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Particle-size segregation is a common feature of dense gravity-driven granular free-
surface flows, where sliding and frictional grain–grain interactions dominate. Provided
that the diameter ratio of the particles is not too large, the grains segregate by a
process called kinetic sieving, which, on average, causes the large particles to rise to
the surface and the small grains to sink to the base of the avalanche. When the flowing
layer is brought to rest this stratification is often preserved in the deposit and is known
by geologists as inverse grading. Idealized experiments with bi-disperse mixtures of
differently sized grains have shown that inverse grading can be extremely sharp on
rough beds at low inclination angles, and may be modelled as a concentration jump or
shock. Several authors have developed hyperbolic conservation laws for segregation
that naturally lead to a perfectly inversely graded state, with a pure phase of coarse
particles separated from a pure phase of fines below, by a sharp concentration jump.
A generic feature of these models is that monotonically decreasing sections of this
concentration shock steepen and eventually break when the layer is sheared. In this
paper, we investigate the structure of the subsequent breaking, which is important for
large-particle recirculation at the bouldery margins of debris flows and for fingering
instabilities of dry granular flows. We develop an exact quasi-steady travelling wave
solution for the structure of the breaking/recirculation zone, which consists of two
shocks and two expansion fans that are arranged in a ‘lens’-like structure. A high-
resolution shock-capturing numerical scheme is used to investigate the temporal
evolution of a linearly decreasing shock towards a steady-state lens, as well as the
interaction of two recirculation zones that travel at different speeds and eventually
coalesce to form a single zone. Movies are available with the online version of the
paper.

1. Introduction
There are many mechanisms for segregation of dissimilar grains in granular

flows (e.g. Bridgewater 1976; Cooke, Stephens & Bridgewater 1976; Drahun &
Bridgwater 1983; Aranson & Tsimring 2006), but kinetic sieving (Middleton 1970)
is the mechanism that usually dominates in high-solids-fraction (0.49 < ν < 0.64)
gravity-driven avalanches and chute flows, in which sliding and rolling contacts
prevail over collisional ones. As a granular avalanche flows down a rough slope it
is sheared through its depth and dilates sufficiently for the particles to percolate
relative to one another. Kinetic sieving describes the gravity-driven process in which
small particles tend to fall into gaps that open up beneath them, because they
are statistically more likely to fit into the available space than the large ones. The
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avalanche acts as a random fluctuating sieve (Savage & Lun 1988) that allows small
particles to preferentially percolate downwards and force imbalances generate a non-
size-preferential return flow, termed squeeze expulsion (Savage & Lun 1988), that
keeps the solids volume fraction approximately uniform. The net effect is for small
particles to percolate downwards and the coarse ones to rise up. This process is so
efficient in slow dry frictional flows that sufficiently far downstream zones with 100 %
fines and 100 % coarse particles are formed that are separated by a sharp jump in
species concentration (Savage & Lun 1988; Vallance & Savage 2000). In more rapid
energetic flows, on steeper slopes, kinetic sieving competes with diffusive remixing and
the shocks are smoothed out to form ‘S’-shaped steady-state concentration profiles
through the avalanche depth. The tendency for the concentration of larger particles
to increase towards the surface of the flow is known as inverse or reverse grading (e.g.
Bagnold 1954; Middleton 1970; Middleton & Hampton 1976; Sallenger 1979; Naylor
1980) and is seen in sedimentary deposits from many geophysical mass flows, including
debris flows, the dense basal layers of pyroclastic flows and turbidity currents, as well
as deposits from avalanches of sand, rock and snow.

Savage & Lun (1988) developed the first continuum model of kinetic sieving for a
simplified bi-disperse mixture of large and small grains. The particles were assumed
to lie in a series of layers parallel to the base that sheared over one another, and
a statistical mechanical description of the voids was used to model the random
fluctuating sieve and squeeze expulsion mechanisms. This allowed them to derive
expressions for the constituent percolation velocities normal to the chute, and a
steady-state segregation equation for the number density ratio η of small to large
grains. In the small-particle dilute limit Savage & Lun (1988) used the method of
characteristics and global mass balance to derive an approximate solution for the
spatial development of the particle-size distribution from a homogeneous inflow.
For a steady uniform shear flow they showed that the solution had three constant-
concentration regions that were separated by sharp concentration jumps or shocks.
Two of the shocks emanated from the surface and base of the inflow and propagated
inwards, eventually intersecting to form a third, slope-parallel, shock between pure
phases of large and small particles. This was in qualitative agreement with observations
that they made through the transparent sidewall of their chute, a picture of which is
reproduced in Thornton, Gray & Hogg (2006). Savage & Lun (1988) and Vallance &
Savage (2000) used a movable hopper and a series of splitter plates to collect samples
from various positions in the flow. This allowed them to build up detailed data sets
on the steady-state particle-size distribution as it evolved with downstream distance.
Although this method was not accurate enough to explicitly resolve the concentration
shocks, Savage & Lun (1988) and Vallance & Savage (2000) used a binning procedure
to show that their approximate solutions were consistent with their experimentally
sampled data.

1.1. The hyperbolic segregation equation

The leading-order structure of Savage & Lun’s (1988) segregation flux has also
been found independently by other authors. Dolgunin & Ukolov (1995) argued that
particle segregation must shut off when either coarse or fine grains are in a pure
phase, and inferred from this that, to leading order, the flux must be proportional
to the volume fraction of fines multiplied by the volume fraction of coarse grains.
More recently Gray & Thornton (2005) and Thornton et al. (2006) have used two-
and three-constituent mixture theory to derive a non-dimensional scaler hyperbolic
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conservation law for the small-particle concentration φ(x, y, z, t) ∈ [0, 1]

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂y
(φv) +

∂

∂z
(φw) − ∂

∂z
(Srφ(1 − φ)) = 0, (1.1)

where the non-dimensional bulk velocity components (u, v, w) lie in the downslope,
cross-slope and normal directions, (x, y, z), respectively, and Sr is the non-dimensional
segregation number. The large particles occupy a volume fraction 1 − φ and the
segregation flux F = −Srφ(1 − φ). This is the same as the flux in Savage & Lun’s
(1988) dilute limit (although it was formulated in terms of the number density
ratio) and which was postulated directly by Dolgunin & Ukolov (1995). The strong
links between the theories imply that the segregation model (1.1) has already been
compared to the results of an extensive series of laboratory experiments by Savage &
Lun (1988), Dolgunin & Ukolov (1995) and Vallance & Savage (2000).

Equation (1.1) is the simplest possible segregation equation and makes several
important assumptions and simplifications. The main hypotheses in Gray & Thornton
(2005) and Thornton et al.’s (2006) derivation are: (i) the mixture is bi-disperse,
(ii) the large and small grains have the same bulk density, (iii) the bulk flow is
incompressible, (iv) the normal pressure is lithostatic, (v) the bed load is shared
asymmetrically between the large and small particles, with the large particles carrying
proportionally more of the load, (vi) momentum is transferred between particles at a
velocity-dependent rate (by analogy with Darcy’s Law), (vii) normal accelerations can
be neglected, (viii) squeeze expulsion maintains a constant solids volume fraction, and
(ix) diffusive remixing is negligible. With these assumptions, the normal components
of the constituent momentum balances yield simple expressions for the normal
percolation velocities of the large and small particles. These are based on a dominant
balance between the rate-dependent drag and the deviation of the constituent pressure
gradients away from lithostatic. The deviations arise because the small particles
support less of the overburden pressure as they percolate down through the gaps, and
the large particles must therefore support correspondingly more of the load, as they
are driven up by squeeze expulsion.

Substituting the small-particle percolation velocity into the small-particle mass
balance equation yields the segregation equation (1.1). All the physical parameters
are encapsulated into a single non-dimensional segregation number,

Sr =
LQ

HU
, (1.2)

which is the ratio of a typical downstream transport time scale, L/U , to a typical time
scale for segregation, H/Q, where U is the magnitude of the downstream velocity, Q

is the magnitude of the segregation velocity, and H and L are typical thicknesses and
lengths of the avalanche. Slower downstream transport velocities, or faster normal
segregation velocities, increase Sr and the material will therefore segregate in a shorter
distance. The most general form of Q is given by the three-constituent theory of
Thornton et al. (2006), which explicitly incorporates a passive fluid in the pore space
between the large and small particles. In this theory Q =(B/c)ρ̂g cos ζ , where B is the
non-dimensional magnitude of the pressure perturbations, c is the inter-particle drag
coefficient, ζ is the inclination angle of the chute and ρ̂ =(ρg∗ −ρa∗)/ρg∗ is the relative
density difference of the grains, ρg∗, and the interstitial fluid, ρa∗. Gray & Thornton
(2005) used a simplified two-constituent approach to derive (1.1), which assumes that
the interstitial pore space is incorporated into the bulk density of the large and small
particles. This yields a similar Q, but with ρ̂ = 1. While both of these theories provide
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a natural way of introducing the gravity dependence of the kinetic sieving process
into the theory, they do not provide detailed dependences of Sr on the local shear
rate, the particle-size ratio, the solids fraction or the local pressure. Investigations are
currently underway to empirically determine these functional dependences through
experiments and discrete element simulations.

The concentration shocks inherent in hyperbolic segregation models are an
idealization of the sharp concentration transitions that occur in experiments and
the real world. However, the simplicity of the hyperbolic approach lays bare the
underlying structure in the low diffusive-remixing limit of more complex parabolic
models (Dolgunin & Ukolov 1995; Dolgunin, Kudy & Ukolov 1998; Khakhar,
McCarthy & Ottino 1997; Khakhar, Orpe & Hajra 2002; Gray & Chugunov 2006) in
which smoothing is introduced by inter-particle diffusion. These models yield steady
states with ‘S’-shaped concentration profiles, rather than a sharp shock, and are in
close agreement (Khakhar et al. 1997; Gray & Chugunov 2006) with the results of
three-dimensional discrete-element simulations for both density and size segregation
(Khakhar, McCarthy & Ottino 1999) in high-solids-fraction flows. This, together with
the experimental results of Savage & Lun (1988), Dolgunin & Ukolov (1995) and
Vallance & Savage (2000), provide strong evidence for a theory with the segregation
flux used in the current models. There are, however, important effects that are not
included, such as (i) feedback between the local particle concentration and the bulk
flow, (ii) variations in the solids volume fraction, (iii) spatial variation of Sr and
(iv) deformation of the free surface, that are all in need of further investigation.

1.2. Breaking sharply segregated inversely graded concentration shocks

In the hyperbolic segregation theory (1.1) shock waves develop naturally and practical
problems may be solved by the method of characteristics (e.g. Bressan 2000). Gray &
Thornton (2005) formulated the associated concentration jump condition at a
surface of discontinuity, and used it to construct exact solutions to Savage & Lun’s
(1988) homogeneous inflow problem for arbitrary shear profiles. Thornton et al.
(2006) developed an exact steady-state solution for a normally graded inflow, i.e.
with all the small particles above the coarse grains. This configuration is unstable
and immediately generates a centred expansion fan at the inflow, but sufficiently far
downstream the grains separate out into sharply segregated inversely graded layers
once again. Gray, Shearer & Thornton (2006) and Shearer, Gray & Thornton (2008)
have gone on to construct fully time-dependent exact solutions to the homogeneous
and normally graded inflow problems for different initial conditions, which exhibit
fully dynamic propagating shocks and expansion fans.

The two problems discussed by Gray et al. (2006) are particularly interesting,
because they generate a propagating inversely graded concentration shock that breaks
in finite time. For this situation to develop a section of the shock must decrease in
height with increasing downstream distance, as shown schematically in figure 1(a).
In a shear flow, in which the upper layers move faster than the lower ones, the
concentration shock will steepen, break and become triple-valued in the absence
of segregation (figure 1b). When Sr �= 0 the overhanging section of the shock is
dynamically unstable and violates the Lax entropy condition (Shearer et al. 2008), i.e.
there is an unstable stratification with small particles above large particles. There must
therefore be a readjustment due to particle-size segregation, which seeks to establish
a dynamically stable configuration. This paper is concerned with the subsequent
structure of the breaking wave solution.
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Figure 1. A schematic diagram showing how a monotonically decreasing section of an
inversely graded sharply segregated concentration shock (a), steepens and eventually becomes
triple-valued in the absence of segregation (b). When segregation does take place the
overhanging section of the shock is dynamically unstable and the wave breaks.

Breaking segregation waves are fundamental features of all hyperbolic segregation
models and their understanding also sheds light on parabolic solutions in the low
diffusive-remixing limit. They are in many ways analogous to classical wave breaking
phenomena in gas dynamics (Lighthill 1978) and fluids (Stoker 1957), but instead
of a simple shock-fitting procedure, we shall show that a much more complicated
structure evolves, consisting of two shocks and two expansion fans that are arranged
in a propagating ‘lens’-like structure. We shall also show that these ‘lenses’ allow the
large and the small particles to be recirculated as they are advected downstream.
Recirculation zones have been observed in small-scale bi-disperse dry granular
fingering experiments (Pouliquen, Delour & Savage 1997; Pouliquen & Vallance
1999) in which the larger particles are rougher than the fine grains. As the material
avalanches downslope, large particles rise towards the faster moving surface layers
and are transported to the flow front. If the roughness contrast, flow composition
and slope inclination angle are correctly chosen, the large rough particles stop and
are over-run by the bulk avalanche. Pouliquen et al. (1997) used tracers to show that
these particles then re-emerged at the free surface again, some way upstream of the
propagating front, and inferred from this that there was a recirculation loop in which
the large particles rose by particle-size segregation. Similar processes take place at the
bouldery margins of debris and pyroclastic flows (Pierson 1986; Vallance & Savage
2000; Vallance 2000; Iverson & Vallance 2001; Iverson 2005), and the enhanced
resistance at these fronts can lead to the spontaneous generation of coarse-grained
lateral levees, which channelize the flow and enhance run-out. There are therefore
many important potential applications of this theory.

2. Travelling wave solution
An exact travelling wave solution for the breaking wave will now be constructed

for a non-dimensional bulk flow of unit height and with bulk velocity

u = u(z), v = 0, w = 0, ∀x, in 0 � z � 1. (2.1)

On first inspection, the quasi-steady structure is by no means obvious, but, for constant
segregation number Sr , the solution consists of two shocks and two expansion fans that
form a ‘lens’, which propagates downstream with velocity ulens as shown schematically
in figure 2. Upstream of the breaking wave the concentration shock is assumed to be
of constant height z = Hup , and downstream of it the shock lies at z = Hdown , where
Hup is necessarily greater than Hdown for the breaking wave to form. As these sections
of the shock are of constant height and are parallel to the velocity shear, they remain
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Figure 2. Schematic diagram of a breaking segregation wave showing the quasi-steady
‘lens’-like structure (grey shaded region), which propagates downslope at speed ulens. There
is a sharply segregated inversely graded shock at height z = Hup , upstream of the lens, and
a further section at height z = Hdown downstream of it. The line z = zr marks the height at
which the flow speed is equal to the lens speed. Above this line the net flow is to the right,
and small particles are sheared towards the lens, while below z = zr the flow is to the left and
large particles are dragged back into it. The lens itself consists of two expansion fans, centred
at (xA, zr ) and (xC, zr ), and two concentration shocks initiated from (xB,Hup) and (xD,Hdown)
that meet the fans to close the solution. The thin black lines inside the shaded regions indicate
the characteristics within the expansion fans. The upper expansion initiated from point A has
a lower concentration than the lower fan that is initiated at point C. It is therefore shaded as
a lighter shade of grey. Non-dimensional heights are indicated along the left-hand axis and
the transformed stretched heights are shown along the right-hand side.

at a constant height at all times. The mean velocity of the flow between these two
heights defines the lens propagation speed

ulens =
1

Hup − Hdown

∫ Hup

Hdown

u(z) dz. (2.2)

The solution assumes that the downstream velocity component u is strictly increasing
with increasing height z. It follows that the lens propagates downstream faster than
the basal slip velocity ub, but slower than the free-surface velocity us . At height z = zr

the bulk flow velocity is equal to the lens speed ulens and it follows that above z = zr the
flow is faster than the breaking wave and small particles are supplied from the left
towards the lens. Below z = zr , the flow is slower, and large particles are dragged
back towards the lens from the right. This change in relative flow direction is crucial,
and both expansion fans are initiated from z = zr at downstream positions xA and
xC as shown in figure 2. The lead characteristics propagate away from this line and
eventually intersect with the constant-height sections of the concentration shock at
xB and xD , where two shocks are initiated that close the lens structure.

Having postulated the structure of the solution we now solve the segregation
equation in a frame moving downslope with speed ulens . Introducing the change of
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variables

t̂ =
Sr

Hup − Hdown

t, x̂ =
Sr

Hup − Hdown

(x − ulens t), ẑ =
z − Hdown

Hup − Hdown

, (2.3)

the segregation equation (1.1) transforms to the convenient parameter-independent
form

∂φ

∂t̂
+

∂

∂x̂
(φû) − ∂

∂ẑ
(φ(1 − φ)) = 0, (2.4)

where the relative downstream velocity û is defined as

û = u − ulens . (2.5)

The transformation (2.3) stretches the vertical coordinate, so that the top of the lens
lies at ẑ = 1 and the bottom lies at ẑ =0 as shown in figure 2. The line ẑ = ẑr is the
height where there is no mean flow, and û= 0 relative to the propagating lens. Material
below ẑr is therefore swept to the left, while material above ẑr is swept to the right.

For steady-travelling waves, equation (2.4) reduces to the quasi-linear equation

û
∂φ

∂x̂
− ∂

∂ẑ
(φ(1 − φ)) = 0, (2.6)

which can be solved by the method of characteristics. The concentration φ is equal
to a constant φλ on the characteristic curve given by

û(ẑ)
dẑ

dx̂
= (2φλ − 1). (2.7)

This can be integrated for arbitrary velocity fields by defining a depth-integrated flux
coordinate (Gray & Thornton 2005)

ψ(ẑ) =

∫ ẑ

0

û(ẑ′) dẑ′, (2.8)

which reduces equation (2.7) to a very simple linear ordinary differential equation

∂ψ

∂x̂
= 2φλ − 1. (2.9)

Integrating (2.9) subject to the condition that the characteristic starts at (x̂λ, ψλ)
implies

ψ = ψλ + (2φλ − 1)(x̂ − x̂λ). (2.10)

The characteristic curves are therefore all straight lines in the transformed mapped
coordinate system as illustrated in figure 3. The mapping (2.8) has the property that
ψ = 0 at ẑ = 0 and 1, and the coordinate has a minimum at ψ = ψr < 0 at ẑ = ẑr . The
mapped domain is therefore essentially composed of two domains that are patched
together along the dash-dot centreline in figure 3. In the upper domain ψ ranges from
ψr to 0 and the bulk flow and the time-like direction are to the right, while in the
lower domain, ψ ranges from 0 to ψr and the bulk flow and time-like directions are to
the left. A small-particle characteristic (φλ = 1), that starts to the left of the lens at the
lower boundary ẑ = 0, is therefore swept first to the left in the lower domain and then
to the right in the upper domain as shown in figure 3. Large-particle characteristics,
φλ = 0, start to the right of the lens at the upper boundary and are initially swept to
the right before being swept to the left.

We may now solve for the structure of the lens. We start by placing a centred
expansion fan at an arbitrary downslope position x̂A and at height ψ = ψr . Within
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ψr

0

0

x̂B

x̂A x̂D x̂C

1

0

ẑr

Figure 3. A diagram showing the characteristic curves in transformed coordinates (x̂, ψ). The
dot-dash line at ψ = ψr divides the coordinates into two domains. In the upper domain the
bulk flow and the time-like direction are to the right, and ψ runs from ψr to 0, while in the
lower domain the bulk flow and time-like direction are to the left, and ψ runs from 0 to ψr .
The arrowed dashed lines indicate the time-like direction of the characteristic curves for pure
phases of large and small particles, which emanate from the upper and lower boundaries,
respectively. The solid arrowed lines show the centred expansion fans at x̂A and x̂C , and the
thick black lines are the concentration shocks that emanate from x̂B and x̂D . The characteristics
and shocks have 180◦ rotational symmetry about the centre of the lens.

the expansion the concentration is given by

φ =
1

2

[
1 +

ψ − ψr

x̂ − x̂A

]
. (2.11)

The characteristic curves emanating from the expansion only propagate upwards
into the region that is flowing downslope relative to the lens. It follows that the
concentration φ lies in the range [1/2, 1]. The φ = 1 characteristic marks the boundary
of the lens and the region of small particles that are being transported from the left
towards it, and is given by the curve

ψ = ψr + x̂ − x̂A. (2.12)

This reaches the upstream section of the concentration shock (z = Hup) at transformed
mapped height ψ =0 and position

x̂B = x̂A − ψr. (2.13)

At this point there are no more small particles transported from the left, nor are there
any supplied from above, so the large particles that are being transported upwards
within the breaking wave separate out into a pure phase across a shock that is
initiated at x̂ = x̂B , ψ =0. Following Gray & Thornton (2005) the concentration jump
condition across a steady propagating shock is[[

ûφ
dẑ

dx̂
+ φ(1 − φ)

]]
= 0, (2.14)
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where [[f ]] = f + − f − is the difference of the enclosed quantity between the forward
and rearward sides. Using the coordinate transformation (2.8) this reduces to

dψ

dx̂
= φ+ + φ− − 1. (2.15)

For the shock in question, the concentration φ− within the expansion fan is given by
(2.11) and φ+ = 0. The jump condition (2.15) therefore yields the ordinary differential
equation

dψ

dx̂
=

1

2

(
ψ − ψr

x̂ − x̂A

− 1

)
, (2.16)

which must be solved subject to the boundary condition that the shock starts at
(x̂B, 0) in mapped coordinates. Using (2.13) it follows that the shock is given by

ψ = ψr − (x̂ − x̂A) + 2
√

−ψr

√
x̂ − x̂A, (2.17)

where the constant
√

−ψr is real. The shock propagates downwards, reaching ψ = ψr

at

x̂C = x̂A − 4ψr, (2.18)

which marks the furthest downstream position of the lens. Below ψ =ψr the flow
direction, and hence the time-like direction for the characteristic curves, reverses.
Theorem 3.1 of Shearer et al. (2008) implies that previously stable inversely graded
shock structure above ψ = ψr becomes unstable below this line. Instead a rarefaction
is formed at (x̂C, ψr ) and the concentration within the fan is given by

φ =
1

2

[
1 +

ψ − ψr

x̂ − x̂C

]
. (2.19)

Note that along ψ =ψr the concentration in the upper (2.11) and lower (2.19) expan-
sions is equal to 1/2, so they fit together without a jump in concentration. In the
lower expansion the characteristic curves propagate downwards into the material fed
in from the right-hand side below the ψ = ψr line and the concentration ranges from
[0, 1/2]. The φ = 0 characteristic

ψ = ψr + x̂C − x̂ (2.20)

marks the boundary of the lens and the large-particle region. It intersects with the
downstream section of the sharp concentration shock at height ψ = 0 and position

x̂D = x̂C + ψr. (2.21)

Since there are no more large particles being fed in from the right, nor any being
squeezed up from below, the small particles separate out into a pure phase across a
concentration shock that starts at (x̂D, 0) in mapped coordinates. Ahead of the shock
φ+ =1 and behind the shock φ− is given by (2.19). The shock condition (2.15)
therefore yields a linear ordinary differential equation for the shock position, with
solution

ψ = ψr − (x̂C − x̂) + 2
√

−ψr

√
x̂C − x̂. (2.22)

This reaches the zero mean flow line, ψ = ψr , at

x̂ = x̂C + 4ψr = x̂A, (2.23)

which is the same position x̂A as the start of the upper expansion fan. The Lax
entropy condition (Shearer et al. 2008) predicts that a continuation of the lower
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shock is unstable. It is therefore replaced by an expansion fan centred at (x̂A, ẑr ),
justifying our original assumption (2.11). The lens structure is now complete. It
consists of two shocks, (2.17) and (2.22), and two expansion fans, (2.11) and (2.19),
that are arranged in a ‘lens’-like structure that propagates downstream with speed ulens

given by (2.2). In transformed mapped coordinates this solution has 180◦ rotational
symmetry about its centre if φ is also mapped to 1 − φ.

The advantage of the transformation (2.3) and the mapping (2.8) is that this solution
is universal. It is valid for uniform-thickness flows with arbitrary monotonically
increasing downslope velocity profile u(z), constant segregation number Sr , and
constant upstream and downstream shock heights Hup and Hdown . Specific cases
are shown in figure 4. The first three sets of solutions have a linear velocity profile
with basal slip

u = α + 2(1 − α)z, 0 � α < 1. (2.24)

The case α = 0 corresponds to simple shear and as α is increased towards unity
the velocity shear becomes progressively less and the surface velocity and basal slip
velocity become closer to one another. Formally we exclude the case of plug flow,
when α = 1, as the inversely graded concentration shock does not steepen and break.
Equation (2.2) implies that the lens propagates downstream with speed

ulens = α + (1 − α)(Hup + Hdown). (2.25)

In the moving transformed frame equations (2.3) and (2.5) imply the relative down-
stream velocity

û = (1 − α)(Hup − Hdown)(2ẑ − 1), (2.26)

which is zero at ẑr = 1/2. In untransformed variables zr = (Hup +Hdown)/2 lies halfway
between the the upper and lower shocks. The flux coordinate mapping (2.8) implies
that for the linear velocity field the ψ and ẑ coordinates are related by the quadratic

ψ = (1 − α)(Hup − Hdown)(ẑ
2 − ẑ), (2.27)

and ψr = −(1−α)(Hup −Hdown)/4. The solution can now be mapped back from (2.11),
(2.17), (2.19) and (2.22) by solving the quadratic (2.27) for ẑ and then rescaling using
(2.3). For the linear velocity profiles (2.24) the lens width (2.18) at arbitrary time t in
untransformed-unmapped coordinates becomes

xC − xA =
1

Sr

(1 − α)(Hup − Hdown)
2. (2.28)

Results for three different sets of parameters are shown in figure 4(a–c). A contour
scale is used for the concentration φ, with darker regions corresponding to higher
concentrations of large particles and lighter regions to higher concentrations of fines.
The lens connects the upstream and downstream sections of the constant-height
inversely graded concentration shock. The problems have all been scaled so that
the depth-integrated downslope velocity is equal to unity. In the first two problems
Hup =0.9, Hdown = 0.1 and (2.25) implies that ulens is also equal to unity. The width
of the lens is proportional to the shear rate 1 − α, inversely proportional to the
segregation number Sr and proportional to the lens height squared, by equation
(2.28), i.e. stronger segregation makes the lens smaller, while higher shear and larger
upstream to downstream shock height differences increase its size. As the shear in
figure 4(a) is twice that in figure 4(b) the lens is twice the width for the same Sr . In
general, however, increased shear tends to increase the segregation rate, Sr , so these
two effects may cancel out in practical situations. In figure 4(c) the velocity field is
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Figure 4. Travelling wave solutions for the concentration of small particles φ as a function
of the downslope coordinate ξ = x − ulens t and the avalanche depth z. The contour scale is
lighter for regions with higher concentrations of fines. In all the plots the concentration of
coarse particles equals 1 − φ, the segregation number Sr = 1 and the downstream velocity
profile is shown on the left. For the linear velocity profiles the parameters are (a) α = 0,
Hup =0.9, Hdown = 0.1, (b) α = 1/2, Hup =0.9, Hdown = 0.1, and (c) α =0, Hup = 0.9, Hdown = 0.5.
(d) A nonlinear velocity profile with Hup =1 and Hdown = 0. In each case the depth-integrated
velocity of the flow is normalized to unity and the downstream lens speed ulens is indicated.
The scaling of the lens is discussed in (2.28).
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exactly the same as in figure 4(a), but Hup =0.9 and Hdown =0.5. The lens therefore
propagates faster than the mean flow, with speed ulens =1.4, and, while it is half the
height of the first case, it is only a quarter of the width. The lens does not scale
proportionally, because the velocity difference between the top and bottom of the lens
also scales with the lens height, producing the quadratic dependence in (2.28).

Figure 4(d) shows the solution for a nonlinear parabolic downstream velocity profile
given by

u = 3
2

√
z, (2.29)

with Hup = 1.0, Hdown = 0 and Sr = 1.0. The lens speed is equal to unity and
û= 3

√
z/2 −1. It follows that the no-mean-flow line zr = 4/9 (ψr = −4/27) lies just

below the mid-point due to the asymmetry in the velocity field. The upper expansion
is therefore slightly larger than the lower one, reflecting the fact that there is a greater
relative mass flux in the lower layers of the flow. Although this lens extends through
the entire depth of the avalanche, it is actually slightly narrower than the linear case
shown in figure 4(a).

3. Particle recirculation
The most important consequence of breaking size segregation waves is the fact

that they allow particles to recirculate in the flow. Evidence for recirculation
zones comes from both geological field observations (Pierson 1986; Vallance 2000;
Iverson & Vallance 2001; Iverson 2005) and small-scale experiments with particles of
different sizes and roughnesses (Pouliquen et al. 1997; Pouliquen & Vallance 1999).
We now investigate this further by reconstructing the particle paths of the large and
small particles as they travel through the lens. For each constituent the particle paths
are given by

dxµ

dt
= uµ,

dzµ

dt
= wµ, (3.1)

where the superscripts µ = l, s indicate variables associated with the large or small
particles, respectively. Gray & Thornton (2005) and Thornton et al. (2006) showed
that to leading order the constituent velocities normal and parallel to the chute are

us = u, ws = w − Sr (1 − φ), ul = u, wl = w + Srφ. (3.2)

Using the assumed velocity field (2.1) and the transformation of variables (2.3) it
follows from (3.1) and (3.2) that the non-dimensional equations for the particle
trajectories in the moving-coordinate system are

dx̂s

dt̂
= û,

dẑs

dt̂
= −(1 − φ),

dx̂l

dt̂
= û,

dẑl

dt̂
= φ. (3.3)

Eliminating t̂ and using the coordinate mapping (2.8) implies that the small- and
large-particle paths satisfy the parameter-independent equations

dψs

dx̂s
= −(1 − φ),

dψl

dx̂l
= φ. (3.4)

The particle paths can therefore be reconstructed from our knowledge of the small-
particle concentration in the lens-like solutions derived in ğ 2.

3.1. Small-particle paths

Let us follow the trajectory of small particles as they enter from the left-hand
side at height zs

enter > zr . This is equivalent to height ψs
enter in transformed-mapped
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coordinates. In the 100 % fines region φ =1 and the differential equation (3.4) has
the trivial solution that the particles move to the right at constant height, ψs

enter, until
they cross the outermost characteristic (2.12) of the lens at

x̂s
enter = x̂A + ψs

enter − ψr. (3.5)

Once inside the upper expansion fan the concentration is given by (2.11) and (3.4)
reduces to a linear ordinary differential equation. Using (3.5) this can be solved subject
to the boundary condition that the particles enter at (x̂s

enter, ψ
s
enter) to give the trajectory

ψs = ψr − (x̂s − x̂A) + 2
√

ψs
enter − ψr

√
x̂s − x̂A. (3.6)

This crosses the ψ =ψr line at

x̂s
cross = x̂A + 4

(
ψs

enter − ψr

)
(3.7)

and continues into the lower expansion. Here the concentration is given by (2.19)
and the trajectory (3.4) is also determined by a linear ordinary differential equation.
Noting that the time-like direction is reversed this can be solved subject to the
boundary condition that the particles flow into the lower fan at (x̂s

cross, ψr ). Using
(2.18) and (3.7) this implies that the trajectory through the lower fan is

ψs = ψr + (x̂C − x̂s) − 2
√

−ψs
enter

√
x̂C − x̂s . (3.8)

Finally, the small particles cross the lower shock (2.22) at

x̂s
exit = x̂C −

(√
−ψr +

√
−ψs

enter

)2
, ψs

exit = ψs
enter, (3.9)

and propagate to the right away from the lens at constant height ψs
exit in the upper

domain. The small-particle paths are therefore determined by equations (3.5), (3.6),
(3.8) and (3.9), and are parameterized by the mapped inflow height ψs

enter.

3.2. Large-particle paths

The large-particle paths can be constructed in a similar fashion. They enter from
the bottom right-hand side at a height zl

enter � zr , which in transformed-mapped
coordinates corresponds to ψl

enter. At this height the large particles are moving
downslope slower than the lens. Thus, relative to the lens, the large particles move
back at constant height through the region of pure coarse grains until they intersect
with the lead characteristic (2.20) at

x̂l
enter = x̂C + ψr − ψl

enter. (3.10)

Once inside the lens a linear ordinary differential equation for the particle path can
be constructed by substituting the lower fan concentration (2.19) into (3.4). Solving
subject to the condition that the particle first enters the lens at (x̂l

enter, ψ
l
enter) and using

(3.10) yields the path

ψl = ψr − (x̂C − x̂l) + 2

√
ψl

enter − ψr

√
x̂C − x̂l . (3.11)

The large particles continue to move to the left as they rise up through the expansion
fan and reach the zero mean velocity line, ψ = ψr , at

x̂l
cross = x̂C + 4

(
ψr − ψl

enter

)
, (3.12)

where they cross into the upper expansion fan (2.11). The large-particles are now
swept downstream relative to the lens and continue to rise. Solving (3.4) subject to
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the initial condition (x̂l
cross, ψr ) and using (2.18) and (3.12) to the simplify the result,

yields the trajectory

ψl = ψr + (x̂l − x̂A) − 2

√
−ψl

enter

√
x̂l − x̂A. (3.13)

The large particles finally exit the lens when they cross the upper shock (2.17) at

x̂l
exit = x̂A +

(√
−ψr +

√
−ψl

enter

)2
, ψl

exit = ψl
enter, (3.14)

and move at constant height downstream. The large-particle paths are given by
equations (3.10), (3.11), (3.13) and (3.14), and are parameterized by ψl

enter. The
expressions for the large-particles paths are closely analogous to the ones for the
small grains. In fact, the results are identical (in transformed-mapped variables)
under a 180◦ rotation about the centre of the lens.

3.3. Combined structure

The particle paths can be mapped from transformed-mapped coordinates (x̂, ψ) to
our original non-dimensional coordinates (x, z), at an arbitrary time t , by constructing
the inverse mapping to (2.8) and reversing the transformation (2.3). The results for the
four travelling wave solutions derived in ğ 2 are shown in figure 5. Large particles that
lie below the z = zr line propagate downslope slower than the lens and are eventually
caught up by it. Relative to the lens, they appear to propagate at constant height
backwards until they enter the lens and are pushed upwards by squeeze expulsion.
In the lower expansion fan the particles start off from the horizontal trajectory and
curve upwards with increasing slope, until they cross the no-mean-flow line z = zr

with an infinite gradient. The key reason for this is that the mapping (2.8) implies
that dz/dx = (1/û) dψ/dx, so in the limit as z −→ zr and û −→ 0 the gradient
dz/dx −→ ∞. Once the large particle crosses into the upper fan it is swept to the
right as it continues to rise. It eventually hits the upper-right concentration shock
and moves downslope relative to the lens along a constant-height trajectory between
z = zr and z = Hup . Large particles that enter at the lowest and slowest levels are
therefore recirculated back onto the downstream side at the highest and fastest levels.
Interestingly the lowest large-particle path, which enters at ψl

enter = 0 and is given by
(3.11) and (3.13), is identical to the lower shock (2.22) and the lead expansion (2.12).
In figure 5(a–c) there are also some large particles that lie above z = Hup , that enter
from the left and stay on a constant-height trajectory until they exit on the right.

Small particles enter from the left between z = zr and z = Hup , cross the lead
characteristic (2.12) and percolate down through the lens by kinetic sieving. They
start by propagating downwards and to the right, but, as they cross the no-mean-flow
line with infinite gradient, they are swept back to the left. They exit the lens as they
cross the lower concentration shock (2.22) and are recirculated backwards at constant
height in the region [Hdown, zr ]. This time the highest small-particle path ψs

enter = 0 has a
trajectory given by (3.6) and (3.8), that exactly corresponds to the upper concentration
shock (2.17) and the lower lead expansion (2.20). The correspondence of the large-
and small-particle paths with the boundaries of the lens helps to explain why it
appears to be skewed to the left. Small particles percolate downwards at a speed
that is proportional to the concentration of large particles. Since there are higher
concentrations of large particles lower down in the lens, the small particles accelerate
as they descend. The downward trajectory in the upper expansion is therefore much
longer than in the lower fan. Conversely, large particles are squeezed up faster where
there are higher concentrations of fines. They therefore propagate upwards faster
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Figure 5. The particle paths for the same cases as shown in figure 4. The large-particle paths
are shown using a solid line with a black arrow and the small-particle paths are shown using
dashed lines and a white arrow. The upstream and downstream shocks are shown with dot-dash
lines and grey arrows to indicate that both large and small particles propagate on either side
of the line. The intersection of the highest small-particle path and lowest large-particle path
delineates the boundary of the lens. Recirculation of the particles occurs between Hup and
Hdown . Small particles enter from the top left above zr , percolate down through the lens and
are ejected on the bottom left side, while large particles propagate in from the bottom right,
rise through the lens and exit on the top right.
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the higher they are. These effects are strongest for the bounding particle paths and
become less strong the closer the particles are to z = zr as they enter. Small particles
may also enter from the right below Hdown and move at constant height to the left
without entering the lens. Figure 5(c) has a large region of such small particles.

Figure 5(d) shows the solution for the nonlinear velocity profile (2.29). The particle
paths are similar to the linear velocity cases, except that they are skewed into the
lower half of the plot, reflecting the higher relative mass flux in the lower regions.
All the particle paths have infinite gradient as they cross the no-mean-flow line at
zr =4/9. Note that although there is no exact inverse mapping to (2.8) for the velocity
field (2.29), exact solutions can still be constructed by graphing along the z-axis rather
than the x-axis.

4. Temporal behaviour of the lens
Unlike classical breaking waves (e.g. Lighthill 1978; Stoker 1957) the steady-

state lens does not develop immediately after breaking. We investigate the temporal
behaviour using a shock-capturing numerical method, described by Gray & Thornton
(2005), to solve the problem in an unstretched coordinate system translating downslope
with the speed of the lens. For a steady uniform flow (2.1) in simple shear (α = 0) the
non-dimensional segregation equation becomes

∂φ

∂t
+

∂

∂ξ
(φû) − ∂

∂z
(Srφ(1 − φ)) = 0, (4.1)

where the translating coordinate ξ and the relative velocity û are

ξ = x − ulens t, û = 2z − 1. (4.2)

This assumes that the speed of the lens ulens is equal to unity and the no-mean-flow
line zr = 1/2. A necessary condition for a steady state to develop with ulens = 1 is that
the upstream and downstream inversely graded shock heights Hup and Hdown sum to
unity, by (2.25). We focus on the case Sr = 1 and inflow conditions

Hup = 0.9, Hdown = 0.1, (4.3)

which corresponds to the first steady-state problem in figure 4(a). Note that since the
relative flow direction changes across z = zr , we must allow outflow conditions along
[zr, 1] on the right, and [0, zr ] on the left, of the domain. The domain must also be
sufficiently large for the lens to develop without crossing the boundaries. At the free
surface and base of the flow we impose the condition of no normal particle flux

φ(1 − φ) = 0, z = 0, 1. (4.4)

The numerical method is based on a simple TVD Lax Friedrichs scheme (Yee 1989;
Toth & Odstrcil 1996) and uses Godunov-type operator splitting (e.g. LeVeque 2002).
It has been extensively tested against both steady-state and fully time-dependent
exact solutions (Gray & Thornton 2005; Thornton et al. 2006; Gray et al. 2006;
Shearer et al. 2008) with evolving shocks and expansion fans. All the computations
are performed on a rectangular domain [−1.5, 1.5]× [0, 1] at grid resolutions ranging
from 100 × 100 to 1500 × 1500, with a superbee slope limiter and a CFL number
equal to 1/2.

The initial condition is shown in figure 6(a). The inversely graded concentration
shock has a linearly decreasing section between ξ = −0.8 and ξ = 0.8, which joins
two sections at constant heights Hup and Hdown . For the far-field conditions (4.3) the
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Figure 6. A series of contour plots showing the development of the small-particle
concentration in a temporally evolving lens in a frame (ξ, z) moving at the same speed
as the steady-state lens ulens = 1. The initial condition is shown in (a) and the monotonically
decreasing section of the initial concentration shock breaks at t = 1. The results are for linear
shear û = 2z − 1 and Sr = 1, which correspond to the the steady-state solution in figure 4(a).
Computations are performed on a 300 × 300 grid and an animation of the solution is available
with the online version of the paper.
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equation of the line is x = −(2z − 1). It is a simple matter to show that, for the relative
velocity field given by (4.2), the line steepens and breaks simultaneously along x = 0
at time t = 1. The behaviour shortly after the solutions has broken is shown at t = 1.1,
1.5, 2.0 and 3.0 in figure 6(b–e). The vertical shock breaks into an expansion fan that
initially lies along x = 0. As time increases the fan rapidly spreads out and is tilted
to the right in response to the velocity shear. In order to close the ends of this fan,
concentration shocks are initiated from both the top and bottom of the lens and these
break into two secondary expansions at the points where the concentration shock
gradients become infinite. The width of the transient lens at t = 2–3 non-dimensional
time units is approximately equal to unity, which is nearly twice as wide as the
steady-state solution shown in figure 4. The upper secondary expansion propagates
downwards, while the lower secondary expansion propagates upwards. They appear
to reach the opposite side at approximately t = 4 when the transient lens almost
completely closes up and the process appears to repeat itself.

The solution continues to oscillate, precessing like a spinning ‘rugby’ ball between an
expanded and contracted state with a period of approximately four non-dimensional
time units. The amplitude of the oscillations decays with increasing time and the
initial expansion region becomes smaller and smaller until the solution is very close
to the steady-state solution shown in figure 4(a) by time t = 60. The only significant
deviation from the exact solution is the 50 % contour, which should lie at z = 0.5, but
instead looks rather wavy. This is an artifact of the TVDLF scheme and stems from
the fact that the local wave speed (2φ − 1) is zero, which implies that some accuracy
is lost. Local concentration errors are still less than 3 %, but the deviations of the
50 % contour are accentuated because gradients in φ are very small at the centre of
the lens. Despite its complicated dynamics the lens settles down at the centre of the
domain, confirming that it propagates downslope with speed unity. An animation of
the time-dependent lens is available with the online version of the paper.

Grid-independence tests have been performed to confirm that the solution does
relax towards the steady state. The mean absolute difference E between the computed
solution φij and the steady-state solution φ

†
ij at the centre of each grid cell (i, j ) is

used as a measure:

E =
1

n2

∑
ij

|φij − φ
†
ij |, (4.5)

where n are the number of points in both the ξ - and z-directions, respectively.
A semi-log plot of E with increasing time is shown in figure 7 for three different
grid resolutions. There is a small initial transient, shown in the inset panel, prior
to breaking at t = 1. However, for long time the time-dependent solution decays
exponentially towards the steady state. This is shown by the dashed line in figure 7,
which implies that

E ≈ exp(−t/18), (4.6)

and the decay is therefore quite slow as the inflow and outflow equilibrate. This holds
for all grid resolutions, demonstrating that the numerical solutions are well resolved.
The numerical solution eventually departs from this behaviour at a time that is
resolution dependent. The change in behaviour is caused by the solution being within
numerical error of the steady state. From an analysis of the straight line segments
on figure 7 we can deduce that the error in capturing the steady-state solutions is
proportional to 1/n, i.e. doubling the number of points in each direction halves the
error. Closer inspection shows that small oscillations develop as the solution begins
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Figure 7. The evolution of the global absolute difference E between the numerical breaking
wave solution and the exact steady-state solution on a semi-log plot for three different grid
resolutions with n × n points. The dashed line shows that the solution decays exponentially
for large time. The inset panel shows the early time behaviour.

to depart from the exponentially decaying behaviour. This is caused by the method
‘over-shooting’ the exact solution. The decay of these oscillations is due to the artificial
diffusion inherent in the scheme, which is less at higher resolutions.

5. Lens interaction
We now consider a more complicated situation in which two lenses at different

heights and with different downslope velocities interact and merge. The initial
configuration is shown in figure 8(a). It consists of three slope-parallel concentration
shocks at heights Hup = 0.9, zr =0.5 and Hdown = 0.1 that are joined by sharp steps at
ξ = −1.3 and ξ =1.3. Each of the two vertical sections breaks at t = 0 and two lenses
form that are both similar to the previous breaking wave problem, i.e spinning like
a rugby ball, and opening and closing up as they propagate downstream. The upper
lens is located between zr and Hup , and propagates downstream with a speed of 1.4
non-dimensional units. The lower shock is in the slower part of the flow between
Hdown and zr , and propagates downstream with a speed of 0.6 non-dimensional
units. The solutions are computed in a frame moving downslope with speed unity.
It therefore appears that the upper lens moves to the right, while the lower lens
moves to the left at the same speed of 0.4 non-dimensional units. These are both
consistent with the speed of propagation of a steady-state lens implied by equations
(2.2) and (2.5). The two lens are shown at times t =1, 2 and 3 in figure 8(b–d). The
lenses meet at 3.25 non-dimensional units and very quickly merge to form a single
large precessing lens between Hup and Hdown that propagates downslope with speed
unity. Figure 9 shows the evolution of the global absolute difference E, defined in
(4.5), between the computed concentration and the exact steady-state solution. While
the initial behaviour is different, after t = 3.25 the mean absolute difference E decays
exponentially for long time in exactly the same way as in equation (4.6) for the
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Figure 8. A series of contour plots showing the development of the small-particle concentra-
tion during the interaction of two breaking lenses in a frame (ξ, z) moving downslope with speed
unity. The initial condition is shown in (a). At t = 0 the sharp downward steps in concentration
break to form two lenses that propagate in opposite directions with speed 0.4. Just after t = 3
these begin to coalesce to form a single lens between Hup = 0.9 and Hdown = 0.1 that propagates
downslope with speed unity. The results are for linear shear û = 2z−1 and Sr = 1, which corres-
pond to the the steady-state solution in figure 4(a). Computations are performed on a 300 × 300
grid and an animation of the solution is available with the online version of the paper.
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Figure 9. The evolution of the global absolute difference E between the time-dependent lens
interaction problem and the exact steady-state solution on a semi-log plot for three different
grid resolutions with n×n points. The dashed line shows that the solution decays exponentially
for large time. The inset panel shows the early time behaviour.

previous problem in ğ 4. This slow exponential decay is indicated on figure 9 by a
dashed line. By t =60 non-dimensional time units the solution shown in figure 8(h) is
very close to the steady state shown in figure 4(a) apart from the 50 % contour. An
animation of the solution is available with the online version of the paper.

It is possible to construct an infinite set of exact solutions with two of more lenses
that are stacked in a series of steps starting at Hup and ending at Hdown . However,
velocity shear always ensures that these coalesce in finite time, as in the lens interaction
problem shown in figure 8. In extensive numerical tests the solution always evolves
to the single lens and this is stable to two-dimensional perturbations. This suggests
that, while a single large lens is not a unique solution, it is the only stable travelling
wave solution to the problem illustrated in figure 1.

6. Discussion and conclusions
Pouliquen et al. (1997) and Pouliquen & Vallance (1999) have observed that large

particles recirculate at the front of bi-disperse granular mixtures as they flow down a
slope and break into a series of fingers. They postulated that the large particles rose to
the faster moving free-surface layers by kinetic sieving and were then transported to
the flow front, where they were over-run, and segregated back up to the surface again
to form a recirculation loop. In this paper we have used a hyperbolic segregation
theory, that stems from the work of Savage & Lun (1988), Gray & Thornton (2005)
and Thornton et al. (2006), to derive an exact travelling wave solution for the small-
particle concentration within the recirculation zone as well as the particle paths
of each species. The solutions consists of two concentration expansions and two
concentration shocks that form a ‘lens’-like structure that propagates downslope at
the average speed of the layer. Within the lens the small particles percolate down by
kinetic sieving and the large ones rise-up by squeeze expulsion until they separate out
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into pure phases across the concentration shock. The large particles are recirculated on
the downstream side of the lens, exactly as postulated by Pouliquen et al. (1997) and
Pouliquen & Vallance (1999). Breaking size segregation waves in which the particles
are recirculated are a generic feature of hyperbolic segregation theories. They develop
whenever a monotonically decreasing section of concentration between pure phases
is sheared and breaks, as in the solutions of Gray et al. (2006).

A shock-capturing TVDLF numerical method (Gray & Thornton 2005) was used
to investigate the temporal evolution towards the travelling-wave solution. In the first
case the shock breaks along a line and then oscillates backwards and forwards like a
spinning rugby ball, opening and closing up as it converges exponentially on the exact
solution. A more complex initial configuration allowed two lenses to form at different
heights in the flow and with different downstream velocities. After a short time they
coalesced to form a single lens that propagated downstream with the mean velocity
of the layer. The behaviour of the merged lens is similar to that of the first problem,
eventually decaying exponentially towards the exact solution. The decay rate of 1/18
is the same in both problems, which implies that the steady state is only approached
for very long times. Animations of both solutions are available online.

Particle-size segregation models can be coupled to existing granular avalanche
and geophysical mass flow models (e.g. Eglit 1983; Savage & Hutter 1989; Gray,
Wieland & Hutter 1999; Wieland, Gray & Hutter 1999; Iverson & Denlinger 2001;
Pouliquen & Forterre 2002; Gray, Tai & Noelle 2003; Denlinger & Iverson 2004;
Mangeney-Castelnau et al. 2005; Patra et al. 2005; Gray & Cui 2007) instead of
prescribing the bulk velocity u(x, y, z) as in this paper. All of these models use depth-
integrated equations to compute the flow thickness h(x, y) and the depth-averaged ve-
locity ū(x, y). Using bulk incompressibility and assumed bulk velocity profiles through
the avalanche depth, the velocity components (u, v, w) can be reconstructed and
the small-particle concentration can then be computed using (1.1). Feedback may be
introduced by coupling the basal friction and/or the bulk velocity profiles to the local
concentration φ. Such models should be sufficient to capture the particle mobility
differences that give rise to frontal instabilities, fingering and enhanced run-out in
small-scale experiments (Pouliquen et al. 1997; Pouliquen & Vallance 1999; Phillips
et al. 2006). In geophysical mass flows, such as debris and pyroclastic flows, the
basal resistance is coupled to the pore pressure (Iverson 1997), which, in turn, is
dissipated much more rapidly in regions with high concentrations of coarse particles.
The bouldery margins therefore tend to be less mobile than the finer grained interior,
which can again lead to instabilities. The future development of fully coupled models
should lead to a fuller understanding of the spontaneous formation of coarse-grained
lateral levees and distal lobes (Pierson 1986; Vallance & Savage 2000; Vallance 2000;
Iverson & Vallance 2001; Iverson 2005), which are important generic features of
many geological deposits.
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