Omax> —Omin] U [0min, Omax] 8 7(2) = (2/6min)7(2/0min)?), where 7 is defined in
(a). O

Copyright ©2008 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham.
This book is available for purchase at www.siam.org/catalog.



5.10 NOTES AND REFERENCES 129
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Figure 5.2. Best Loo approzimation r(x) to sign(z) from Rs 4 on [—2,—1]U[1,2]. The lower
two plots show r(x) in particular regions of the overall plot above.

Figure 5.2 plots the best Lo, approximation to sign(x) from R34 on [-2,—1] U
[1,2], and displays the characteristic equioscillation property of the error, which has
maximum magnitude about 10™%. In the QCD application 6min and dmax are chosen
so that the spectrum of the matrix is enclosed and r is used in partial fraction form.

5.10. Notes and References

The matrix sign function was introduced by Roberts [496] in 1971 as a tool for model
reduction and for solving Lyapunov and algebraic Riccati equations. He defined the
sign function as a Cauchy integral and obtained the integral (5.3). Roberts also
proposed the Newton iteration (5.16) for computing sign(A) and proposed scaling the
iteration, though his scale parameters are not as effective as the ones described here.

Interest in the sign function grew steadily in the 1970s and 1980s, initially among
engineers and later among numerical analysts. Kenney and Laub give a thorough
survey of the matrix sign function and its history in [347, 1995].

The attractions of the concise representation sign(A) = A(A?%) in (5.2) were
pointed out by Higham [273, 1994], though the formula can be found in earlier work
of Tsai, Shieh, and Yates [576, 1988].

Theorem 5.2 is from Higham, Mackey, Mackey, and Tisseur [283, 2005].

Theorems 5.3 and 5.7 are due to Kenney and Laub [342, 1991]. The expression
(5.10) and upper bound (5.11) for the matrix sign function condition number are from
Higham [273, 1994]. Theorem 5.4 is a refined version of a result of Kenney and Laub
[342, 1991]. Another source of perturbation results for the matrix sign function is Sun
548, 1997].

The Schur method, Algorithm 5.5, is implemented in function signm of the Matrix
Computation Toolbox [264] (on which signm in the Matrix Function Toolbox is based)
but appears here in print for the first time.

For more on the recursions related to (5.26), and related references, see Chapter 8.

—1/2
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130 MATRIX SIGN FUNCTION

It is natural to ask how sharp the sufficient condition for convergence ||I — A% < 1
in Theorem 5.8 (a) is for £ > m and what can be said about convergence for £ < m—1.
These questions are answered experimentally by Kenney and Laub [343, 1991], who
give plots showing the boundaries of the regions of convergence of the scalar iterations
in C.

The principal Padé iterations for the sign function were first derived by Howland
[302, 1983], though for even k his iteration functions are the inverses of those given
here. Iannazzo [307, 2007] points out that these iterations can be obtained from the
general Konig family (which goes back to Schroder [509, 1870], [510, 1992]) applied to
the equation 22 —1 = 0. Parts (b)—(d) of Theorem 5.9 are from Kenney and Laub [345,
1994]. Pandey, Kenney, and Laub originally obtained the partial fraction expansion
(5.30), for even k only, by applying Gaussian quadrature to an integral expression for
h(§) in (5.26) [457, 1990]. The analysis leading to (5.31) is from Kenney and Laub
[345, 1994].

Theorem 5.10 is due to Kenney and Laub [344, 1992], and the triangular matrices
in Table 5.2 are taken from the same paper.

Theorem 5.11 is due to Barraud [44, 1979, Sec. 4], but, perhaps because his paper
is written in French, his result went unnoticed until it was presented by Kenney and
Laub [344, 1992, Thm. 3.4].

Lemma 5.12 collects results from Kenney, Laub, and Papadopoulos [350, 1993]
and Pandey, Kenney, and Laub [457, 1990].

The spectral scaling (5.36) and norm scaling (5.37) were first suggested by Barraud
[44, 1979], while determinantal scaling (5.35) is due to Byers [88, 1987].

Kenney and Laub [344, 1992| derive a “semioptimal” scaling for the Newton iter-
ation that requires estimates of the dominant eigenvalue (not just its modulus, i.e.,
the spectral radius) of X}, and of X, ! Numerical experiments show this scaling to
be generally at least as good as the other scalings we have described. Semioptimal
scaling does not seem to have become popular, probably because it is more delicate
to implement than the other scalings and the other scalings typically perform about
as well in practice.

Theorem 5.13 on the stability of sign iterations is new. Indeed we are not aware
of any previous analysis of the stability of sign iterations.

Our presentation of Zolotarev’s Theorem 5.15 is based on that in van den Eshof,
Frommer, Lippert, Schilling, and Van der Vorst [585, 2002] and van den Eshof [586,
2003). In the numerical analysis literature this result seems to have been first pointed
out by Kenney and Laub [347, 1995, Sec. III]. Theorem 5.15 can also be found in
Achieser [1, 1956, Sec. E.27], Kennedy [338, 2004], [339, 2005], and Petrushev and
Popov [470, 1987, Sec. 4.3].

A “generalized Newton sign iteration” proposed by Gardiner and Laub [205, 1986]
has the form

1 _
X1 = §(Xk +BX,'B), X, = A.

If B is nonsingular this is essentially the standard Newton iteration applied to B~ A
and it converges to Bsign(B~'A). For singular B, convergence may or may not
occur and can be at a linear rate; see Bai, Demmel, and Gu [31, 1997] and Sun and
Quintana-Ort{ [550, 2002]. This iteration is useful for computing invariant subspaces
of matrix pencils A — AB (generalizing the approach in Section 2.5) and for solving
generalized algebraic Riccati equations.
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Problems

5.1. Show that sign(A) = A for any involutory matrix.
5.2. How are sign(A) and sign(A~1) related?

5.3. Derive the integral formula (5.3) from (5.2) by using the Cauchy integral formula
(1.12).

5.4. Show that sign(A) = (2/7) lim;_, » tan=1(tA).

5.5. Can
-1 1 1/2
A= 0o 1 -1
0 0 1

be the sign of some matrix?

5.6. Show that the geometric mean A# B of two Hermitian positive definite matrices

A and B satisfies
0 A#B| . 0 B
A#B)"t o | ¥E{Jat o)

5.7. (Kenney and Laub [342, 1991]) Verify that for A € R**? the matrix sign
decomposition (5.5) is given as follows. If det(4) > 0 and trace(A) # 0 then
S = sign(trace(A))I and N = sign(trace(A))A; if det(A) < 0 then

S =p(A—det(4)A"), N = p(A* — det(A)I),

where
—1/2,

p=(—det(A—det(A)A™")) %
otherwise S is undefined.

5.8. Show that the Newton iteration (5.16) for the matrix sign function can be derived
by applying Newton’s method to the equation X2 = I.

5.9. By expanding the expression sign(S + F) = (S + E)((S + E)?)~'/2 from (5.2),
show directly that the Fréchet derivative of the matrix sign function at .S = sign(S)
is given by L(S, E) = 3(E — SES).

5.10. Consider the scalar Newton sign iteration zpy; = %(xk + x,;l) Show that if
2o = coth fy then z; = coth 2¥6,. Deduce a convergence result.

5.11. (Schroeder [511, 1991]) Investigate the behaviour of the Newton iteration (5.16)
for scalar, pure imaginary xo. Hint: let xg = irg = —icot(nfy) and work in 6
coordinates.

5.12. Halley’s iteration for solving f(z) = 0 is [201, 1985]

Rk
L=/

where f,, f;, and f;/ denote the values of f and its first two derivatives at x. Show
that applying Halley’s iteration to f(z) = 22 — 1 yields the iteration function f; 1 in
Table 5.1.

Tk4+1 = Tk
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132 MATRIX SIGN FUNCTION

5.13. (Byers [88, 1987]) Show that determinantal scaling u = |det(X)|~*/™ mini-
mizes d(uX), where

n
d(X) = (log |Ai])?
i=1
and the \; are the eigenvalues of X. Show also that d(X) = 0 if and only if the
spectrum of X lies on the unit circle and that d(X) is an increasing function of
|1 — |\;|| for each eigenvalue A;.

5.14. Consider the Newton iteration (5.34), with determinantal scaling (5.35) and
spectral scaling (5.36). Show that with both scalings the iteration converges in at
most two iterations (a) for scalars and (b) for any real 2 x 2 matrix.

5.15. (Higham, Mackey, Mackey, and Tisseur [283, 2005]) Suppose that sign(A4) = I
and A% = I + E, where ||E|| < 1, for some consistent norm. Show that

1A—1]| < IE]

S ———F—<
1++/1—|E|

How does this bound compare with the upper bound in (5.40)?

IE]-

5.16. Discuss the pros and cons of terminating an iteration Xjy; = g(Xj) for the
matrix sign function with one of the tests

|trace(X?) — n| <, (5.46)
| trace(X}) — round(trace(Xy))| < n, (5.47)

where round(z) denotes the nearest integer to x.

5.17. (Byers [88, 1987]) The matrix

A G

W:[F ~A

} , F=F" G=G",

arising in (2.14) in connection with the Riccati equation is Hamiltonian, that is, it
satisfies the condition that JW is Hermitian, where J = [_? Ig]. Show that the
Newton iteration for sign(W) can be written in such a way that only Hermitian
matrices need to be inverted. The significance of this fact is that standard algorithms
or software for Hermitian matrices can then be used, which halves the storage and
computational costs compared with treating W as a general matrix.

The sign function of a square matrix can be defined in terms of a contour integral
or as the result of an iterated map Z,+1 = 3(Zr + Z;).

Application of this function enables a matrix to be decomposed into

two components whose spectra lie on opposite sides of the imaginary axis.

— J. D. ROBERTS, Linear Model Reduction and Solution of the
Algebraic Riccati Equation by Use of the Sign Function (1980)

The matrix sign function method is an elegant and,
when combined with defect correction,
effective numerical method for the algebraic Riccati equation.

— VOLKER MEHRMANN, The Autonomous Linear Quadratic Control Problem:
Theory and Numerical Solution (1991)
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