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ESTIMATING GRAMIANS OF LARGE-SCALE
TIME-VARYING SYSTEMS

Younes Chahlaoui, ∗ Paul Van Dooren ∗

∗Université catholique de Louvain, Belgium

Abstract: In this paper we present a Smith-like updating technique to estimate a
low rank approximation of the Gramians of a time-varying system. We obtain error
estimates of our approximation and also explain how to use this for model reduction
of time-varying systems.
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1. INTRODUCTION

Model reduction of large-scale dynamical systems
has become very popular in the last decade. The
idea is to construct a lower order model that
approximates well the behavior of the larger dy-
namical model. There are many ways to achieve
this : an often used technique is that of balanced
truncation, introduced by Moore (Moore, 1981),
who showed asymptotic stability of the associated
reduced-order model for a linear time-invariant
system. This approach has the advantage that
the states which are difficult to control are also
difficult to observe, so that one just truncates
those “weak” states to produce a good reduced
order model. In (Imae et al., 1992) and (Shokoohi
et al., 1983) a generalization to time-varying sys-
tems is presented, but without any algorithmic
details. Glover (Glover, 1984) established certain
error bounds between original plants and reduced-
order models in terms of Hankel singular val-
ues. Recently, many papers study iterative meth-
ods utilizing Krylov-based projection (moment-
matching, rational interpolation, Arnoldi, Padé,
Lanczos, see (Van Dooren, 2000) for a survey). All
the ideas developed for linear systems are based
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on the dominant spaces of Gramians (energy func-
tions for -in and outgoing signals), which are the
solutions of Lyapunov or Stein equations. A lot of
work is still needed to efficiently compute these
solutions (or their dominant spaces) when the
system matrices are large and sparse. In fact, most
direct methods ignore sparsity in the Lyapunov
or Stein equations and are not very attractive
for parallelization. Their use is therefore limited
if large, sparse equations have to be solved. The
complexity of these methods is roughly Θ(N3)
floating point operations and they require about
Θ(N2) words of memory.

2. TIME-VARYING SYSTEMS

Discrete-time case
We first consider a discrete-time system{

xk+1 = Akxk + Bkuk

yk = Ckxk
(1)

with input uk ∈ Rm, state xk ∈ RN and output
yk ∈ Rp, and m, p << N .
The input sequence is assumed to be square-
summable, i.e uk ∈ lm2

(
this is a Hilbert space

with inner product 〈x, y〉lm2
.=
∞∑
−∞

xT
k yk

)
, and we

assume that {Ak}∞0 , {Bk}∞0 , and {Ck}∞0 are
bounded sequences of matrices with appropriate
dimensions. (A sequence of matrices {Mk} is said
to be bounded if there exists a constant M ∈ R
such that ‖Mk‖ ≤ M, ∀k ∈ Z).



Using the recurrence (1) over several time steps,
one obtains the state at step k in function of past
inputs over the interval [k0, k] :

xk = Φ(k, k0)xk0 +
k−1∑

i=k0

Φ(k, i + 1)Biui

where Φ(k, k0)
.= Ak−1 . . . Ak0 is the discrete

transition matrix over time period [k0, k]. The
transition matrix has the following properties :

{
Φ(k, k0) = Φ(k, k1)Φ(k1, k0), k0 ≤ k1 ≤ k
Φ(k, k) = IN ∀k

We will assume the time-varying system to be
asymptotically stable, which means that

‖Φ(k, k0)‖ ≤ m · a(k−k0), with m > 0, 0 < a < 1.

Under such conditions one can define the Grami-
ans over any interval [k0, kf ] as follows :

Gc(k) =
k−1∑

i=k0

Φ(k, i + 1)BiB
T
i ΦT (k, i + 1),

Go(k) =
kf∑

i=k

ΦT (i, k)CT
i CiΦ(i, k).

(Notice that the asymptotic stability is needed
when k0 = −∞ or kf = +∞.)
These Gramians can also be obtained from the
Stein recurrence formulas:

Gc(k + 1) = AkGc(k)AT
k + BkBT

k , (2)

and

Go(k) = AT
k Go(k + 1)Ak + CT

k Ck, (3)

with respective initial conditions

Gc(k0) = 0, Go(kf + 1) = 0.

Continuous-time case
The continuous-time case is very similar. Consider
the linear finite-dimensional dynamical system
represented by:{

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) (4)

with input u(t) ∈ Rm, state x(t) ∈ RN and output
y(t) ∈ Rp, and p,m << N . Here u(t) is assumed
to be piecewise continuous, and A(t), B(t), and
C(t) are matrices of bounded, continuously differ-
entiable functions with appropriate dimensions.
Moreover, the input sequence is assumed to be
square-summable, i.e u(t) ∈ lm2 with an inner
product that is now defined as

〈x, y〉lm2
.=

∫ +∞

−∞
x(t)T y(t)dt .

The state as function of past inputs can be derived
from (4) and is given by :

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, s)B(s)u(s)ds

where Φ(t, t0) is the transition matrix associated
with the homogeneous equation ẋ(t) = A(t)x(t).
For an asymptotically stable system we also have

‖Φ(t, t0)‖ ≤ m · e−a(t−t0), with m > 0, a > 0.

We can then define the controllability and observ-
ability Gramians over any interval [to, tf ] by:

Gc(t) =
∫ t

t0

Φ(t, s)B(s)BT (s)ΦT (t, s)ds

Go(t) =
∫ tf

t

ΦT (s, t)CT (s)C(s)Φ(s, t)ds

(Notice again that asymptotic stability is needed
when t0 = −∞ or tf = +∞.)

These Gramians also satisfy the Lyapunov differ-
ential equations:
∂Gc(t)

∂t
= A(t)Gc(t)+Gc(t)AT (t)+B(t)BT (t) (5)

and
∂Go(t)

∂t
= −AT (t)Go(t)− Go(t)A(t)− CT (t)C(t)

(6)
with respective initial conditions

Gc(t0) = 0, Go(tf ) = 0.

All results in continuous-time and discrete-system
are very similar, except that discrete transition
matrices and summations are replaced by continu-
ous transition matrices and integrations, and that
the sequence [k0, kf ] is replaced by the interval
[t0, tf ].

Conversion to discrete-time
The numerical scheme proposed in later sections is
entirely based on discrete-time models. We show
that it can be applied to continuous-time systems
as well by using an appropriate discretization.

Let us apply Euler’s explicit scheme to the solu-
tion of the ordinary differential equations (5,6),
then for step size h we obtain :[Gc((k+1)h)− Gc(kh)

]
/h =

A(kh)Gc(kh) + Gc(kh)AT (kh) + B(kh)B(kh)T ,

and
−[Go((k+1)h)− Go(kh)

]
/h =

A(kh)TGo((k+1)h)+Go((k+1)h)A(kh)+C(kh)T C(kh)
with respective initial conditions

Gc(to) = 0, Go(tf ) = 0.

One easily checks that up to O(h2) this is equiv-
alent to solving the recurrences (2,3) with the
correspondences

Ak
.= (I + hA(kh)), Bk

.=
√

hB(kh),

Ck
.=
√

hC(kh).
We are thus approximating the continuous-time
Gramians at time steps Gc(to + kh), and Go(tf −
kh), and due to the accuracy of Euler’s method,
this approximation is accurate to O(h).



3. BALANCED TRUNCATION

The method of balanced truncation of linear sys-
tems is well established for model reduction. For
linear time-invariant systems, the approach re-
quires only matrix computations, and has been
successfully used in control systems design. A-
priori error bounds in the induced 2-norm can be
given for the error between the original and the
reduced system (Zhou et al., 1995).
For linear time-varying systems, the procedure is
analogous to the linear time-invariant case but
requires the solution of difference or differential
equations in order to obtain the Gramians. From
(Shokoohi et al., 1983), any uniformly controllable
and observable linear system has a uniformly bal-
anced realization, i.e., the product of the Grami-
ans has an eigenvalue decomposition of the form:

T (t)−1Gc(t)Go(t)T (t) = G̃c(t)G̃o(t) = Σ2(t)

where T (t) is a Lyapunov transformation (bounded,
with bounded inverse and continuous derivative),
Σ(t) is diagonal and G̃c(t), G̃o(t) are the Gramians
of the system {Ã(t), B̃(t), C̃(t)} obtained via the
state space transformation T (t). This new system
is uniformly balanced and can then be truncated
to obtain the reduced order model.
The results for the discrete-time case are very
similar. There exists a state space transformation
Tk (uniformly bounded with uniformly bounded
inverse) such that the transformed Gramians sat-
isfy

T−1
k Gc(k)Go(k)Tk = G̃c(k)G̃o(k) = Σ2(k).

One also shows that if there is a uniform gap
between ”large” and ”small” singular values, the
constructed reduced model is asymptotically sta-
ble, and uniformly controllable and observable.
As pointed out earlier, it is more convenient to
work in the discrete-time setting. Rather than
computing the complete transformation Tk, one
can try to estimate only the first few columns
of Tk, i.e. a matrix Xk ∈ RN×n whose columns
span the ”dominant” eigenvectors of the product
Gc(k)Go(k).
Similarly, one will need a matrix Yk ∈ RN×n

whose columns span the ”dominant” eigenvectors
of the product Go(k)Gc(k).
One then obtains the reduced model for the
system {Ak, Bk, Ck} as {Y T

k AkXk, Y T
k Bk, CkXk},

provided the bases were normalized using Y T
k Xk =

In (see (Van Dooren, 2000) for more details). The
rest of the paper now focuses on the case were
the original system is large and sparse. This is
typically the case if it originates from a spatial
discretization of partial differential equations. We
refer to (Verlaan and Heemink, 1997) for such a
typical time-varying example.

When large-scale systems are sparse it is impor-
tant to exploit this sparsity for computational effi-

ciency. Iterative methods are very suitable for this
and are often easy to parallelize as well. Balanced
truncation requires the solution of large-scale Lya-
punov or Stein equations in order to obtain the
Gramians. Since these are dense matrices this will
typically costs Θ(N3) floating point operations
and Θ(N2) words of memory (Penzl, 2000). But
when model reduction is to be used, the Gramians
have often rapidly decaying eigenvalues (Antoulas
et al., 2001b), which suggests to approximate the
Gramians at each step by a low-rank factorization.
We show below how to obtain such approxima-
tions and at the same time exploit the sparsity
of the model {Ak, Bk, Ck}. Although all material
below should be applied to both Gramians Gc(k)
and Go(k) we will focus on the controllability
Gramian only.

Smith method
A popular approach for the time-invariant case
is the Smith method. This method computes
recursive approximations to the solution of the
Stein equation:

Gc(k + 1) = AGc(k)AT + BBT

which yields, for Gc(0) = 0, the iterates :

Gc(k) =
k∑

i=1

Φ(k, i)BBT Φ(k, i)T

converging to the solution G of

G = AGAT + BBT .

The Smith method converges linearly but has a
drawback that it computes the solution in dense
form and hence requires Θ(N2) storage. To take
advantage of the (”approximate”) low-rank prop-
erty of the Gramian, one has to use the so called
low-rank Smith method.

Low-rank Smith methods
The key idea of the low-rank method is to substi-
tute the iterates by their symmetric factorization :

Gc(k) = SkST
k .

This is always possible because Gc(k) can be
shown to be symmetric and positive semi-definite.
This method still has the drawback that the num-
ber of columns of Sk grows linearly at each itera-
tion. It is suggested in (Antoulas et al., 2001a) to
use instead a low-rank approximation

Gc(k) ≈ S̃kS̃T
k , S̃k ∈ RN×n,

at each step of the recursion. It is precisely such
a scheme that we develop in the next section for
the time-varying case.

4. LOW-RANK GRAMIANS

We consider the following time-varying equation:

Gc(k + 1) = AkGc(k)AT
k + BkBT

k . (7)



The main goal of a low-rank version is to ap-
proximate the square root of Gc(k) by a rank nk

approximation at each iteration (typically nk is
constant).
Let S̃0∈RN×n be an initialization satisfying:

S0S
T
0 = S̃0S̃

T
0 + E0E

T
0

(we can always choose, e.g. S̃0 = 0, which would
imply E0 =S0), then the kth low-rank approxima-
tion S̃k is obtained as follows :

Ŝk =
[
Ak−1S̃k−1 Bk−1

]
= UΣV T

S̃k
.= ŜkV (:, 1 : n)

Ek
.= ŜkV (:, n + 1 : n + m)

(8)

where U ∈ RN×(n+m), Σ ∈ R(n+m)×(n+m) and
V ∈ R(n+m)×(n+m) are the Short Singular Values
Decomposition (SSVD) matrices of Ŝk.

Let us define Pk as the low-rank approximation
of the Gramian Gc(k), i.e. Pk = S̃kS̃T

k . From the
iteration (8) it follows that Pk is the best rank n
approximation to ŜkŜT

k . But this is not sufficient
since we want to compare Gc(k) = SkST

k with
Pk = S̃kS̃T

k . This is analyzed below.

Convergence properties
Define Sk =

[
Bk−1 Ak−1Bk−2 . . . Φ(k, 0)S0

]
then clearly Gc(k) = SkST

k . We now show the
following result :

Theorem 1.
At each iteration, there exists an orthogonal ma-
trix Vk ∈ R(n+m)×(n+m) satisfying :

SkVk =
[
S̃k Ek Ak−1Ek−1 . . . Φ(k, 0)E0

]

where Ek is the neglected part at iteration k (8).

Proof
At each step, there exists an orthogonal matrix
Ṽk+1 such that

[
Bk AkS̃k

]
Ṽk+1 =

[
S̃k+1 Ek+1

]
.

For k = 0 we have S0 =
[
S̃0 E0

]
.

We prove the general result by induction. Suppose
that there exists an orthogonal matrix Vk such
that

SkVk =
[
S̃k Ek Ak−1Ek−1 . . . Φ(k, 0)E0

]
.

Since Sk+1 =
[
Bk AkSk

]
, we choose

Vk+1 =
[

Im 0
0 Vk

] [
Ṽk+1 0

0 Il

]
, (l=(k+1)m)

from which it follows that

Sk+1Vk+1 =
[
Bk AkSk

] [
Im 0
0 Vk

] [
Ṽk+1 0

0 Il

]

=
[
Bk AkSkVk

] [
Ṽk+1 0

0 Il

]

=
[
Bk AkS̃k AkEk . . . Φ(k+ 1, 0)E0

][ Ṽk+1 0
0 Il

]

=
[
S̃k+1 Ek+1 AkEk . . . Φ(k+ 1, 0)E0

]
.

¤

We can use this to compare the solution Gc(k) of
(7) with Pk as follows

Gc(k) = SkST
k =

S̃kS̃T
k + EkET

k +
k−1∑

i=0

Φ(k, i)EiE
T
i Φ(k, i)T .

Since Φ(k, k) = IN it follows that

Gc(k) = Pk +
k∑

i=0

Φ(k, i)EiE
T
i Φ(k, i)T . (9)

Taking norms we obtain

‖Gc(k)−Pk‖2 ≤
k∑

i=0

‖Φ(k, i)‖22‖Ei‖22

and if we define η = max
0≤i≤∞

‖Ei‖2, we obtain the

simple inequality

‖Gc(k)− Pk‖2 ≤ η2
k∑

i=0

‖Φ(k, i)‖22. (10)

Since we have supposed that our system is asymp-
totically stable, we have:

‖Φ(k, k0)‖ ≤ m · a(k−k0), with m > 0, 0 < a < 1.

and (10) becomes :

‖Gc(k)−Pk‖2 ≤ η2m2
k∑

i=0

a2i ≤ η2m2

1− a2
.

When k →∞ this bounds the difference between
P∞ and Gc(∞).

The time-invariant case
For linear-time invariant systems {A,B, C}, the
difference between the approximate low-rank Gramian
Pk and the exact Gramian Gc(k),

Ek
.= Gc(k)− Pk

remains bounded for large k.

Theorem 2.
Let P be the solution of P = APAT + I then

‖Ek‖2 ≤ η2‖P‖2 ≤ η2 κ(A)2

1− ρ(A)2
(11)

Proof
It follows from (9) that

Ek+1 = AEkAT + EkET
k .

With η = max
0≤k≤∞

‖Ek‖2, we can also consider the

equation:

Xk+1 = AXkAT + (η2I − EkET
k ), X0 = 0.

Its iterates Xk are clearly positive semi-definite
and hence converge to a solution X which is also
positive semi-definite. Moreover by linearity we
have

Ek+1 + Xk+1 = A(Ek + Xk)AT + η2I.



It then follows that

lim
k→∞

Ek + Xk = η2P
and we obtain ‖Ek‖2 ≤ η2‖P‖2.
The second bound follows from the eigen-
decomposition of A. ¤
Remarks
− Our bounds are very similar to those obtained
in (Antoulas et al., 2001a) for the time-invariant
case;
− In (11), κ(A)2

1−ρ(A)2 is constant and it is very inter-
esting when ρ(A) ¿ 1 and k(A) is reasonable;
− As stopping criterion, we can predefine a toler-
ance εm and test if η ≤ εm for several iterations;
− η can be taken equal to the maximum of ‖Ei‖2
for k0 ≤ i ≤ ∞, since we can interpret theorems 1
and 2 as starting with step k0 rather than 0. This
is particulary useful if after step k0 the errors
have converged to their minimal value, i.e. the
convergence threshold εm;
− At each iteration, we need to compute only
U1 = U(:, 1 : n) and η. This requires typically
Θ(N(n + m)2) flops (Golub and Loan, 1996),
which is more reasonable than the complexity
given in the introduction (when N À m,n);
− A reduced model is obtained as :
{UT

1 AU1, U
T
1 B, CU1} where U1 is the dominant

part of the last orthogonal matrix obtained by (8).

The periodic case
A K-periodic system, i.e. a system such that

{AK+k, BK+k, CK+k} = {Ak, Bk, Ck}
is equivalent (Tsakalis and Ioannou, 1993) to a
”lifted” time-invariant system

{
x̂(k + 1) = Âx̂(k) + B̂u(k)

ŷ(k) = Ĉx̂(k) + D̂u(k)
(12)

with appropriately defined system matrices :

Â = Φ(K, 1), B̂ =
K∑

i=1

Φ(K, i + 1)Bi,

Ĉ = CKΦ(K − 1, 1), D̂ = CK

K∑

i=1

Φ(K, i + 1)Bi.

For such systems our analysis can be extended as
follows :

Theorem 3.
Let P be the solution of P= ÃPÃT + IKN where
P .=diag(P1,P2, . . . ,PK−1,P0), and

Ã
.=




0 0 . . . 0 A0

A1 0 0 . . . 0

0 A2

. . .
. . .

..

.
..
.

. . .
. . . 0 0

0 . . . 0 AK−1 0




then

‖Ek‖2 ≤ η2‖P‖2 ≤ η2 κ(Ã)2

1− ρ(Φ(K, 0))2
(13)

Proof
The proof is analogous to that of the time in-
variant case, and uses the fact that for a peri-
odic system there exists a periodic controllability
Gramian (Sreedhar and Dooren, 1994). ¤

5. NUMERICAL EXAMPLE

Using the multirate sampling data model given in
(Tornero et al., 2001), we can construct from any
discrete LTI system {A,B, C} a periodic time-
varying system which can be represented by:

{
x̄k+1 = Ā(k)x̄k + B̄(k)uk

ȳk = C̄(k)x̄k

where x̄T
k

.= [xT
k vT

k ] ∈ RN+m is the enlarged state
vector, and the periodic system matrices are given
by

Ā(k) .=
[

A B(I −∆(k))
0 I −∆(k)

]
, B̄(k) .=

[
B∆(k)
∆(k)

]

C̄(k) .= ∆̄(k)
[
C 0

]
. Here ∆(.) and ∆̄(.) are N-

periodic m×m and p× p matrices given by

∆(k) .= diag{δi(k), i = 1, 2, . . . , m}
δi(k) .=

{
1, k = jNi,
0, k 6= jNi,

j ∈ Z+

∆̄(k) .= diag{δ̄i(k), i = 1, 2, . . . , p}
δi(k) .=

{
1, k = jMi,
0, k 6= jMi,

j ∈ Z+,

where T is the basic period, output j is updated
every Mj periods, input i is sampled every Ni

periods and N = lcm(Ni,Mj).

We apply this to the discretized SISO system of
the arm of the CD player with a sampling time
Ts = 0.0001, Ni = Mi = 2 and we reduce the
order from 122 to 20. For this model we have

κ(Â)2

1−ρ(Â)2
' 105, and η ' 10−16, ∀k ≥ 20.

In Fig.1 and .2 we show the cosine of the
canonical angle between the dominant subspace
of two successive iterations (k − 1) and k, i.e.
cos(](S̃k−1, S̃k)), and the canonical angle with
the exact dominant subspace, noted S∞, of the
controllability Gramian of the lifted LTI system
(12), i.e. (cos(](S̃k, S∞)). Those figures show the
convergence and the accuracy of our algorithm. It
can be seen that we have convergence as soon as
the algorithm has eliminated the n = 20 vectors of
the initial matrix S̃0. In Fig.3. and .4 we compare
frequency responses of the time-invariant lifted
systems (12) for starting point 1 Fig.3. and 2
Fig.4.. In each figure we give the amplitude of
the frequency response of the original model, the
absolute errors in the frequency response after 20
steps and 60 steps, and the absolute errors in
the frequency response using the exact dominant
subspace of the controllability Gramian of the
lifted LTI system.
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