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Abstract

We propose ranking the importance (centrality) of boards of directors using a variant of
the PageRank algorithm from computational graph theory. PageRank is at the heart of the
immensely successful Google web search engine and, we argue, can be naturally extended to
social network settings. Using tools from graph theory, we represent the board of directors
as an undirected bipartite graph. Since PageRank operates on directed graphs we develop
a procedure to pass from an undirected bipartite graph to appropriately weighted, directed
projections. Finally, to illustrate the procedure we present preliminary rankings of publicly
traded US and UK firms using this method. Our procedure provides a quick and efficient way
to rank the importance of corporate boards.
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1 Introduction

In this paper we propose a method for ranking the importance of boards of directors using techniques

from computational graph theory.1 The structural properties of networks, the domain of graph

theory, is becoming an important research theme within the field of corporate governance. For

example, Bebchuk et al. (2007) investigate the centrality of CEOs, Cohen et al. (2007) discuss the

implications of networks on mutual fund returns, and recent research has analyzed social networks

in the boardroom (e.g., Stathopoulos and Kirchmaier (2006), Kramarz and Thesmar (2006) and

Conyon and Muldoon (2006b)). A particularly salient stream of network analysis has focused on the

properties of vertices within networks.2 A large number of so-called centrality measures have arisen

which gauge the structural importance of a vertex relative to other vertices within a complex web

of associations. Such centrality measures have been very useful in the field of social networks for

understanding the roles played by different actors (Newman (2005), Wasserman and Faust (1994)).

In this paper we describe an alternative measure of centrality. It is the PageRank algorithm from

computational graph theory originally described in Brin and Page (1998) and Brin et al. (1999).

PageRank was designed for, and is at the heart of, the immensely popular Google search en-

gine. The PageRank algorithm, as originally conceived, is a system designed to rank the overall

importance of each page on the web—thus providing an index to order responses to a user’s web

search. The rank that Google uses can, in addition to its interpretation in terms of random walks,

be interpreted as a measure of a web page’s authority, overall importance, or influence: Higham

and Taylor (2003) give a very clear exposition of both these interpretations, as well as an excellent

introduction to the PageRank algorithm itself. Although the algorithm was originally designed to

determine the importance of web pages, it can be naturally extended to other network settings, in-

cluding social networks. In this paper our interest is in corporate governance networks, particularly

the board of directors.

This paper makes a number of contributions to the extant corporate governance literature. First,

we propose measuring the importance of the board of directors (i.e. centrality) using a variety of

related measures computed with the PageRank algorithm. These measures assign a numeric value

to each vertex in a graph. The rank assigned to a board derives from a) the numeric measure
1An earlier version of this paper appeared in Conyon and Muldoon (2006a).
2One can think of a vertex as the basic unit of analysis in a network. For example, it can represent an individual,

a board, an accounting firm, an organization etc. In the sociology, and social network literature, a vertex is often
referred to as an actor.
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intrinsic to the board and which one may choose to be the same for all boards, or, alternatively,

which may be calibrated to reflect differences in firm attributes (such as market value, performance

etc.) and b) a poll of the board’s ‘neighbors’ (those firms with which it is interlocked), weighted

according to both the rank (i.e. esteem or influence) in which the neighboring board is held, as

well as the relative ‘strength’ of the connection between the boards. In essence, contributions from

boards that are themselves held in high esteem count more towards one’s own rank. A board’s

rank is defined recursively and, as we will show in Section 3, it can interpreted as a steady state

consensus about which boards are deemed important.

Second, we show how the board of directors may be represented as a weighted, directed graph.

PageRank is designed to operate on directed graphs (these and other graph-theoretic terms are

defined carefully in Section 2), while the usual representation of the social network of corpo-

rate governance—as an affiliation network or bipartite graph—captures only symmetric, or non-

directional relationships and so gives rise to undirected graphs. Accordingly, one of the challenges

in the development of a measure one might term “BoardRank” is to find a way to incorporate extra

information into the construction of the social network in such a way as to yield directed graphs.

In Section 4 we propose such a method.

Third, we contribute to the empirical corporate governance literature by presenting preliminary

empirical evidence on the centrality of boards. In Section 5, we apply the ranking method to data

on the corporate governance of firms in the United States and in the United Kingdom to illustrate

the procedure. Our method is not, however, limited to such data and should be useful to social

network researchers who wish to develop PageRank-like centrality measures for arbitrary affiliation

networks. The data used in Section 5 are, for the US, a snap shot of the board memberships of

approximately 1,700 publicly traded firms in early 2003. The data for the UK, collected in 2002, are

a snap shot of approximately 2,200 publicly traded firms. We provide some preliminary evidence

on which firms receive the highest rank using the PageRank procedure for this pilot study. We

also present a simple statistical model illustrating which firm-level factors (such as size, company

performance etc.) help determine the rank of a firm.

Overall, our paper contributes to a growing accounting, finance and economics literature focus-

ing on the phenomenon of social networks, especially in the board of directors (e.g., Kramarz and

Thesmar (2006), Guedj and Barnea (2007), Stathopoulos and Kirchmaier (2006), Hallock (1997),

Cohen et al. (2007), Bebchuk et al. (2007), Conyon and Muldoon (2006b)) and more generally
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on boards and corporate governance (e.g., Lin et al. (2003), Young (2000), Peasnell et al. (2003),

Lin et al. (2007)). The rest of this paper is organized as follows. In Section 2 we introduce some

notions from the mathematical theory of graphs as applied to social networks and boards of direc-

tors. Then, in Section 3, we discuss the PageRank algorithm and touch on its application to social

networks. In section 4 we describe a method to pass from unweighted bipartite graphs to weighted,

directed projections. In section 5 we apply PageRank to board data from the United States & the

United Kingdom and, finally, in section 6 we offer some concluding remarks.

2 Corporate boards and social networks

In this section we define terms and briefly review some important features of graph theory as

applied to social networks. A much more extensive discussion of graphs and their representation,

manipulation and application to the social sciences appears in Wasserman and Faust (1994). The

theory of random graphs is given in Bollobás (2001). Newman (2003) gives an excellent review

of recent developments in the field of complex systems. Newman et al. (2002) discuss specifically

the application of random graphs to social networks. Newman (2005) discusses centrality measures

based on random walks.

2.1 Basic terminology

A network (or graph) is a set of items termed vertices (or nodes) with connections between them

called edges. In discussions about graphs representing social networks the nodes are sometimes

also called actors. We will restrict our attention to networks derived from the world of corporate

directorship and adopt the following conventions: our nodes will be of two types, either boards or

the directors who sit on them. Edges will represent, among other things, membership of a board

(in one sort of graph) or an interlock between boards (in another, related sort of graph).

The latter relationship, an interlock due to a shared director, is clearly a symmetric one: if

board A is interlocked with board B, then B is automatically interlocked with A as well. This sort

of reciprocal connection will be represented by an undirected edge. But we will also need the notion

of a directed edge, which will represent a unidirectional connection. A typical example of such a

relationship is “has influence on”: one can easily imagine a setting in which firm A has influence

on firm B—perhaps because A is a major shareholder in B—but this connection is not symmetric:
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KRIADBESNPS

Figure 1: A undirected, unweighted bipartite graph representing the boards of directors of Adobe
Systems (ADBE) and Synopsis (SNPS), both software houses, and that of the Knight Ridder (KRI)
chain of newspapers.

there is no reason to imagine that B has influence on A. Both directed and undirected edges can also

carry weights. In social networks these weights are usually a measure of the relative strength of the

connection the edge represents and so a weight of zero is often taken to mean that the edge does not

exist—that the corresponding connection is absent. We will use weights of this kind in PageRank

algorithm (see Section 3), but we will also want consider another sort of weight—something one

might term a “Boolean weight”—whose value is somewhat akin to that of a dummy variable in

statistical modeling. These weights, whose role is discussed in Section 3.1, assume the values zero

and one, but a Boolean weight of zero does not indicate the absence of the corresponding edge.

Finally, a graph whose every edge is directed is called a directed graph. If, in addition, all the

edges have weights the graph is said to be a weighted, directed graph. Alternatively, a graph (such

as the one pictured in Figure 1) in which all the edges are undirected and none of them have weights

is an unweighted, undirected graph or, for short, an undirected graph.

2.1.1 Notation for edges and weights

Throughout this paper we will write ej,k to refer to a directed edge that connects vertex k (at the

tail) to vertex j (at the tip). When there is a weight associated with the edge we will call it wj,k.

We will use similar notations, Ej,k and Wj,k, for undirected edges. Of course, in this latter case

E1,2 is the same as E2,1 and so W1,2 = W2,1.
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2.1.2 Paths, length and connectedness

A directed graph is said to contain a path between vertices a and b if it contains is a sequence of

edges ea,k1 , ek1,k2, . . . , ekl,b. That is, there is a path from a to b if one can get from one to the

other by moving along the directed edges of the graph. A similar definition applies to undirected

graphs. In either case, the length of the path is the total number of edges involved.

In an undirected graph two vertices are connected if there is a path between them and the

connected component associated with a vertex is that part of the graph consisting of the vertex

itself and all those others that can be reached by paths running along the edges of the graph. In

a directed graph the notions of connectivity are slightly more complicated: node a is said to be

reachable from node b if there is a path from b to a. But a has two, possibly distinct, connected

components: those nodes reachable from a and those from which a can be reached.

2.1.3 Degree

The concept of degree will prove important. At it’s simplest, in an undirected graph, a node’s

degree is the just number of edges connected to it. By contrast, a node j appearing in a directed

graph has both an in degree (the number of directed edges having j at their tips) and an out degree

(the number of edges with j at their tails). These notions are generalized further, to accommodate

weighted edges, in section 3 below.

2.2 Graphs of boards and directors

Data about boards of directors present an immediate problem: how should one draw a graph

to represent it? The issue is that one could treat the board as the basic unit of analysis and

form a graph whose vertices represent boards and whose edges represent interlocks (that is, shared

directors). But alternatively, one could focus on the director and make a (generally much larger)

graph whose vertices represent directors and whose edges represent shared board memberships.

There is no obvious way to choose between these two representations and many authors simply

analyze both. In Section 5 we will focus on the board-and-interlock graph, though our methods

are equally applicable to the graph in which directors are vertices.

But the ambiguity about representation of the corporate world arises from the structure of

the data: there really are two sorts of social entities here, the directors and the boards, and the
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Figure 2: The undirected graphs showing board interlocks (left) and the network of co-directorship
as derived from the affiliation network illustrated in Figure 1.

network’s edges represent membership of the former in the latter. The most natural representation

of such a network, sometimes called an affiliation network, is a graph with two sorts of vertices—

one each for boards and directors—that has edges connecting directors with the boards on which

they sit. The result is an example of a bipartite graph: one whose vertices can be divided into

two distinct sets and whose edges only make connections between the two sets. Figures 1 and 3

are examples. The board and director graphs mentioned above now appear as “projections” of the

bipartite graph onto one of its two sets of vertices.

Figures 1 and 2 illustrate these issues for that part of social network of corporate governance

connected to the board of Adobe Systems Inc., a software house. The former, Figure 1, shows

the full bipartite graph, while Figure 2 shows the two projections. The graph appearing at the

left of Figure 2 has the boards as its nodes and edges connecting interlocked boards while the

graph at right has directors for nodes and includes an edge between two directors if they sit on

the same board. Note that both of the projections are undirected graphs. But PageRank is, as

we will see below, designed to operate on directed graphs. One of the main technical obstacles

in adapting PageRank to the ranking of, for example, the boards, is to find a way to incorporate

extra information into a bipartite graph such as the one in Figure 1 in such a way as to permit the

construction a board projection that is a directed graph. This issue is touched on in the following

section, then treated in detail in Section 4.
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2.2.1 Remarks on related literature

Generally, previous analyses of corporate governance networks have not explicitly modeled boards

of directors as bipartite graphs, although there are some exceptions (e.g., Newman (2003), Conyon

and Muldoon (2006b)). Our paper (in section 3) augments such studies by considering weighted

directed graphs.

The notion of ‘centrality’ of boards considered in this paper is closely related to a literature on

‘board interlocks’. A board interlock occurs when the boards of two separate organizations share a

common director: namely, it is the ‘degree’ of the board. Hallock (1997) provides an econometric

analysis of CEO pay determination. He demonstrates that CEO pay is higher in interlocked firms

after controlling for other economic determinants. Board interlocks are routinely studied in the

management literature and are often motivated by sociological considerations (e.g. Davis and Greve

(1997), Pettigrew (1992), Mizruchi and Bunting (1981), Useem and Karabel (1986), Useem (1984),

Haunschild (1993)). The ‘interlock’ concept is not usually analyzed as a bipartite graph as in this

paper.

Recent research in accounting and finance has also stressed the importance of social networks;

albeit using a different framework than that offered here. Bebchuk et al. (2007) demonstrate that

CEO centrality is important for a number of firm-level outcomes. They find that CEO centrality

is negatively associated with firm value, measured as industry-adjusted Tobin’s Q as well as lower

industry-adjusted accounting profitability. They conclude that ‘differences in CEO centrality are

an aspect of firm management and governance that deserves the attention of researchers.’ Cohen

et al. (2007) focus on connections between mutual fund managers and company board members

arising from shared education networks. They find that a ‘replicating portfolio of connected stocks

outperforms a replicating portfolio of non-connected stocks by up to 8.4% per year’. Larcker

et al. (2005) use the network of directors and firms to compute the minimum number of other

company boards that are required to establish a connection between each pair of directors. It

measures the strength of a communication channel between board members to influence board

decisions. They find that ‘CEOs at firms where there is a relatively short back door distance

between inside and outside directors or between the CEO and the members of the compensation

committee earn substantially higher levels of total compensation’. Kramarz and Thesmar (2006)

use French data to investigate corporate networks, showing that corporate governance is generally
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worse in firms run by former civil servants. They find that ‘CEOs who are former bureaucrats

are more likely to accumulate directorships, and the more they do, the less profitable is the firm

they run’. Stathopoulos and Kirchmaier (2006) also find that performance is negatively correlated

with director social networks. They conclude that ‘it appears that CEOs use the power developed

through their social networks to the detriment of shareholders.’

In an auditing context, Iyer et al. (1997) find that alumni, defined as a company officer who

previously worked for an audit firm, have significant ties with their former audit firms are more

likely to provide former firms with benefits if they have stronger ties with them. Lennox and

Park (2007) hypothesizes that an independent audit committee is less likely to appoint a company

officer’s former audit firm. They find that ‘companies appoint officers’ former firms more often than

they appoint alternative audit firms. However, companies are less likely to appoint officers’ former

firms if audit committees are more independent.’ Such studies show the importance of networks in

an accounting and finance corporate governance context.

Finally, we should also mention that previous corporate governance research has been very

interested in constructing indices that permit one to rank outcomes. For example, Gompers et al.

(2003) introduced a governance index, the ‘G-index’, which ranked firms based on twenty-four

separate measures of the quality of corporate governance.3 The construction of such indices are

potentially labor intensive. In contrast, the extension of PageRank to social networks seems a

fruitful avenue to pursue since it enables one to determine, with relative ease and efficiency, the

importance of a particular ‘actor’ within the whole network. For example, the ‘actor’ can be

thought of as an individual, the board of directors, an auditor or indeed an entire organization.

And the ranking procedure we offer here enables one to relatively quickly rank the importance of

actors in the social network.

3 PageRank for boards of directors

The PageRank algorithm (Brin and Page (1998) and Brin et al. (1999)) assigns a numerical rank

to each vertex in a directed graph. These ranks were originally intended as an aid to searching

the World Wide Web and so have a natural interpretation in a graph whose vertices represent web

pages and whose (directed) edges represent hyperlinks. PageRank then provides an assessment
3The composite ‘G-index’ is made-up from information about poison pills, director indemnification, golden

parachutes, classified / staggered boards, anti-greenmail etc.
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Figure 3: Another representation of the bipartite graph in Figure 1, but now with edges weighted
according to whether the director is an executive (weight is 1.0, plotted with a heavy blue edge) or
a non-executive (weight is 1.0, plotted with a lighter dashed edge).

of the importance (or authority) of a Web page (node) that is largely independent of the page’s

content.

Here we describe a scheme that generalizes PageRank to the ranking of boards in the social

network of corporate governance. The problem splits naturally into two pieces: deriving weighted,

directed projections from the unweighted, undirected, bipartite graph that represents the affiliation

network of boards of directors and (ii) computing PageRanks for the two projections.

3.1 Adding weights to a bipartite graph

The top panel of Figure 1 shows a small part of the world of the corporate governance in the US.

The edges connecting boards to their directors in this graph are all the same: they are unweighted

or, equivalently, all have the equal weight. More generally, one could assign a (non-negative) weight

to each such edge. One might, for example, assign a Boolean weight of zero4 to every edge that

connects a non-executive director to the board on which he or she serves and a weight of one to

those edges that represent the connections between executive directors and their boards. One can

represent this graphically with something like Figure 3: in Section 4 below we will introduce a

scheme that processes these weights (or any others one might choose to assign) and produces a pair

of weighted, directed projections.
4As mentioned above, this is a somewhat non-standard use of the term “weight”. In normal graph-theoretic usage

an edge with zero weight is simply absent from in the graph, but here we wish to suppress the usual connection
between an edge’s weight and its existence. In the bipartite graph it will be possible for edges to exist, but have zero
weight.
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3.2 PageRank

Here we offer a brief account of the calculations involved in generating PageRanks. For a longer

discussion one might begin with the very clear and entertaining introduction by Higham and Taylor

Higham and Taylor (2003), then proceed to the original references, Brin et al. (1999) and Brin and

Page (1998). A more general analysis of link-based algorithms, including PageRank, appears in

Wang (2004).5

Suppose that one has a weighted, directed graph with N vertices and an adjacency matrix W

whose entries are conventional, positive weights wj,k ≥ 0 satisfying

wj,k > 0 if a (directed) edge connects vertex k (tail) to vertex j (tip);

wj,k = 0 if there is no edge between j and k.

Then define ok, the weighted out-degree of vertex k, to be

ok =
N∑

j=1

wj,k. (1)

That is, ok is the sum of the weights of all the edges that reach from k to some other vertex.

The PageRank algorithm uses these quantities, as well as an adjustable parameter 0 ≤ d < 1,

to define a converging sequence of ranks rn
j . Here the subscript j ranges over the vertices in the

graph (that is 1 ≤ j ≤ N) while the superscript n starts from zero and counts the number of times

one has applied the PageRank update rule:

rn+1
j = (1 − d)sj + d

N∑
k=1

(
wj,k

ok

)
rn
k (2)

The quantities sj are, for reasons that will become clear shortly, sometimes called source strengths:

they should be positive and satisfy

N =
N∑

j=1

sj. (3)

The sum over k appearing in (2) is best thought of as a sum over (incoming) neighbors or, in
5Other recent papers examining link-based algorithms and social networks include Ding et al. (2004) and Diligenti

et al. (2004)
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graph-theoretic terms, predecessors, for only those edges that start at some vertex k and end at

j will contribute to the PageRank of the j-th vertex (that is, only these edges will have weights

wj,k �= 0).

Although the iterative rule (2) tells us how to generate rn+1
j given rn

j , it cannot tell us how to

start the process. By convention one chooses r0
j = 1 ∀j. That is, all the vertices start out with

equal rank, then successive applications of (2) generate successive generations of ranks. It is not

too hard to show that, provided d < 1, this iterative procedure will converge. That is, eventually

it will be true that rn+1
j ≈ rn

j . Indeed, something much stronger is true: given any small number

δ << 1, one can always choose an n� sufficiently large that

max
j

||rn�+t
j − rn�

j || ≤ δ ∀t > 0.

In words, after n� iterations all subsequent generations of ranks will be within δ of the rn�
j . In

practice, we choose some small tolerance δ and repeats (2) until the first n for which maxj ||rn+1
j −

rn
j || ≤ δ.

3.2.1 Interpretation as a random walk

The intuitive idea behind PageRank is clearest in the algorithm’s original context, the World Wide

Web. Recently, Newman (2005) has also discussed centrality measures based on random walks,

namely counting how often a node is traversed by a random walk between two other nodes. In

our context, imagine a deeply indecisive individual who browses the web at random. He reads a

web page, then chooses a new page at random by clicking, with equal probability, on any of the

links on the page he has just finished (ignore, for the moment, the possibility that his page has no

hyperlinks). If such a reader persisted in his efforts he would eventually visit a very large proportion

of the web’s pages, most of them many times over (also ignore the fact that pages are continually

being added to the web or removed from it). If he kept a list of all the pages he ever visited and

also kept track of how often he visited each one then, eventually, the ratio

Number of visits to page j

Total number of pages visited
(4)

would tend to a constant, converging in a manner reminiscent of the PageRanks.

12



Indeed, the ratio (4) would converge precisely to rj/N where N is the number of pages in the

web and is the PageRank rj produced by applying (2) with d = 1. The parameter d is, in this

view, a probability: it is the probability that our random reader, having finished his page, decides

to proceed as described above. As an alternative, if d < 1, we could permit our reader to jump,

with probability (1 − d), to an arbitrary new page anywhere in the web, choosing the j-th page

with probability (sj/N). Here, N is the number of pages in the web and sj is the source strength

of the j-th page. If he pursues this mixed strategy—sometimes choosing a random link from the

current page, sometimes jumping arbitrarily—then the ratio (4) will tend to rj/N where rj is the

PageRank produced by repeated application of (2).

It is not hard to recast this view of PageRank to make it appear relevant to social networks.

Suppose that instead of a random browser wandering idly through the web, we consider an item

of news, information or gossip being relayed randomly along the connections of a social network.

Each actor in the network, upon hearing the news, either passes it (with probability d) to a

randomly chosen associate or (with probability (1 − d)), relays the news to some arbitrary third

party (perhaps by posting a notice in some public place or writing a newspaper article). Although

this is a drastically abstracted account of the propagation of information, it’s not wholly implausible

to imagine that it could capture some aspects of the diffusion of ideas as viewed in the large.

3.2.2 Interpretation as a weighted voting scheme

PageRank admits another interpretation suggestive of applications to social networks. If we consider

a page’s (or a board’s) rank to be a measure of the esteem in which it is held, then the terms in

the update rule (2) have natural interpretations. The source term (1 − d)sj represents a sort of

natural, or intrinsic component of esteem: one may, democratically, set sj = 1 for all boards or, if

it seems more appropriate, assign some boards—perhaps those of particularly virtuous, innovative

or profitable firms—a higher intrinsic esteem. The second term, the one involving the sum over

k, is essentially a poll of the j-th node’s neighbors, weighted according to both rn
k , the esteem in

which the neighboring k-th vertex is held, and the relative strength of the edge connecting vertex

k to vertex j (this is the factor wj,k/ok, which compares the weight of the edge connecting k to j

with the total strength of k’s outgoing edges). That is, praise from the praiseworthy—contributions

from nodes that are themselves highly esteemed—counts more.

In this view the iteration of the PageRank update corresponds to the gradual formation of a

13
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Figure 4: A weighted, undirected bipartite graph in which directors 1–4 serve on boards A and B.

A

B

wB,A

w2,4

w3,1

w4,3
wA,B

1 2

3 4

Figure 5: Directed board (left) and director (right) projections derived from the bipartite graph of
Figure 4. Although all the edges in the directed graph at right have associated weights, only a few
are labeled explicitly.

consensus about which nodes are most important. At the outset every node has the same rank, 1.

Successive rounds of (2) redistribute esteem, treating a weighted, directed edge from k to j as a

weighted vote of confidence by node k in favor of node j. Thus it is clear that the weights assigned

to the edges have considerable influence on the final distribution of rank: in the next section we will

describe a method for generating weights on the edges of the two projected networks from Boolean

weights—the sort of Boolean weights discussed in Section 3.1—on the edges of the bipartite graph.

4 Making weighted, directed projections

Consider Figure 4, which shows a small, weighted, undirected bipartite graph. Ignoring for the

moment the question of how one assigns weights to the edges, this figure is an example of the sort

of data from which one might hope to derive PageRank-like measures for the boards, directors, or

both. In this section we develop a method to pass from graphs like that pictured in Figure 4 to

the sort of weighted, directed projections appearing in Figure 5.

14



4.1 Two preliminary attempts and a formula

Here we build up gradually, by way of two intermediates, to our preferred formula for the weights

of edges in the bipartite graph. The main observation is that edges in the projection arise from

two-edge paths in the bipartite graph. So, for example, a pair of boards A and B are connected

in the board projection if they share a director. But this is the same as saying that the bipartite

graph contains a pair of undirected edges, say, EA,k and Ek,B, where the shared director has index

k. It is natural to choose the weights for the two directed edges in the projection to be a linear

combination of the weights in the bipartite graph

wA,B = βWB,k + (1 − β)Wk,A

wB,A = βWA,k + (1 − β)Wk,B (5)

where we have introduced a new parameter 0 ≤ β ≤ 1 that controls the relative contribution of the

two weights from the bipartite graph. This is our first preliminary attempt. Notice that the two

lines above are really the same formula with the roles of A and B interchanged, so one need only

state one of them. Note also that the sum of the weights is conserved. That is

wA,B + wB,A = [βWB,k + (1 − β)Wk,A] + [βWA,k + (1 − β)Wk,B ]

= [βWA,k + (1 − β)Wk,A] + [βWB,k + (1 − β)Wk,B ]

= [β + (1 − β)] WA,k + [β + (1 − β)] WB,k

= WA,k + WB,k

where, in passing from the second line to the third, we have used the fact that, as the bipartite

graph is undirected, WA,k = Wk,A and WB,k = Wk,B.

Of course, as Figure 4 shows, two boards may share more than one director so one might

generalize (5) to

wA,B =
∑

k shared

βWB,k + (1 − β)Wk,A (6)

where the sum runs over all shared directors: this is our second preliminary attempt. It retains

the property that the sum wA,B + wB,A is the same as the sum of all the weights on the edges that

contribute to the formation of eA,B and eB,A in the projection.
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Director Projection Board Projection
Weight Using (6) Using (7) Weight Using (6) Using (7)
w2,1 0.85 1.4167 wA,B 1.375 1.8762
w3,1 0.175 1.1667 wB,A 1.525 2.1238
w1,2 0.35 0.5833
w3,2 1.425 1.9038
w4,2 0.625 1.1364
w1,3 0.125 0.8333
w2,3 0.1475 2.0962
w4,3 0.825 0.8684
w2,4 0.475 0.8636
w3,4 1.075 1.1316

Table 1: Weights derived by applying (6) or (7) to the weighted bipartite graph shown in Figure 4.
In both cases we used β = 0.25.

Our second formulation, (6), is reasonably satisfactory, but in practice we prefer to make a

slight modification:

wA,B =
∑

k shared

βWB,k + (1 − β)Wk,A

(WB,k + Wk,A)/2
(7)

That is, we scale the contribution from each pair (in the bipartite graph) by the average of its

weights. This scaling means that each shared director causes the sum wA,B + wB,A to increase by

2.

This choice of scaling arises naturally in the analysis of Boolean-weighted bipartite graphs such

as the one pictured in Figure 3. The aim of the rescaling is to permit a distinction between edges

that don’t exist in the bipartite graph (and so don’t give rise to connections in the projections)

and those that do exist (and so should contribute to connections in the projection), but have zero

weight. Such graphs are discussed at greater length below, but we conclude this section with

Table 1, which gives sets of weights for the edges in the projections pictured in Figure 5.

4.2 Boolean weights: insiders and outsiders

Our original interest was to analyze weighted bipartite graphs such as the one illustrated in Figure 3.

As we mentioned above, the weights here are somewhat unusual in that a weight of zero does not

imply that the edge is absent. Rather, we imagine that the weights are Boolean variables: they

reflect the answer to some “Yes”-“No” question such as “Is the director an executive director of

the board to which she is connected?” One might refer to such graphs as Boolean weighted bipartite
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Figure 6: Three small bipartite graphs with various sets of Boolean edge weights. The weights are
shown numerically and, additionally, the graphs are colored with the conventions from Figure 3.

graphs.

Figure 6 shows three of the simplest possible such graphs: each contains two boards tied together

by a single shared director. To illustrate the role of the parameter β let us compute the weights

in the board projection using our preferred rule (7). The leftmost graph presents an immediate

difficulty since:

wA,B =
∑

k shared

βWB,k + (1 − β)Wk,A

(WB,k + Wk,A)/2

=
βWB,1 + (1 − β)W1,A

(WB,1 + W1,A)/2

=
β × 0 + (1 − β) × 0

(0 + 0)/2
= 0/0.

One way out of this problem is to adhere to the principle that each shared director should contribute

2 to the sum wA,B + wB,A: combining this with the observation that, in this problematic case,

WA,1 = WB,1 we’ll adopt the convention that wA,B = wB,A = 1. This has a natural generalization

to the case where the two boards share several directors.

The remaining cases are easier—the formula (7) yields a sensible result without any further

contemplation—and the results are summarized in Table 2. These results make qualitative sense

in that if WA,1 = WB,1, then wA,B = wB,A = 1. The more interesting case is when the director is

an insider on only one of the two boards.

Suppose, for example, that the director is an outsider on board A, but an insider on board

B. In this case the directed edges in the board projection receive different weights that depend

on the parameter β. If β ≈ 0 then wA,B ≈ 0 and wB,A ≈ 2, so the edge pointing from A to B

is much more heavily weighted than the one running from B to A. In this case one might like to

think of the heavier edge as indicating that board A is showing “esteem” for board B by recruiting
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Bipartite Graph Board Projection
WA,1 WB,1 wA,B wB,A

0 0 1 1
0 1 2β 2(1 − β)
1 1 1 1

Table 2: Weights derived by applying (7) to the three weighted bipartite graphs shown in Figure 6.

A B

1
0 1

A

A

A

B

B

B

β ≈ 0

β ≈ 1

β = 0.5

Figure 7: At left, a shared director is an insider on board B, but an outsider on board A. The three
projections at right show how the parameter β influences the weights of the directed edges arising
from this interlock.

one of B’s executives. Alternatively, one might think of the heavily-weighted edge as indicating

“influence”: board A has a strong possibility of influencing board on B because one of A’s directors

is involved in the day-to-day running of B. When β = 0.5 both edges receive the same weight:

wA,B = wB,A = 1 and, finally, when β ≈ 1, then wA,B ≈ 2 and wB,A ≈ 0 and the imputations

about esteem and influence run in the opposite direction. The relationships between β and the

weights on the directed edges are summarized in Figure 7.

5 Ranking boards of directors

5.1 The data

To implement the PageRank algorithm for the social networks of boards of directors we use two

distinct data sets. One is from the United States, kindly supplied by the Corporate Library and the

other is a data set is from the United Kingdom supplied by Hemmington Scott publishing. Both

data sets contain an expansive list of companies and the directors who serve on their boards. The

18



purpose of the following empirical analysis is simply to show how the algorithm may be implemented

rather than to draw any definite conclusions about the ‘true’ rank of boards which will inevitably

require further analysis and comparison with other rank measures.6

The data for the United States are a snapshot (i.e. a cross section) of publicly traded US firms

at February 2003. The data consist of 12,765 directors sitting on 1,731 boards. We report results

for the largest connected component, which consists of 10,432 directors sitting on 1,452 boards.

The United Kingdom (British) data are a snapshot of publicly traded UK firms at March 2002.

These data describe 11,541 directors sitting on 2,236 boards. Once again we report results for the

largest connected component, which here consists of 8,850 directors sitting on 1,732 boards.

5.2 Board ranks

The importance of each board (firm) is calculated using the PageRank update rule in Equation 2.

We consider a Boolean weighted bipartite graph discussed in Section 3 where “yes” was the answer

to “Is the director an executive director of the board to which she is connected?” We used a number

proportional to the firm j’s market capitalization as the source strength, sj, in Equation (2). Of

course, PageRanks for boards can be calculated for various values of the adjustable parameter, d:

we set d = 0.7. 7 We then choose values of 0 < β < 1, the relative contribution of the weights in

the bipartite graph. Specifically, we examined β = 0.5, β = 0.1 and β = 0.9. In Tables 3 and 4 we

report the 35 highest ranked board (firms) in the United States and the United Kingdom (where

d = 0.7 and β = 0.5).

In Table 3 General Electric, Microsoft, Exxon Mobil, Pfizer and Wal-Mart turn out to be the

5 highest ranked boards in the United States while, in Table 4, BP, GlaxoSmithKline, Vodafone

Group, Lloyds TSB Group, and HSBC Holdings turn out to be the 5 top ranked boards in the United

Kingdom. How are we to evaluate these results? The PageRank algorithm, applied to the board

projection from a bipartite graph, gives the consensus (steady-state) solution as to which boards

attract something that, in the informal motivation above, we termed “esteem”. Of course, our

choices of d, β and the source strengths are illustrative. We would encourage further investigation

based on alternative d and β combinations and the selection of different sources strengths (e.g.
6The results, therefore, are purely illustrative of a ranking technique.
7The choice of d = 0.7 may seem arbitrary but choosing d = 0.85, a value typically mentioned in discussions of

PageRank, does not qualitatively affect the rankings reported here. For example, in the US data the correlation
coefficient between the board ranks calculated separately for d = 0.7 and d = 0.85, and using β = 0.5, is 0.97.
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Table 3: America’s highest ranked boards. The Rank is based on the implementation of the PageR-
ank algorithm described in the text where d = 0.7, source strengths are market capitalization and
the β values are as indicated in the table. Data are from 2002/2003.

Rank Rank Rank
Company β = 0.5 β = 0.1 β = 0.9

General Electric Company 15.60 14.97 16.16
Microsoft Corporation 15.46 15.08 15.56
Exxon Mobil Corporation 14.50 14.77 13.99
Pfizer, Incorporated 13.98 13.89 13.92
Wal-Mart Stores, Incorporated 12.80 12.73 12.85
Citigroup, Incorporated 12.79 12.36 13.15
American International Group, Incorporated 10.58 10.23 9.94
Verizon Communications Incorporated 10.41 10.42 10.31
Johnson & Johnson 9.55 9.57 9.48
Coca-Cola Company (The) 9.14 8.81 9.47
Procter & Gamble Company (The) 9.09 9.51 8.64
International Business Machines Corporation 8.69 8.24 9.04
J.P. Morgan Chase & Co. 8.38 8.16 8.71
SBC Communications Incorporated 8.33 8.49 8.17
Bank of America Corporation 8.20 8.28 8.07
Merck & Co., Inc. 8.05 8.68 7.23
Cisco Systems, Incorporated 7.25 7.18 7.05
Fannie Mae 7.22 7.67 6.68
AOL-Time Warner, Incorporated 7.01 6.89 6.94
Viacom, Incorporated 6.65 6.29 6.84
Dell Computer Corporation 6.57 6.41 6.75
Wells Fargo & Company 6.57 6.60 6.49
ChevronTexaco Corporation 6.37 6.32 6.38
PepsiCo, Incorporated 6.28 6.20 6.35
Intel Corporation 6.26 6.38 6.13
Altria Group, Inc. 6.20 6.32 6.21
Eli Lilly & Company 5.96 6.41 5.26
Anheuser-Busch Companies 5.82 5.83 5.86
Home Depot, Inc. (The) 5.79 5.47 6.13
3M Company 5.66 5.30 5.99
Morgan Stanley 5.37 5.20 5.56
BellSouth Corporation 5.23 4.98 5.31
Amgen, Incorporated 5.20 5.47 4.92
Bristol-Myers Squibb Company 5.10 5.10 5.14
Allstate Corporation (The) 4.92 4.59 5.27
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profits or employees).

But the “esteem” we measure is in a certain narrow sense a structural feature of the corporate

world: it depends simply on the list of companies, the membership of their boards and their market

capitalizations. In this sense our measure of esteem contrasts to other measures which rely upon

the judgments of people to say whether a board is highly regarded or not, or whether the board

itself promotes itself as an ideal board. Because our centrality measure does not rely on self- or

other-assessment, but computes a rank based mainly on board interlocks, it is in this respect harder

to manipulate and less dependent on arbitrary judgments. This is a property inherited from Page

and Brin’s original PageRank, which is, by design, link-based rather than content-based.

Our rankings are in some accord with those reported in other places such as Fortune maga-

zine’s annual list of America’s “Most Admired Companies”. Each year Fortune asks a panel of

executives, directors and security analysts to rank a firm according to eight criteria: innovation,

employee talent, use of corporate assets, social responsibility, quality of management, financial

soundness, long-term investment value, and quality of products and services. For the “top ten”

survey, respondents are asked to select the ten companies they admire most in any industry. They

chose from a list of corporations that ranked in the top 25% overall last year, plus any that finished

in the top 20% of their category. Six of the Fortune top 10 firms appear in the list in Table 3.

These are Wal-Mart, General Electric, Dell Inc., Microsoft Corp., Johnson and Johnson and IBM.

Also, Fortune produces a global “World Most Admired Companies”: all of the British companies

that appear in the 2004 Fortune global top 50 also appear in Table 4.

Our rankings can also be compared to the “Governance Index” introduced by Gompers et al.

(2003). Using data from the Investor Responsibility Research Center, they identify 24 distinct

corporate governance provisions. These include poison pills, director indemnification, golden

parachutes, classified / staggered boards, anti-greenmail etc. For each firm they add one point

to the index for every provision that restricts shareholder rights, or equivalently increases manage-

rial power. This (inverse) measure of governance quality potentially ranges from zero to twenty-four

for each firm. They identify IBM, Wal-Mart, PepsiCo, American International Group as firms with

a lower “G-Index”. Again, these appear in Table 3. These initial results should be taken as prelim-

inary and we propose further tests, for example using newer or alternative data to evaluate their

robustness. However, the general procedure seems to work soundly.
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Table 4: Britain’s highest ranked boards. The Rank is based on the implementation of the PageRank
algorithm described in the text where d = 0.7, source strengths are market capitalization and the β
values are as indicated in the table. Data are from 2002/2003.

Rank Rank Rank
Company β = 0.5 β = 0.1 β = 0.9

BP PLC 66.44 63.83 70.20
GlaxoSmithKline PLC 46.96 48.39 45.56
Vodafone Group PLC 36.16 36.49 35.19
Lloyds TSB Group PLC 33.51 33.58 30.97
HSBC Holdings PLC 33.24 34.61 31.85
Shell Transport and Trading Co PLC 25.04 26.18 24.22
AstraZeneca PLC 24.02 27.18 20.49
Royal Bank of Scotland Group (The) PLC 23.84 24.05 23.13
Rio Tinto PLC 21.38 20.12 19.67
Unilever 19.01 23.69 15.26
Diageo PLC 17.71 13.74 20.76
Barclays PLC 15.49 14.29 16.37
Reuters Group PLC 13.23 10.94 15.66
Anglo American PLC 13.16 13.82 12.61
Schroders PLC 12.72 12.77 12.41
HBOS PLC 12.57 12.14 12.53
BT Group PLC 12.53 10.64 14.67
Reckitt Benckiser PLC 12.38 12.95 10.47
Six Continents PLC 11.98 18.32 5.50
Prudential PLC 11.30 11.61 10.86
Standard Chartered PLC 10.60 7.74 11.17
Rolls-Royce PLC 10.31 14.46 7.84
Trinity Mirror PLC 10.14 11.25 9.27
BAA PLC 9.45 9.13 8.32
Johnson Matthey PLC 9.42 9.61 8.84
Boots Company (The) PLC 9.41 7.61 10.79
Legal & General Group PLC 9.18 8.92 9.38
British Airways PLC 9.07 8.52 9.19
Invensys PLC 8.87 9.50 8.30
Allied Domecq PLC 8.72 9.38 8.32
Cable and Wireless PLC 8.39 8.26 7.48
Marconi PLC 8.29 8.18 8.14
Close Brothers Group PLC 8.08 8.19 7.69
Smiths Group PLC 7.81 4.16 9.16
British Sky Broadcasting Group PLC 7.68 7.15 7.31

22



5.3 A simple “board rank” model

Having computed a rank for each board (vertex) in the social network, a natural question arises:

What factors lead to, or are associated with, a high page rank? Here we only briefly investigate this

question. To do so, we estimate a simple statistical model where the outcome variable is the rank

of the j-th board (i.e. it’s “Board Rank”). We identified a set of observable firm-level variables,

described below, that might be thought to influence the rank of a board.

At this stage we can only estimate the model for the USA, as the necessary data for the UK

were not available to us. We supplemented the US Corporate Library data with a secondary

firm-level data set from Standard & Poors Execucomp database, which tabulates many potentially

useful characteristics for each firm. We used the August 2004 release, which contains company

information for fiscal year 2003, such as compensation, firm size, sector, etc. After combining the

two data sets, we estimated the following simple linear model for the available data:

(Board Rank)j = α + γ1x1j + εj (8)

where x1 is a matrix containing the following covariates:

(i) The degree of the vertex in the board projection. That is, the number of other boards with

which a given board is interlocked.

(ii) The size of the firm, measured as the log of total sales.

(iii) The total compensation received by the firm’s CEO. This is measured as the sum of salary,

bonus, other payments and the Black-Scholes value of options granted during the fiscal year.

(iv) Firm performance measured as the five-year total return to shareholders (including reinvested

dividends)

(v) The proportion of outsiders on the main board

(vi) The size of the board.

(vii) The “Governance Index” defined by Gompers et al. (2003) and available through the Investor

Responsibility Research Center.
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Table 5: Board Rank model: Estimation of Equation 8. The model is estimated using United States
data for varying levels of β as specified. Note, + is significant at the 10% level, ∗ significant at 5%
and ∗∗ significant at 1%.

(1) (2) (3) (4)
Variable β = 0.5 β = 0.1 β = 0.9
Mean Influence Influence Influence

Board degree 7.08 0.14** 0.14** 0.14**
(0.01) (0.01) (0.01)

Log(Sales) 7.21 0.24** 0.24** 0.24**
(0.05) (0.05) (0.05)

CEO pay 5.35m 0.04** 0.04** 0.04**
(0.01) (0.01) (0.01)

Stock returns 7.01 0.01 0.01 0.02
(0.02) (0.02) (0.02)

Proportion outsiders 0.66 -0.17 -0.23 -0.11
(0.23) (0.22) (0.24)

Board size 9.97 0.04* 0.04* 0.04*
(0.02) (0.02) (0.02)

Governance index 9.04 -0.08** -0.08** -0.08**
(0.01) (0.01) (0.01)

Industry dummies Yes Yes Yes
Observations 1263 1263 1263
R-squared 0.68 0.69 0.68

(viii) A set of 64 separate industry dummy variables. These are defined at the 2-digit standard

industrial classification level.

Finally, γ1 is the parameter to be estimated and εj is a stochastic error term. The variance

covariance is made stationary (i.e. robust to arbitrary heteroscedasticity) using the method of

Huber (1964) and White (1980).

The results are contained in Table 5. Column (1) provides the means of the independent

variables. Column (2) to (4) contain the results from the estimation. Each model in (2) through

(4) is estimated under different assumptions about the weighting parameter β. The results indicate

that firms with a higher board degree centrality, greater sales, greater CEO compensation, and

board size are likely to have higher recorded board ranks according to our method.

The governance index (an inverse measure of quality) is correctly signed and significant. The

stock returns and the proportion of outside directors variables are insignificant. We expected these
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indicators of corporate governance quality to contribute positively to board influence (rank). In

separate regressions (not tabulated here) we found that re-estimating Equation 8, but excluding the

board degree variable, resulted in positive and significant coefficient estimates for the proportion of

outsiders. We would, therefore, encourage further modeling to build upon the preliminary results

presented here. In general, our results can be seen as augmenting empirical governance research

trying to understand the determination of board structure (e.g., Hermalin and Weisbach (1998),

Hermalin and Weisbach (1988)).

6 Conclusions

In this paper we have proposed a novel, essentially structural metric by which the authority, im-

portance and influence of the board can be evaluated and we have argued that our measure, which

is related to the PageRank algorithm, the system at the heart of the extremely popular Google

search engine, is applicable to the social network of boards of directors. Our research contributes

to an emerging social network literature in corporate governance including Kramarz and Thes-

mar (2006), Guedj and Barnea (2007), Stathopoulos and Kirchmaier (2006), Larcker et al. (2005),

Bebchuk et al. (2007), Conyon and Muldoon (2006b), Cohen et al. (2007), and Lennox and Park

(2007).

We have made a number of contributions to the field of corporate governance. First, we have

reviewed some important features of graph theory which are germane to an analysis of social

networks. We began, by restating the idea that the affiliation network of the board of directors can

be represented as a bipartite graph (namely two sets of vertices with edges running between unlike

kinds). We illustrated in Figure 2 that the resulting projections from such a bipartite representation

are undirected graphs.

We then introduced and explained the PageRank algorithm. It assigns a numerical value to

each vertex in a directed graph according to the update rule given in Equation (2). We illustrated

that the rank of a given vertex j depends recursively on an adjustable tuning parameter d, source

strengths, sj, and the sum over incoming neighbors for only those edges that start at some vertex k

and end at j (only edges with weights wj,k �= 0 contribute to the rank of vertex j). We discussed two

interpretations of PageRank first as a random walk and second as a weighted voting scheme. These

interpretations have arisen in sister sciences, such as physics, applied mathematics and computing

25



science, but their application to social sciences and management research is novel.

PageRank, as we discussed, is designed to operate on directed graphs. The simple bipartite

representation in Figure 1 does not capture this directionality. This raises a technical obstacle in

adapting PageRank to the ranking of social networks of boards of directors. One needs to find a

way to incorporate extra information into a bipartite graph (like the one in Figure 1) in such a way

as to generate a board projection that is a directed graph. In Section 4 we have proposed such

a method. Our paper has therefore described, uniquely, a method for calculating the PageRank

algorithm for weighted directed bipartite graphs.

Finally, we implemented our code and calculated preliminary PageRank estimates of the board

projections for publicly traded firms in the United States and the United Kingdom. We documented

which companies can be structurally classified as “esteem-worthy” in the social network of corporate

governance. In summary, we hope the procedure outlined in this paper is valuable to social network

researchers investigating arbitrary affiliation networks since it permits the ready calculation of a

PageRank centrality measure.
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