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A philosophical introduction
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There is nothing more practical than a good theory.

James C. Maxwell
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There is nothing more practical than a good theory.

James C. Maxwell

There is nothing more practical than a good philosophy.

Alexandre V. Borovik
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Are mathematical objects invented or discovered?
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Are mathematical objects invented or discovered?

Serious legal implications: mathematical formulae are patentable
in USA but not in UK.

For British lawmakers and lawyers, mathematics is discovered,
for American — invented.
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Are mathematical objects invented or discovered?

Serious legal implications: mathematical formulae are patentable
in USA but not in UK.

For British lawmakers and lawyers, mathematics is discovered,
for American — invented.

I have seen a patent application for use of the formula

xa · xb = xa+b

in cryptography.
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Pythagoreans vs. Formalists

• Do mathematical objects exist?

• Might it happen that we tend to confuse existence with
uniqueness and ubiquity?

• Why does most of Mathematics deal with such a limited
range of objects?

• Why could the same objects be studied by bizarrely different
methods?
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First-order Logic

∀, ∃, ∧, ∨, ¬, →, algebraic operations, =, . . .

Theory is a set of formulae (without free variables)

A theory is consistent if no contradiction can be derived.

Löwenheim-Skolem: If a theory is consistent, it has a count-
able model.
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Elementary theory of an algebraic structure

Let G be a group (ring, field, etc.)

Th(G) the set of first order formulae true in G

Elementary equivalence:

G ≡ H ⇐⇒ Th(G) = Th(H)
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Example

Q+ is torsion-free divisible abelian:

∀x∀y xy = yx
∀x (x2 = 1→ x = 1)
∀x (x3 = 1→ x = 1)

...
∀x∃y y2 = x
∀x∃y y3 = x

...


infinite list of axioms

Groups elementary equivalent to Q+ are torsion-free divisible
abelian and are therefore vector spaces over Q.

H ≡ Q+ =⇒ H '
⊕

Q+
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Uncountable categoricity.

G is uncountably categorical

⇐⇒ ∃! group G̃ ≡ G of cardinality continuum 2ℵ0

Q+ is uncountably categorical because there is just one Q-
vector space of cardinality continuum.

In countable domain situation is different:

Q+ and Q+ ⊕Q+

are elementary equivalent, but not isomorphic.
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Algebraically closed fields

∀a1∀a0(a1 6= 0→ ∃x(a1x + a0 = 0))

∀a2∀a1∀a0(a2 6= 0→ ∃x(a2x
2 + a1x + a0 = 0))

...

∀an · · · ∀a1∀a0(an 6= 0→ ∃x(anx
n + · · · + a1x + a0 = 0))

...

It can be shown that any two a.c. fields of the same
characteristic are elementary equivalent.
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Algebraically closed fields

Q < Q(t1, t2, . . . ) < Q(t1, t2, . . . )

Fp < Fp(t1, t2, . . . ) < Fp(t1, t2, . . . )

For every characteristic, there is only one a.c. field of cardinality
continuum.

In characteristic 0 this field is, of course, C.

Algebraically closed fields are uncountably categorical.

14



We look at C algebraically, ignoring topology:

there are 22ℵ0 automorphisms of C

but only two continuous: identity and complex conjugation
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Macintyre 1970:

Uncountably categorical fields are algebraically closed
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Macintyre 1970:

Uncountably categorical fields are algebraically closed

Informally:

“uncountably categorical structure” means

“it has best possible description by means of logic”
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Simple algebraic groups over a.c. fields are uncountably cate-
gorical.

For example, SLn(C) are uncountably categorical.

Zilber’s Conjecture (c. 1975)

Simple ℵ1-categorical groups are simple algebraic groups over
a.c. fields.
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Altınel, B, Cherlin:

If a simple uncountably categorical group G contains an infinite
elementary abelian 2-group

then G is a Chevalley group over an a.c. field of char 2.
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Altınel, B, Cherlin:

If a simple uncountably categorical group G contains an infinite
elementary abelian 2-group

then G is a Chevalley group over an a.c. field of char 2.

In particular, simple algebraic groups over algebraically closed
fields of characteristic 2 are Chevalley groups.
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Schanuel’s Conjecture:

In C,

tranc.deg.(x1, . . . , xn, e
x1, . . . , exn

) > rkQ(x1, . . . , xn)

Example. Take x1 = ln 2, then

tranc.deg.(ln 2, eln 2) > rkQ(ln 2)

or
tranc.deg.(ln 2, 2) > 1

Hence ln 2 is transcendental.
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Boris Zilber:

• Took language +, ·, exp of a field with formal exponentia-
tion

exp : K+ → K×, exp(x + y) = exp · expy

• chose axioms for a.c. field of characteristic 0 with exponen-
tiation;

• some other nice properties;

• made sure all of above holds in C with standard exponen-
tiation.

• Added Schanuel’s Conjecture as an axiom;

• proved that axioms are consistent and hence have a model.
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Finally, proved that in cardinality continuum such model is
unique up to isomorphism.

Let us call Boris Zilber’s field B.

Do you have any doubts that B = C?
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A million dollar question
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All mathematics is divided in three parts:

• cryptography (paid for by the CIA, the KGB and the
like),

• hydrodynamics (supported by manufacturers of atomic
submarines) and

• celestial mechanics (financed by the military and by
other institutions dealing with missiles, such as NASA).

Cryptography has generated number theory, alge-
braic geometry over finite fields, algebra, combi-
natorics and computers.

Vladimir Arnold
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Indeed, why there is so much fuss around finite fields?

Why is modern cryptography based on finite fields?

Why does mathematics reuse the same objects?
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More specific: why is the range of structures usable in computer-
based cryptography so narrow?

This last question has very obvious practical implications.
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Imagine: that the proverbial

• little green men from Mars stole a satellite from its orbit;

• they attempt to analyze a microchip for the Diffie-Hellman
key exchange.

• Would they be surprised to discover that humans are using
finite fields and elliptic curves?
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Diffie-Hellman key exchange

• Alice and Bob choose a big finite abelian group G and an
element g ∈ G.

• Alice selects her secret integer a, computes ga and sends
the value to Bob.

• Similarly, Bob selects his secret integer b and sends gb.

• Alice raises the element gb received from Bob to her secret
exponent a and computes (gb)a.

• Similarly, Bob computes (ga)b.

• Since (gb)a = gab = (ga)b, the element gab is the secret
shared element known only to Alice and Bob.
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What do we need for the realization of this protocol?

• A cyclic group G of very large prime order p such that
its elements can be presented by short (that is, of length
O(log p)) strings of 0s and 1s.

• The group operation has to be quick, in any case, better
than in O(log2 p) basic operations of the computer.

• The discrete logarithm problem of finding the secret expo-
nent a from g and ga has to be very difficult for all elements
g 6= 1 in G; in any case, it should not allow a solution by a
polynomial time algorithm.
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• This should preferably be done for an arbitrary prime p, or
for sufficiently many primes.

• The implementation of the particular instances of the al-
gorithm, compilation of the actual executable file for the
computer (or realization of the algorithm at the hardware
level in a microchip, say, in a mobile phone) should be easy
and done in polynomial time of small degree in log p.
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Two classical ways of making cyclic groups Cp of prime order
p :

• the additive group of the field of residues modulo p, Z/pZ.

• Select a prime q such that p divides q − 1 and generate G
by an element g of the multiplicative order p in the multi-
plicative group (Z/qZ)∗.
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• In the additive group Z/pZ, the exponentiation g 7→ gn

is just multiplication by n, g 7→ n · g, and the Euclidean
algorithm instantly solves the discrete logarithm problem.

• In (Z/qZ)∗, the discrete logarithm problem is apparently
hard.

• It is also conjectured to be hard in the group of points of
an elliptic curve over a finite field, thus giving rise to elliptic
curve cryptography.

But the group, as an abstract algebraic object, is exactly the
same, the cyclic group of order p;

it is the computational realisation that matters.
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How can we compare different realisations Cp?

Look at Cp ' Z/pZ and Cp ↪→ (Z/qZ)∗.

Elements of Z/pZ can be written as integers 0, 1, 2, . . . , p−1.

Given an element g ∈ (Z/qZ)∗ of order p, we can use square-
and-multiply to raise g to the power of n in O(log n) time.
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Z/pZ → (Z/qZ)∗

n 7→ gn

is an morphism of the two realisations of Cp computable in
time linear in log p.

We shall say that the realisation of Cp as Z/pZ is reducible to
its realisation as Cp ↪→ (Z/qZ)∗.

To compute the inverse isomorphism means to solve the dis-
crete logarithm problem.
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Therefore morphisms of computational realisations for Cp are
homomorphisms computable in polynomial time.
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Three principal classes of commutative algebraic groups over
finite fields:

• unipotent—Z/pZ,

• tori —(Z/qZ)∗, and

• abelian varieties—elliptic curves.

They can all be built from finite fields, by simple constructions
with fast computer implementations.
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My million dollar question is

Are there polynomial time computational ralisations for
cyclic groups of prime order (which therefore have a
chance to meet memory and speed requirements of computer-
based cryptography) and which cannot be reduced, within
polynomial space/time constraints, to one of the known
types?

Notice that non-reducibility to Z/pZ would mean that the dis-
crete logarithm problem cannot be solved in polynomial time,
giving a chance to meet security requirements as well.
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I accept that this question is likely to be out of reach of modern
mathematics.

The answer will definitely involve some serious advances in com-
plexity theory.
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If the answer is “yes”,

(especially if you invent something which is quicker than elliptic
curve systems)

you can patent your invention and make your million dollars.

But I expect the answer “no”.
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Indeed, why are finite fields so special?

Any hints?
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Consider arbitrary finite algebras:

finite sets with some operations of arbitrary nature.

Associate with every algebra A with ground set A the set of
all verbal functions on A:

all functions from A to A expressible by combination of ba-
sic algebraic operations of A, with elements from A used as
constant “coefficients”.
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Verbal equivalence:

Two algebras are verbally equivalent if they have the same
ground set and the same sets of verbal functions.

In particular, every basic algebraic operation of the first algebra
is expressed in terms of the operations of the second algebra,
and vice versa.

If we ignore the computational complexity, verbally equiv-
alent algebras are in a sense mutually interchangeable.
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Given a finite algebra A, a verbal function f (x) in a single
variable induces a map from A to A.

Since A is finite, either f (x) is a permutation of A, or it maps
A to a strictly smaller subset B ⊂ A.

In the second case, some iteration

g(x) = f (f (· · · f (x) · · · ))

is an idempotent map:

g(g(x)) = g(x)

for all x.
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The idempotency of g allows us to “deform” and squeeze the
basic operations of A to the set C = g[A].

If, for example, T (·, ·, ·) was an operation of A, T ′ = g(T (·, ·, ·))
becomes an operation on C.

Adding all verbal operations of A which preserve C, we get a
new algebra C, a retract of A.
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What happens if A has no proper retracts and is therefore
unsimplifiable?

Peter Pálfy: If A has at least three elements we have a di-
chotomy:

1. Every verbal function defined in terms of A effectively de-
pends on just one variable.

Then all verbal functions on A are permutations, and

A is verbally equivalent to a set A with an action of a finite
group G, where action of each element g ∈ G is being
treated as an unary operation.
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2. But if A is sufficiently rich and has verbal functions which
really depend on at least two variables,

the result is astonishing:

A is verbally equivalent to a vector space over a finite field!
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