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Boundary Shape and Electrical Impedance Tomography 
 

W.R.B. Lionheart, 
School of Computing and Mathematical Sciences, 

Oxford Brookes University. 
 
 

Abstract 
In Electrical Impedance Tomography (EIT) the boundary shape is often inaccurately 
known.  If the boundary shape is wrong (in a three dimensional problem) there will 
not generally be an isotropic conductivity which fits the current and voltage data.  

Both the conductivity and the boundary shape can be determined by electrical data 
together with three spatial measurements.  In two dimensions errors in boundary 

shape could be accounted for by a change in conductivity, but not if the length scale 
on the boundary is also known. 

 

1. Introduction. 
 
In electrical impedance tomography (EIT) one seeks to recover the conductivity from 
measurements of potential on the surface when a number of current patterns are 
applied to the surface [1].  This has applications in medical imaging and industrial 
process monitoring (see for example the conference proceedings [2,3])  In medical 
applications in particular the body shape is not accurately known.  It is thus important 
to know what influence boundary shape errors might have on reconstructed images.  
The main result presented here Theorem 5.1 is that if three suitably chosen spatial 
measurements are made both the conductivity and the boundary shape can be 
determined by boundary electrical data.  This means that in the generic case errors in 
shape cannot  be exactly compensated for by a change in conductivity. 
 

2. Formulation 
 
Let the body Ω  be a bounded domain in three dimensional Euclidean space R3 with a 
smooth boundary ∂Ω .  Although we are concerned mainly with isotropic conductivity 
we will have to consider the more general case where the conductivity of the body is 
given by a symmetric positive definite matrix σ σ= ij  at each point.  The potential φ  
in the absence of current sources in the interior satisfies 
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The current density on the boundary is 
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where ν  is the outward unit normal to ∂Ω .   
 
We will have need to treat the current on the boundary in a way which is independent 
of the coordinate system used. To do this we treat current as a differential 2-form J on 
the boundary.  To find the current crossing a given region R of the boundary we 
evaluate the integral ∫

R

J .  If  dA is the area form on the boundary then J jdA= . 

 
The transconductance1, or Dirichlet-to-Neumann mapping, JaΩΛ ∂σ φ |:  represents a 
complete knowledge of the EIT boundary electrical data and the reconstruction 
problem of EIT is to recover σ  from Λσ .   
 
In the anisotropic case, σ  cannot be determined uniquely from Λσ .  To see this let 
F:Ω Ω→  be a smooth invertible mapping and define a new conductivity F*σ  (the 
push forward of σ  by F ) by 
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where DF  is the matrix of partial derivatives ∂ ∂F xi j/ . The push forward and its 
inverse, the pull back F F*

*( )= −1 , are the global equivalents of the transformation 
rules for the components of a tensor in ‘classical’ tensor analysis.  The conductivity 
here is a tensor density, hence the determinant in the transformation rule. Provided 
F( )x x=  for all x on the boundary we have Λ Λσ σ= F*

 [4,5,6].  At least for analytic 
conductivities, this is the only reason  σ  is not determined uniquely by Λσ .  That is to 
say Λ Λσ σ1 2

=  implies σ σ1 2= .  This result, of Lee and Uhlmann [5]  requires the 
boundary of the domain to be analytic which we will assume is the case.  For the two 
dimensional case Sylvester [6] reduced the anisotropic case to the isotropic case using 
isothermal coordinates and Nachman [15] proved global uniqueness for less smooth 
isotropic conductivities. 
 
An anisotropic conductivity determines a Riemannian metric. As a matrix in Cartesian 
coordinates this is [ ] ( ) [ ]ijijg σσ 1det −= . Using this metric one can calculate the length 
and angle between vectors and the length of curves in an electrical sense. As well as 
the physical geometry we have a non-Euclidean electrical geometry analogous to the 
way the distribution of matter determines the geometry of space-time in general 
relativity.   
 
The covariant metric tensor is given by the matrix inverse of the contravariant metric 
defined above and has components gij  and we define | | det[ ]g gij= .  The Laplacian  
operator with respect to this metric is  
 

                                                
1‘Transconductance’ is the natural term for a linear operator taking voltages to currents. 
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and as σ = | |g g  we see that Δgφ = 0 is equivalent to (1) which is the reason for the 
introduction of the electrical metric 
 
The electrical inner product of two vectors X  and Y  is g g X Yij

i j
i j

( , )
,

X Y =
=∑ 1

3
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the electrical angle between X and Y is cos ( )
( , ) ( , )

−1 g
g g

X,Y
X X Y Y

.   

 
Strangely the electrical geometry seems to have only indirect physical relevance. To 
measure an electrical length and angle one would presumably first have to measure 
the conductivity.   
 
The push forward of a metric has a simpler transformation formula to that of 
conductivities: 
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A metric e is called flat or Euclidean if its components in some coordinate system are 
the Kroneker delta δ ij .  Two metrics h and g are conformally related if F g h* = λ  for 
some smooth invertible map F  and positive scalar function λ .  A metric g is called 
conformally flat if  F g e* = λ  for some smooth invertible map F  and positive scalar 
function λ .  A conformal mapping of a space with metric g is a smooth invertible 
mapping F with F g g* = λ  for a positive scalar λ . A conformal mapping preserves 
angles while possibly changing lengths. 
 
 

3. Unknown Boundary 
 
If the boundary shape is unknown we can treat the body as an abstract three 
dimensional manifold M with boundary ∂M .  A configuration, as in continuum 
mechanics, is a smooth embedding Ψ:M R→ 3 with the body as its image Ψ Ω( )M = .  
A boundary configuration is an embedding Ψ:∂M R→ 3. See Figure 1. 
 
Suppose we know the transconductance on the abstract manifold.  In practical 
experiments one must attach an array of electrodes to ∂M  to apply current and 
measure voltage. To get the complete transconductance one must be able to make 
these electrodes arbitrarily small and numerous.  To know the transconductance only 
on the abstract ∂M  corresponds to knowing the locations of the electrodes in some 
coordinate system but not how this coordinate system is embedded in R3.  We can 
determine some (possibly anisotropic) conductivity σ  on M consistent with the 
measured data and this is defined (by Lee and Uhlmann's theorem) up to some interior 
distortion G M M: → , with G( )x x=  for x ∈∂M . Given two possible configurations  
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Ψ Ω1 1( )M =  and  Ψ Ω2 2( )M =  there is a smooth invertible mapping 
F G= →−Ψ Ψ Ω Ω2 1

1
1 2: .  Suppose that we find electrical metrics g1 and g2  on Ω1 and 

Ω2  consistent with our measured data then there must be such an F with F g g* 1 2= . 
 
In the case of an isotropic conductivity the metric  g e= λ  where e is a flat metric and 
λ  is a positive function.  Such a metric is called conformally flat. The push forward of 
a conformally flat metric by a smooth invertible map is still conformally flat.  We 
now see that for two configurations as above F:Ω Ω1 2→  is a conformal mapping 
between domains in Euclidean space, that is Fe e* = λ  for some positive scalar 
function λ . 
 
 
 
 
 
 
 
 
                                             Ψ  
 
 
 
                    M     Ω  
 

Figure 1. A portion of the abstract manifold M  and a particular 
configuration, shown here as a chest. A local coordinate system is 
shown on both boundaries. Electrodes would be placed at known 
locations in the coordinate system of M . 

 

4. Conformal Mappings 
 
In the familiar case of  a domain in the plane R2 , conformal mappings correspond to 
complex analytic functions f z( )  on that domain with λ = ′ ≠| ( )|f z 0 .  It is easily seen 
that the space of complex analytic mappings of a domain in the complex plane is 
infinite dimensional.  For domains in higher dimensions the situation is different.  
 
The set of conformal mappings on a given n-dimensional manifold (n ≥ 3) with a 
Riemannian metric is a Lie group of dimension no more that ( )( ) /n n+ +1 2 2  [7].  For 
example the only conformal mappings on the whole of R3 are the similarity 
transformations: combinations of translations, reflections, rotations and enlargements.  
Explicitly these are the affine linear mappings f ( )x Ax b= +α  where α  is a positive 
scalar,A  is an orthogonal matrix and b is any vector. 
 
A translation is given by three coordinates, a rotation by three angles and an 
enlargement by a scale factor.  This gives a total of seven parameters needed to 
specify a conformal mapping of R3.  Conformal mappings of a subdomain of  R3 need 
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not be the restriction to that domain of a similarity.  Indeed they may not be affine 
linear mappings. 
 
There is a more general class of conformal mappings defined on R3 except possibly at  
one point, these are the Möbius transformations described below. Any conformal 
mapping defined on a domain in  R3 can be extended to a Möbius transformation [8]. 
As we shall see the Möbius transformations can be considered as conformal mappings 
defined on the whole sphere Sn (with its standard geometry inherited from Rn+1). 
Indeed they constitute the group of all conformal mappings of Sn which has the 
maximum dimension ( )( ) /n n+ +1 2 2 . 
 
If our mapping F  could always be extended to the whole of R3 the only ambiguity in 
the boundary configuration would be its position and orientation in space and its 
overall size. Indeed one would not expect to recover this information from EIT data.  
The body is connected to the tomograph by flexible wires and the orientation and 
position of the body should not affect the measurements.  A change in the overall size 
of the body (an enlargement) would have the same effect on the measured data as a 
scaling of the conductivity.  We will say that two subsets of R3 have the same shape if 
they are related by a similarity (that is they are similar in the sense of classical 
geometry). 
 
There is, however, some further ambiguity due to the Möbius transformations which 
cannot be extended to the whole of R3.  To understand these mappings  we need to 
consider the stereographic projection of the sphere { }1:),,,( 3

03210 == ∑ =i ixxxxxS  in 
R4 .  Denote the point ( , , , )1 0 0 0  by n (the ‘North Pole’) and the (hyper) plane x0 0=  by 
P.  Figure 2 gives a two dimensional illustration of this and the following argument.   
 
A point x  in P is mapped to a unique point X  on S  at the intersection with S of the 
line through n and x.  This mapping is a smooth invertible mapping Πn  from { }n−S  
to P. Moreover it is a conformal mapping between the spherical geometry of S and the 
Euclidean geometry of P [8].  Now take another ‘North Pole’ ′ =n ( , , , )0 1 0 0  and 
consider the stereographic projection on to the plane ′P  defined by x1 0= .  
Combining this projection with the inverse of the first we have a conformal mapping 
F = ′

−Π Πn n
1  from ′ − ′P { ( )}Πn n  to P − ′{ ( )}Πn n . One can think of S as representing P 

with n as a 'point at infinity' added. 
 
Explicitly we can write x Xn= Π ( )  in coordinates [8 p95] 
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where r xii
2 2
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=∑ .  We then have the conformal mapping 
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Figure 2. A two dimensional illustration of the Möbius 
transformation F defined in the text.  Starting at the point 
x = (-0. , , )3 0 0 on the P plane follow the dotted line upwards to see 
where this appears on the X0 0=  plane. The dotted line from n 
shows the image X of this point on S. A dotted line from ′n  through 
X intersects the X1 0=  plane at F(X). Over to the right this is seen 
on the ′P  plane. The planes P and ′P  have both been rotated to be in 
the plane of the paper. The image of concentric  circles for a range of 
r values is shown in the ′P  plane. 

 
This procedure can be performed with any pair of planes, but we loose no generality 
by restricting our attention to planes through the origin. Let p be any point on S and 
define Fp n p= −Π Π 1. We will identify but P and ′P  with R3 then any conformal 
mapping H R R: { } { }3

1
3

2− → −q q  has the form GFH op=  where G( )x Ax b= +α  is 
a similarity.   
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A general feature of conformal mappings of domains in Euclidean space is that they 
preserve round spheres and circles. Here planes are understood to be spheres of 
infinite radius and lines to be circles of infinite radius.  A similarity of R3 clearly 
preserves spheres and maps concentric spheres to concentric spheres.  A conformal 
mapping which is not a similarity preserves spheres but will map concentric spheres 
to non concentric spheres (see Fig 2). 
 
An example of the application of this mapping to a simple geometric figure is given in 
Figure 3. 
 

 
Figure 3. A simple 3 dimensional body and its image under the 
Möbius transformation F defined in the text. Note that circles  and 
spheres are preserved but that straight lines are generally taken to 
circles. 

 
 

5. Indentifiability of shape and conductivity 
 
We now see that the conductivity and the boundary configuration of an isotropic 
ohmic body can be determined by boundary measurement with an ambiguity of three 
parameters in the shape.  To see this choose a configuration Ω1 and suppose that for 
this configuration a conductivity σ 1 can be found which is consistent with the 
complete measured data. Now let Ω2  be another such configuration with conductivity 
σ 2  consistent with the data. We may think of the first configuration and conductivity 
as being correct while the second configuration has the wrong shape and a consistent 
but wrong conductivity.  We know from Section 3 that there must be a conformal 
mapping F:Ω Ω1 → 2. This can be extended to a Möbius transformation defined on R3 
except  possibly at a point in the domain and another in the codomain.  Conversely 
any Möbius transformation F defined on Ω1 gives rise to a consistent configuration 
with Ω Ω2 1= F( ).  We see then that the ambiguity in the configuration has ten degrees 
of freedom, but seven of these arise from similarities so do not affect the shape. There 
are actually only three parameters we have to specify to fix the shape. A natural way 
to do this is to choose four independent (that is not coplanar) points yi  0 3≤ ≤i on 
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∂M . When these points are a embedded in R3 , x yi i= Ψ( ) they define a unique sphere 
with centre c.  We can express c in terms of these points as c x x x= + −

=∑0 01

3 λ i ii
( ). 

The vector ( , , )λ λ λ1 2 3  gives the coordinates of c relative to the frame defined by the 
x i . Any similarity G takes spheres to spheres preserving the centres thus 

( )∑
=

−+=
3

1
00 )()()()(

i
ii GGGG xxxc λ  and we see that the relative coordinates are 

preserved.  Conversely any conformal mapping which is not a similarity will not 
preserve the centre of the sphere. The result can be summarised as follows: 
 
Theorem 5.1 
Once the relative coordinates of the centre of a sphere through four points on the 
boundary are given, an isotropic analytic conductivity and the shape of the boundary 
are determined by the boundary electrical data. 
 
The argument above gives a heuristic proof of the theorem.  For more rigorous, but 
technical proof one simply needs to check that ( , , )λ λ λ1 2 3  is a coordinate chart on the 
so called Möbius sphere which is the conformal group of the three sphere factored by 
the isotropy group of a point on the three sphere [8].  This isotropy group is 
isomorphic to the conformal group of R3 so the Möbius sphere  (which is 
diffeomorphic to the three sphere) is precisely conformal mappings (defined on R3 
except at a point) modulo Euclidean similarities. 
 
While this result says that both the conductivity and the boundary shape can be 
determined by electrical data together with three spatial measurements, this is not to 
say that electrical measurement would be a sensible way to determine the boundary 
shape of a body with unknown conductivity. In medical imaging applications it would 
make sense to use mechanical or optical shape measurement. 
 
Now consider the case where we have the boundary electrical data and attempt to 
recover the conductivity but we assumed the wrong shape.  Except in the very unusual 
situation where the true shape and the assumed shape are related by a conformal 
transformation we will not be able to find a conductivity consistent with our measured 
data. 
 
The good news for practical EIT is that, at least assuming the conductivity is 
isotropic, reconstruction algorithms should fail to converge if the shape is grossly 
wrong.  
 

6. Two dimensional problems 
 
Unfortunately many practical EIT systems perform their reconstructions using two 
dimensional models where the data is obtained from three dimensional bodies 
[9,10,11]. In this case the algorithms would not be expected to converge.  To see this 
consider a three dimensional body with a smooth boundary and any reasonably 
behaved conductivity (differentiable for example).  If a point source of current is 
applied to the boundary at a point y  then the resulting potential will have a singularity 
of the form 1/| |x y− .  If a two dimensional model is used the result of applying a point 
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source of current will be a potential with a singularity of the form log| |x y− .  These 
asymptotic forms of the singularity in the potential even hold for anisotropic 
potentials. Details are given by Alessandrini [14].   
 
Whatever conductivity, or indeed boundary shape, is chosen for the model this 
fundamental difference will remain.  Provided sufficiently many electrodes are used 
and enough potential measurements made one will not be able to fit the two 
dimensional model to the three dimensional data. 
 
Consequently a  least squares minimisation algorithm will fail to fit the model to the 
conductivity beyond a certain error due to the wrong dimensional model. The error 
caused by the inaccurate boundary shape may be smaller and may not be noticed.  In 
the case of the human chest a horizontal ring of electrodes is often used.  These 
electrodes have non-zero height and one might reasonably expect these measurements 
to fit a to dimensional model better with taller electrodes For an account of the impact 
of shape errors on chest imaging see [12].  
 
Where the data is obtained from a genuinely two dimensional phantom the existence 
of a conformal mapping between any two simply connected domains means that 
errors in boundary shape can be accounted for by distortions of the image.  But this is 
an idealisation which assumes that J  is measured directly. 
 
In the two dimensional case it may be reasonable to assume that that the electrode 
spacing is known but not their position.  For example they may be positioned with the 
aid of a tape measure.  In this case the shape and size are uniquely determined by 
boundary electrical data.  To see this take the abstract manifold to be 
M z C z= ∈ ≤{ :| | }1  the closed unit disk in the complex plane (we assume here that the 
body is simply connected).  Let  f M C: →  be a conformal mapping.  Preserving 
electrode spacing corresponds, in the limit of numerous electrodes, to preserving the 
metric on the boundary. We see therefore that | ( )|′ =f z 1 for | |z = 1. Now log ( )′f z  is 
analytic for | |z <1 and Re log ( )′ =f z 0  for | |z = 1. Hence log ( )′ =f z iα  must be an 
imaginary constant and  f z e z ci( ) = +α  is just a rotation and translation. Another way 
in which a length scale may be fixed is to specify the current density j  (which has the 
dimensions Current/Length) rather than the current J . 
 
We conclude that in two dimensions, once the arc length on the boundary is fixed no 
change in boundary shape can be accounted for by a change in conductivity and that 
both conductivity and boundary shape can be determined from the boundary electrical 
data.   
 
Numerical experiments using two dimensional numerical phantoms, such as those 
reported by Jain [13] show that with the wrong boundary shape a regularised 
Newton's method will often produce an image with some correct conductivity features 
as well as some artefacts. However the boundary data from these images never fits the 
simulated data from a model with the correct boundary shape.  Kiber et al [16] 
attempted to estimate the shape of the boundary from electrical data using a two 
dimensional model. They report reasonable success for an elliptical two dimensional 
tank of constant conductivity and some success using in vivo data from a human 
thorax. 
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7. Electrode Modelling 
 
Real EIT systems apply current and measure potential using a system of conductive 
electrodes applied to the surface of the body. Typically the size and shape of these 
electrodes is fixed, and the size is not negligible in comparison with the gaps  between 
electrodes. Thus far we have adopted the convention of a continuum of electrode 
which allows us to apply any desired current over a given region of the boundary. 
Cheng et al [17] call this the 'no gap' model. A simple model which takes account of 
the size but not the high conductivity of the electrodes is the 'gap model'. In this case a 
constant current density is assumed on each electrode E Mk ⊂ ∂  k K= 1...  
 

σ ∂φ
∂n

I Ek k= / ( )Area  on each Ek  ,  

σ ∂φ
∂n

= 0 off the electrodes. 

 
Unlike the transcondcutance operator this type of condition is not invariant under 
change of coordinates on the boundary.  Even if the shape and area of the electrodes 
was not fixed the condition of constant current density on the electrodes would not be 
preserved by a conformal mapping other than a similarity.   
 
A more sophisticated model of electrodes, the 'shunt model' [17,18] takes account of 
the high conductivity of the electrode. In this case the potential is assumed constant 
on each electrode and the total current on each electrode is prescribed: 
 

k
E

IJ
k

=∫   and φ = Vk  (constant) for each electrode  Ek  ,  

σ ∂φ
∂n

= 0 off the electrodes 

 
If the shape of the electrodes were only known in the abstract coordinate system such 
conditions would be invariant under change of coordinates and so would allow the 
ambiguity of conformal maps as described above in both the two and three 
dimensional cases.   However it is more realistic to assume a predetermined electrode 
shape and size in physical coordinates. The shape of circular but not square electrodes 
would be preserved under a general conformal mapping, but not their size.  
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