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Summary. We present a benchmark collection containing some useful real world
examples, which can be used to test and compare numerical methods for model
reduction. All systems can be downloaded from the web and we describe here the
relevant characteristics of the benchmark examples.

24.1 Introduction

In this paper we describe a number of benchmark examples for model reduction
of linear time-invariant systems of the type{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(24.1)

with an associated transfer function matrix

G(s) = C(sIN −A)−1B +D. (24.2)

The matrices of these models are all real and have the following dimensions :
A ∈ R

N×N , B ∈ R
N×m, C ∈ R

p×N , and D ∈ R
p×m. The systems are all

stable and minimal and the number of state variables N is thus the order of
the system. In model reduction one tries to find a reduced order model,{

˙̂x(t) = Âx̂(t) + B̂û(t)

ŷ(t) = Ĉx̂(t) + D̂û(t)
(24.3)

of order n � N , such that the transfer function matrix Ĝ(s) = Ĉ(sIn −
Â)−1B̂ + D̂ approximates G(s) in a particular sense, and model reduction
methods differ typically in the error measure that is being minimized. In as-
sessing the quality of the reduced order model, one often looks at the following
characteristics of the system to be approximated
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• the eigenvalues of A (or at least the closest ones to the jω axis), which
are also the poles of G(s)

• the controllability Gramian Gc and observability Gramian Go of the system,
which are the solutions of the Lyapunov equations

AGc + GcA
T +BBT = 0, ATGo + GoA+ CTC = 0

• the singular values of the Hankel map – called the Hankel singular values
(HSV) – which are also the square-roots of the eigenvalues of GcGo

• the largest singular value of the transfer function as function of frequency
– called the frequency response –

σ(ω) = ‖G(jω)‖2.

These characteristics can be compared with those of the reduced order model
Ĝ(s). Whenever they are available, we give all of the above properties for the
benchmark examples we discuss in this paper. The data files for the examples
can be recovered from http://www.win.tue.nl/niconet/niconet.html. For each
example we provide the matrix model {A,B,C,D}, and (when available) the
poles, the Gramians, the Hankel singular values, a frequency vector and the
corresponding frequency response. For more examples and additional details
of the examples of this paper, we refer to [CV02]. Some basic parameters of
the benchmarks discussed in the paper are given below.

Section Example (Acronym) Sparsity N m p
2 Earth Atmosphere (ATMOS) no 598 1 1
3 Orr-Sommerfeld (ORR-S) no 100 1 1
4 Compact Disc player (C-DISC) yes 120 2 2
5 Random (RAND) yes 200 1 1
6 Building (BUILD-I) yes 48 1 1
6 Building (BUILD-II) yes 52788 1 1
6 Clamped Beam (BEAM) yes 348 1 1
7 Intern. Space Station (ISS-I) yes 270 3 3
7 Intern. Space Station (ISS-II) yes 1412 3 3

24.2 Earth Atmospheric Example (ATMOS)

This is a model of an atmospheric storm track [FI95]. In order to simulate the
lack of coherence of the cyclone waves around the Earth’s atmosphere, linear
damping at the storm track’s entry and exit region is introduced. The per-
turbation variable is the perturbation geopotential height. The perturbation
equations for single harmonic perturbations in the meridional (y) direction of
the form φ(x, z, t)eily are :

∂φ

∂t
= ∇−2

[
− z∇2Dφ− r(x)∇2φ

]
,
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Fig. 24.1. Frequency response (ATMOS)
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Fig. 24.2. Eigenvalues of A (ATMOS)
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where ∇2 is the Laplacian ∂2

∂x2 + ∂2

∂z2 − l2 and D = ∂
∂x . The linear damping

rate r(x) is taken to be r(x) = h(2− tanh[(x− π
4 )/δ]+ tanh[(x− 7π

2 )/δ]). The
boundary conditions are expressing the conservation of potential temperature
(entropy) along the solid surfaces at the ground and tropopause:

∂2φ

∂t∂z
= −zD∂φ

∂z
+Dφ− r(x)

∂φ

∂z
at z = 0,

∂2φ

∂t∂z
= −zD∂φ

∂z
+Dφ− r(x)

∂φ

∂z
at z = 1.

The dynamical system is written in generalized velocity variables ψ =
(−∇2)

1
2φ so that the dynamical system is governed by the dynamical op-

erator:
A = (−∇2)

1
2∇−2

(
− zD∇2 + r(x)∇2

)
(−∇2)−

1
2 .

where the boundary equations have rendered the operators invertible. We refer
to [FI95] for more details, including the type of discretization that was used.
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24.3 Orr-Sommerfeld Equation (ORR-S)

The Orr-Sommerfeld operator for the Couette flow in perturbation velocity
variables is given by :

A = (−D2)
1
2D−2

(
− ijkD2 +

1

Re
D4

)
(−D2)−

1
2

where D := d
dy and appropriate boundary conditions have been introduced so

that the inverse operator is defined. Here, Re is the Reynolds number and k is
the wave-number of the perturbation. This operator governs the evolution of 2-
dimensional perturbations. The considered matrix is a 100×100 discretization
for a Reynolds number Re = 800 and for k = 1. We refer to [FI01] for more
details, including the type of discretization that was used.
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Fig. 24.4. Frequency response (ORR-S)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 24.5. Eigenvalues of A (ORR-S)

0 25 50 75 100

10
−1

10
0

10
1

10
2

10
3

Fig. 24.6. · · · svd(Gc), o svd(Go), − hsv



24 Benchmark Examples for Linear Systems 383

24.4 Compact Disc Player Example (C-DISC)

The CD player control task is to achieve track following, which amounts to
pointing the laser spot to the track of pits on a CD that is rotating. The mech-
anism that is modeled consists of a swing arm on which a lens is mounted by
means of two horizontal leaf springs. The rotation of the arm in the horizontal
plane enables reading of the spiral-shaped disc-tracks, and the suspended lens
is used to focus the spot on the disc. Since the disc is not perfectly flat and
since there are irregularities in the spiral of pits on the disc, the challenge is
to find a low-cost controller that can make the servo-system faster and less
sensitive to external shocks. We refer to [DSB92, WSB96] for more details.

It is worth mentioning here that this system is already a reduced order
model obtained via modal approximation from a larger rigid body model
(which is a second order model).
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Fig. 24.7. Frequency response (C-DISC)
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Fig. 24.8. Eigenvalues of A (C-DISC)
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Fig. 24.10. Sparsity of A (C-DISC)
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Fig. 24.11. Frequency responses of the 2-input 2-output system (C-DISC)
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24.5 Random Example (RAND)

This is a randomly generated example with an A matrix that is sparse and
stable, and has a prescribed percentage of nonzero elements. This is a simple
example to approximate but it is useful to compare convergence rates of iter-
ative algorithms. It is extracted from the Engineering thesis of V. Declippel
[DeC97].
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Fig. 24.12. Frequency response (RAND)
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Fig. 24.13. Eigenvalues of A (RAND)
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24.6 Building Model

Mechanical systems are typically modeled as second order differential equa-
tions {

Mq̈(t) +Dq̇(t) + Sq(t) = Bqu(t),
y(t) = Cqq(t)

where u(t) is the input or forcing function, q(t) is the position vector, and
where the output vector y(t) is typically a function of the position vector.
Here M is the (positive definite) mass matrix, D is the damping matrix and
S is the stiffness matrix of the mechanical system. Since M is invertible, one
can use the extended state

x(t)T =
[
q(t)T q̇(t)T

]
to derive a linearized state space realization

A :=

[
0 I

−M−1S −M−1D

]
, B :=

[
0

M−1Bq

]
, C :=

[
Cq 0

]
or a weighted extended state

x(t)T =
[
q(t)TM− 1

2 q̇(t)TM− 1
2

]
yielding a more “symmetric” model

A :=

[
0 I

−Ŝ −D̂

]
, B :=

[
0

B̂q

]
, C :=

[
Ĉq 0

]
and where D̂ = M− 1

2DM− 1
2 , Ŝ = M− 1

2SM− 1
2 , B̂ = M− 1

2B and Ĉ = CM− 1
2 .

When M is the identity matrix, one can recover the original matrices from
the linearized model. If this is not the case, those matrices are also provided
in the benchmark data.

24.6.1 Simple Building Model (BUILD-I)

This is a small model of state dimension N = 48. It is borrowed from [ASG01].

24.6.2 Earth Quake Model (BUILD-II)

This is a model of a building for which the effect of earthquakes is to be
analyzed (it is provided by Professor Mete Sozen of Purdue University). The
mass matrix M is diagonal and of dimension N = 26394. The stiffness matrix
S is symmetric and has the sparsity pattern given in Figure 24.19.

The damping matrix is chosen to be D = αM + βS, with α = 0.675 and
β = 0.00315. The matrix Bq is a column vector of all ones and Cq = BT

q . No
exact information is available on the frequency response and on the Gramians
of this large scale system.
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Fig. 24.16. Eigenvalues of A (BUILD-I)
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24.6.3 Clamped Beam Model (BEAM)

The clamped beam model has 348 states, it is obtained by spatial discretiza-
tion of an appropriate partial differential equation. The input represents the
force applied to the structure at the free end, and the output is the resulting
displacement. The data were obtained from [ASG01].
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Fig. 24.20. Frequency response (BEAM)
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Fig. 24.21. Eigenvalues of A (BEAM)
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24.7 International Space Station

This is a structural model of the International Space Station being assembled
in various stages. The aim is to model vibrations caused by a docking of
an incoming spaceship. The required control action is to dampen the effect of
these vibrations as much as possible. The system is lightly damped and control
actions will be constrained. Two models are given, which relate to different
stages of completion of the Space Station [SAB01]. The sparsity pattern of A
shows that it is in fact derived from a mechanical system model.

24.7.1 Russian Service Module (ISS-I)

This consists of a first assembly stage (the so-called Russian service module 1R
[SAB01]) of the International Space Station. The state dimension is N = 270.

24.7.2 Extended Service Module (ISS-II)

This consists of a second assembly stage (the so-called 12A model [SAB01])
of the International Space Station. The state dimension is N = 1412.
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Fig. 24.23. Frequency response (ISS-I)
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Fig. 24.24. Eigenvalues of A (ISS-I)
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Fig. 24.27. Frequency response of the 3-input 3-output system (ISS-II)
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Fig. 24.31. Sparsity of A (ISS-II)
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Fig. 24.32. Frequency response of the ISS12A model (ith input/jth output).
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