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Abstract — The reconstruction algorithms used for Electrical
Impedance Tomography assume that the conductivity is
isotropic. If the conductivity is anisotropic then the solution to
the reconstruction problem is not unique. As many body tissues
are anisotropic this presents a problem. Recent mathematical
results suggest that anisotropic conductivities which are
indistinguishable using EIT differ by a distortion of the domain.
In addition, those anisotropic distributions consistent with some
anisotropic distribution are unlikely to occur in practice. What is
need for the success of EIT in the anisotropic case is sufficient
additional knowledge of the structure of the anisotropy to make
the solution of the reconstruction problem unique.

|. INTRODUCTION

The electrical conductivity of the human body has
anisotropic regions. The most striking case of this is
skeletal muscle for which the longitudinal
conductivity has been found to be 15 times the
transverse [1]. Blood becomes more conductive in the
direction of its velocity as its flow rate increases. Here
factors of up to 1.2 reported [2]. In Electrical
Impedance Tomography (EIT) the conductivity is
sought by surface measurements of current and
voltage. All EIT reconstruction algorithms used in
practice assume that the conductivity is isotropic.

[l ANISOTROPY AND UNIQUENESS

In EIT the data collected are pairs (j,v) of surface
current density j and surface voltage v sampled at
specific electrodes. This gives us a necessarily
incomplete knowledge of the transfer impedance
operator R where Rj = v. In the interior of the body Q
(taken to be three dimensional), the potential u
satisfies

V:csVu = 0.

On the boundary 6, v = u and j = - cVu-n where n
is the outward normal to 0Q.

Theoretically it is possible to recover an unknown
isotropic conductivity o from a complete knowledge of
R(o) [3], in the sense that different conductivities give
rise to different transfer impedance operators.
However for an anisotropic conductivity this is not the
case.

An example of two anisotropic conductivities
indistinguishable by EIT is due to Luc Tartar [4]. Take an

invertible smooth mapping (diffeomorphism) f:Q—Q
which is the identity on 6Q2 and whose derivative Df(x) = I,
the identity matrix, for x €6Q. For any conductivity tensor
c= (cij) define another conductivity © = (rij) by

1(f(x)) = |[det(DF(x))|"! Df(x)t & Df(x).

If V':oVu = 0 then V=tVw = 0 where w(x) = u(f(x)) and the
boundary voltage data will agree u= w on 0Q. Also the
current densities will agree as cVu = tVw on 0Q. Hence
R(c) = R(r). The practical implication of this is that we may
find an anisotropic conductivity which is consistent with our
EIT data, but that any distortion of this (where the
distortion does not affect the surface) would also be
consistent. In [5] it is conjectured that these distorted
conductivities are the only ones consistent with the
complete EIT data, and this is proved under fairly strong
conditions on .

[Il RIEMANNIAN GEOMETRY

What happens if we ignore the anisotropy and attempt to
find an isotropic conductivity consistent with the data R(c)
from an anisotropic distribution? With complete data, this
will only be possible (accepting the restrictions in [5]) if ¢ is
a distortion of an isotropic conductivity 1 = (¢5;) where ¢
is a positive scalar function. However there are good
reasons to suppose that in practice this is unlikely. To
explain this further some Riemannian Geometry is
required. Following [5] we define a Riemann metric g in
Euclidean coordinates on Q

(g,) = (det ) ™.

The Laplacian operator with respect to this metric is given
by

3
0  OU
= -1/2-2 112qi L=
Agu Z(det g) aX,((det g)'“g axi)
i,j=1
and Au = 0 is equivalent to V:cVu = 0. Denoting the

Neumann to Dirichlet mapping for Laplace's equation A u
= 0 by R(g), we have R(g) = R(oc).



In the language of Riemannian geometry, a metric
which in some coordinate system is (,) is called a flat
metric. A metric equivalent via a diﬁéeomorphism to
some 1 = (¢5;) is called conformally flat. Consequently
any conductivity o which is a distortion of an isotropic
distribution must be associated with a conformally
flat metric. For convenience we will call ¢ a
conformally flat conductivity.

In the case of a three dimensional domain, there is
a simple test for conformally flat metrics. The Cotton
tensor [6] is defined in terms of the Ricci tensor Rij
and scalar curvature R of the metric. Using a comma
to denote covariant differentiation it is given by

1
Cijk = Rijx - Rikj * 2(RyGj - Rigiw-

A metric is conformally flat if and only if its Cotton
tensor is identically zero [7]. Ultimately, the Cotton
tensor is a function of the ¢ and its partial derivatives
up to order 3. Intuitively, the vanishing of 27 functions
of the partial derivatives of ¢ would not happen by
chance. Mathematically this can be expressed by
saying that in the space of three times continuously
differentiable conductivity tensors o, those which are
not conformally flat form an open dense set. This
follows from the Thom transversality theorem [8].
Being not conformally flat is an example of a generic
property — in a particular sense, almost all
conductivities have this property.

IV STRUCTURED ANISOTROPY

In practice the body does not consist of a randomly
arranged anisotropic conductivity. The anisotropy of
muscles is oriented with the muscle fibres, and these
fibres are often arranged in sheets with a consistent
orientation. Blood flows largely in well defined tubes,
its anisotropy aligned with the flow vector. These
physiological facts place specific geometrical
constraints on c. A distortion will move and distort
these structures, but not eliminate them. Hence
even in the presence of anisotropy, EIT may be able
to indicate the presence or absence of particular
features but not give position or specific quantitative
information. However if sufficient additional
information is included, such as the positions of
certain anatomical 'land marks' it may be possible to
eliminate some of the ambiguity.
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