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In order to test the numerical methods for model reduction we present here a bench-
mark collection, which contain some useful ’real world’ examples reflecting current prob-
lems in applications.
All simulations were obtained via Matlab and some slicot programs of Niconet1.

1http://www.win.tue.nl/niconet/niconet.html
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Introduction

We consider the stable linear time-invariant (LTI) system,
{

Eδx(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) + Du(t), t ≥ 0

(1)

and the associated transfer function matrix (TFM),

G(λ) = C(λE −A)−1B + D (2)

with E, A ∈ RN×N , B ∈ RN×m, C ∈ Rp×N , and D ∈ Rp×m. The number of state
variables N is said to be the order of the system. If t ∈ R and δx(t) = ẋ(t), the system is
a continuous-time system and λ is the frequency variable s, while (1) describes a discrete-
time system if t ∈ Z and δx(t) = x(t + 1) is the forward shift operator and λ is in this
case z.

The aim is to find a reduced order LTI model,
{

Enδxn(t) = Anxn(t) + Bnun(t), t > 0, xn(0) = x0
n,

yn(t) = Cnxn(t) + Dnun(t), t ≥ 0
(3)

of order n, n ¿ N , such that the TFM Gn(λ) = Cn(λEn − An)−1Bn + Dn approximates
the first one in a particular sense.

A large class of model reduction methods rely on the construction of matrices :
Tl ∈ Rn×N and Tr ∈ RN×n such that the reduced model is defined as

En = TlETr, An = TlATr, Bn = TlB, Cn = CTr and Dn = D.

We assume that the generalized spectrum of (A,E), denoted by Λ(A,E), is contained
in the stable region of the complex plane.

There is no general technique for model reduction that can be considered as optimal
in an overall sense since the reliability, performance and adequacy of the reduced system
strongly depends on the system characteristics. Model reduction methods usually differ
in the error measure they attempt to minimize.

The model reduction methods that we are interested in are strongly related to
the controllability Gramian Gc and the observability Gramian ETGoE of the system
(E−1A,E−1B, C) (under the assumption that E is invertible).
For continuous-time systems the Gramians are given by the solutions of two ”coupled” (as
they share the same coefficient matrix A) Lyapunov equations :

AGcE
T + EGcA

T + BBT = 0, ATGoE + ETGoA + CT C = 0

while in the discrete-time case, the Gramians satisfy the Stein equations (or discrete
Lyapunov equations) :

AGcA
T − EGcE

T + BBT = 0, ATGoA− ETGoE + CT C = 0

The Hankel Singular Values (HSV) of the systems are given by the square-roots of the
eigenvalues of GcE

TGoE, i.e.,

Λ(GcE
TGoE) = {σ2

1, . . . , σ
2
N}, σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0.
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As the pair (A,E) is assumed to be stable, Gc and Go are positive semi-definite.

The data files can be obtained by sending an e-mail to: ”chahloui@auto.ucl.ac.be”.
Every data file contains the default matrices A, B, C, D and E for descriptor systems. If
D, C or E are not given, it means that D = 0, C = BT and E = I.
There is also a vector of the Hankel singular values hsv, a frequency vector ω and the
corresponding frequency response mag. When Gc and Go are positive definite the data
files contain two matrices S and R which are the Cholesky factors of the matrices Gc,Go,
i.e. Gc = ST S, Go = RT R, rather than the Gramians themselves.
If there are several Gramians corresponding to SISO subsystems, they are denoted with a
subscript as well as the corresponding Cholesky factors (e.g. Gc1 , S1, . . . ).

Dense models

Data file N m p Elements
eady.mat 598 1 1 A, B, C, R, S, mag, w

tline.mat 256 2 2 A, B, C, E, Gc Go, mag, w

Sparse models

Data file N m p Elements
CDplayer.mat 120 2 2 A, B, C, R, R1, R2, S, S1, S2, hsv, mag, w

peec.mat 480 1 1 A, B, C, E, mag, w

fom.mat 1006 1 1 A, B, C, R, S, hsv, mag, w

random.mat 200 1 1 A, B, C, R, S, hsv, mag, w

pde.mat 84 1 1 A, B, C, R, S, hsv, mag, w

heat-cont.mat 200 1 1 A, B, C, R, S, hsv, mag, w

heat-disc.mat 200 1 1 A, B, C, E, R, S, hsv, mag, w

Orr-Som.mat 200 1 1 A, R, S, hsv, mag, w

MNA 1.mat 578 9 9 A, B, E

MNA 2.mat 9223 18 18 A, B, E

MNA 3.mat 4863 22 22 A, B, E

MNA 4.mat 980 4 4 A, B, E

MNA 5.mat 10913 9 9 A, B, E

Second order models

A second order model is a system of the type:

Mẍ(t) + Cdẋ(t) + Kx(t) = Bdu(t)

Under the assumption that M is invertible, this system leads to a linear system with the
matrices [3]:

A =
[

0 I
−M−1K −M−1Cd

]
, B =

[
0

M−1Bd

]

C can be taken as BT or something else.

Data file N m p Elements
iss.mat 270 3 3 A, B, C, R, R1, R2, R3, S, S1, S2, S3, hsv, mag, w

build.mat 48 1 1 A, B, C, R, S, hsv, mag, w

beam.mat 348 1 1 A, B, C, R, S, hsv, mag, w
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Eady example

N = 598, m = 1, p = 1

This is a model of the atmospheric storm track (for example the region in the midlatitude
Pacific). The mean flow is taken to be in a periodic channel in the zonal x-direction,
0 < x < 12π, the channel is taken to be bounded with walls in the meridional y-direction
located at y = ±π

2 and at the ground, z = 0, and the tropopause, z = 1. The mean velocity
is varying only with height and it is U(z) = 0.2 + z. Zonal and meridional lengths are
nondimensionalized by L = 1000km, vertical scales by H = 10km, velocity by U0 = 30m/s
and time is nondimensionalized advectively, i.e. T = L

U0
, so that a time unit is about 9h.

In order to simulate the lack of coherence of the cyclone waves around the Earth’s
atmosphere, an observed characteristic of the Earth’s atmosphere, we introduce linear
damping at the storm track’s entry and exit region. The perturbation variable is the
perturbation geopotential height (i.e. the height at which surfaces of constant pressure
are located).

The perturbation equations for single harmonic perturbations in the meridional (y)
direction of the form φ(x, z, t)eily are :

∂φ

∂t
= ∇−2

[
− z∇2Dφ− r(x)∇2φ

]
,

where ∇2 is the Laplacian ∂2

∂x2 + ∂2

∂z2 − l2 and D = ∂
∂x . The linear damping rate r(x) is

taken to be r(x) = h(2− tanh[(x− π
4 )/δ] + tanh[(x− 7π

2 )/δ]) (h = 2.5, δ = 1.5).
The boundary conditions are expressing the conservation of potential temperature

(entropy) along the solid surfaces at the ground and tropopause:

∂2φ

∂t∂z
= −zD

∂φ

∂z
+ Dφ− r(x)

∂φ

∂z
at z = 0,

∂2φ

∂t∂z
= −zD

∂φ

∂z
+ Dφ− r(x)

∂φ

∂z
at z = 1.

Note that these equations are the same for perturbation evolution in a Couette flow with
free boundaries.

We write the dynamical system in generalized velocity variables ψ = (−∇2)
1
2 φ so that

the dynamical system is governed by the dynamical operator:

A = (−∇2)
1
2∇−2

(
− zD∇2 + r(x)∇2

)
(−∇2)

−1
2 .

where the boundary equations have rendered the operators invertible. We consider the
case l = 1. Now the state are governed by the equation:

dψ

dt
= Aψ

We can define two correlation matrix Gc =
∫∞
0 eAteAT tdt and Go =

∫∞
0 eAT teAtdt solution

of Lyapunov equations:

AGc + GcA
T + I = 0 , ATGo + GoA + I = 0

These matrices are the equivalent of the controllability and observability Gramians.
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Figure 1: Frequency response.
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Figure 2: eigenvalues of A
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Transmission line model

N = 256, m = 2, p = 2

A transmission line is a circuit model modeling the impedence of interconnect structures
accounting for both the charge accumulation on the surface of conductors and the current
traveling along conductors [8], [9].
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Figure 4: frequency response
1st input / 1st output ≡ 2st input / 2st output.
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Figure 5: frequency response
1st input / 2st output ≡ 2st input / 1st output.
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Figure 7: generalized eigenvalues of (A,E).
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CD player

N = 120, m = 2, p = 2

The control task is to achieve track following, which basically amounts to pointing the
laser spot to the track of pits on the CD that is rotating. The mechanism treated here,
consists of a swing arm on which a lens is mounted by means of two horizontal leaf springs.
The rotation of the arm in the horizontal plane enables reading of the spiral-shaped disc-
tracks, and the suspended lens is used to focus the spot on the disc. Due to the fact that
the disc is not perfectly flat, and due to irregularities in the spiral of pits on the disc, the
challenge is to find a low-cost controller that can make the servo-system faster and less
sensitive to external shocks [4] and [13].The model contains 60 vibration modes.

Figure 9: Schematic view of a rotating arm Compact Disc mechanism.
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Figure 10: Sparsity of A.
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Figure 11: Eigenvalues of A
(stable but lightly damped).
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1st input / 1st output
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Figure 14: Frequency response of arm position controller.
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PEEC model

N = 480, m = 1, p = 1

This model arises from a partial element equivalent circuit (PEEC) model of a patch
antenna structure [2],[6] and [7]. Containing 2100 capacitances, 172 inductances and 6990
mutual inductances, the circuit can be realized as a system of dimension 480. The couple
(A,E) has an infinite eigenvalue λ∞ = −3.17 .1044 + j2.27 .1036, the other eigenvalues are
shown in Figure.16.
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Figure 15: Frequency response.
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Figure 16: Generalized eigenvalues of (A,E).
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FOM

N = 1006, m = 1, p = 1

This example is from [11]. It is a dynamical system of order 1006. The state-space
matrices are given by

A =




A1

A2

A3

A4


 A1 =

[ −1 100
−100 −1

]
A2 =

[ −1 200
−200 −1

]
A3 =

[ −1 400
−400 −1

]

A4 = diag(−1, . . . ,−1000), BT = C = [10 . . . 10︸ ︷︷ ︸
6

1 . . . 1︸ ︷︷ ︸
1000

]

the eigenvalues of A are: σ(A) = {−1,−2, . . . ,−1000,−1± 100j,−1± 200j,−1± 400j, }
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Figure 19: Frequency response.
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Figure 20: Eigenvalues of A
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Random example

N = 200, m = 1, p = 1
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Figure 22: Frequency response.
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Figure 23: Eigenvalues of A
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PDE example

N = 84, m = 1, p = 1

Consider the partial differential equation (PDE) [6],

∂x

∂t
=

∂2x

∂z2
+

∂2x

∂v2
+ 20

∂x

∂z
− 180x + f(v, z)u(t)

where x is a function of time (t), vertical position (v) and horizontal position (z). The
boundaries of interest in this problem lie on a square with opposite corners at (0, 0) and
(1, 1). The function x(t, v, z) is zero on these boundaries. This PDE can be discretized
with centered difference approximations on a grid of nv × nz points. The discretization
grid, when nv = 3 and nz = 5, is shown in Figure.27. A state-space equation of dimension
N = nvnz results from the discretization. The sparsity pattern of the resulting A matrix,
when nv = 7 and nz = 12, is shown in Figure.28. The input vector of the system
corresponds to f(v, z) and is composed of random elements. The output vector of the
system is equated to the input vector for simplicity.
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Figure 26: Frequency response.
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Heat equation (cont. and discrete cases)

N = 200, m = 1, p = 1

We consider the heat diffusion equation for the one-dimensional (1D) :




PDE
∂

∂t
T (x, t) = α

∂2

∂x2
T (x, t) + u(x, t) x ∈ (0, 1); t > 0

BCs T (0, t) = 0 = T (1, t) t > 0
IC T (x, 0) = 0 x ∈ (0, 1)

Where T (x, t) represents the temperature field on a thin rod and u(x, t) = u(t)δ1/3(x) is
the heat source.
The solution is given by :

T (x, t) = x(x− 1) +
∞∑

i=0

8
(2i + 1)3π3

sin((2i + 1)πx)e−(2i+1)2π2αt +
( ∫ t

0
u(s)ds

)
δ1/3(x)

The spatial domain is discretized into segments of length h =
1

N + 1
.

Suppose for example that one wants to heat in a point of the rod located at 1/3 of the
length and wants to record the temperature at 2/3 of the length.

We obtain the semi-discretized system :
{

Ẋ(t) = AX(t) + Bu(t) ; X(0) = 0
Y (t) = CX(t)

where :

A =
α

h2




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2



∈ RN×N , B = (δi,N/3)i ∈ RN

C = (δi,2N/3)T
i ∈ RN and X(t) ∈ RN is the solution evaluated at each x value in the

discretization for t.
Now if we want to completely discretize the system, for example using Cranck-Nicholson
we obtain : {

E1X(k + 1) = A1X(k) + B1u(k) ; X(0) = 0
Y (k) = CX(k)

where E1 = IN − ∆t

2
A, A1 = IN +

∆t

2
A and B1 = ∆tB
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Figure 31: sparsity A, A1 and E1
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Continuous case
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Orr-Somerfeld example

N = 100, m = 1, p = 1

The Orr-Sommerfeld operator for Couette flow (the mean velocity varies as U = y, y is
the height) is in perturbation velocity variables [5]:

A = (−D2)
1
2 D−2

(
− ijkD2 +

1
Re

D4
)
(−D2)−

1
2

where D = d
dy and appropriate boundary conditions have been introduced (the pertur-

bation velocities vanish at the walls) so that the inverse operators are defined. Re is the
Reynolds number, and k is the x-wavenumber of the perturbation. This operator governs
the evolution of 2-dimensional perturbations.
The matrix a 100 × 100 discretization for Reynolds number Re = 800 and k = 1 (this
discretization gives accurate results for this Reynolds number).
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MNA examples

To obtain the admittance matrix of a multiport, voltage sources are connected to the ports
[10]. The multiport, along with these sources, constitutes the Modified Nodal Analysis
(MNA) equations: {

Eẋn = Axn + Bup

ip = Cxn.

The ip and up vectors denote the port currents and voltages, respectively, and

A =
[ −N −G

GT 0

]
, E =

[
L 0
0 H

]
xn =

[
v
i

]

where v and i are the MNA variables corresponding to the node voltages, inductor and
voltage source currents, respectively. The n × n matrices −A and E represent the con-
ductance and susceptance matrices, while −N , L and H are the matrices containing the
stamps for resistors, capacitors and inductors, respectively. G consists of 1, −1 and 0,
which represent the current variables in KCL equations. Provided that the original N -
port is composed of passive linear elements only, L, H and −N are symmetric nonnegative
definite matrices. This implies that E is also symmetric and nonnegative definite. Since
this is an N -port formulation, whereby the only sources are the voltage sources at the N
port nodes, B = CT . The E matrices all have several singular modes.

We have five sparse examples:

name of file dimension
MNA 1 578
MNA 2 9223
MNA 3 4863
MNA 4 980
MNA 5 10913

We show above only the characteristics of the fourth example.
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Figure 41: generalized eigenvalue of (E, A)
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Figure 42: sparsity E
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International space station

N = 270, m = 3, p = 3

It is a structural model of component 1r (Russian service module) of the International
Space Station (ISS) [1].
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Figure 44: Sparsity of A.
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Figure 45: Eigenvalues of A.
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Figure 46: .. svd(Gc), o svd(Gc1),
x svd(Gc2), + svd(Gc3), hsv
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Figure 48: Frequency response of the ISS model.
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Building model

N = 48, m = 1, p = 1

It is a model of a building (the Los Angeles University Hospital) with 8 floors each
having 3 degrees of freedom, namely displacements in x and y directions, and rotation [1].
Hence we have 24 variables with a polynomial system:

Mq̈(t) + Cq̇(t) + Kq(t) = vu(t)

where u(t) is the input. This system can be put into a traditional state space form of order

48 by defining x =
[

q
q̇

]
. We are mostly interested in the motion in the first coordinate

q1(t). Hence, we choose v =
[

1 0 . . . 0
]T and the output y(t) = q̇1(t) = x25(t).
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Figure 49: Frequency response.
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Figure 50: Eigenvalues of A
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Clamped beam model

N = 348, m = 1, p = 1

The clamped beam model has 348 states, it is obtained by spatial discretization of an
appropriate partial differential equation [1]. The input represents the force applied to the
structure at the free end, and the output is the resulting displacement.
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Figure 52: Frequency response.
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Figure 53: Eigenvalues of A
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