Up a level |

- MIMS Preprint Server Subjects (1950)
- MSC 2010, the AMS's Mathematics Subject Classification (1876)
**52 Convex and discrete geometry**(12)

- MSC 2010, the AMS's Mathematics Subject Classification (1876)

Group by: Creators | Item Type

Number of items at this level: **12**.

Adamcik, Martin
(2014)
*Collective Reasoning under Uncertainty and Inconsistency.*
Doctoral thesis, Manchester Institute for Mathematical Sciences, The University of Manchester.

Adamcik, Martin and Wilmers, George
(2013)
*Probabilistic Merging Operators.*
Logique et Analyse.
(Submitted)

Amelunxen, Dennis and Lotz, Martin
(2014)
*Gordon's inequality and condition numbers in conic optimization.*
[MIMS Preprint]

Amelunxen, Dennis and Lotz, Martin
(2015)
*Intrinsic Volumes of Polyhedral Cones: A combinatorial perspective.*
[MIMS Preprint]

Amelunxen, Dennis and Lotz, Martin and Mccoy, Michael B. and Tropp, Joel A.
(2013)
*Living on the edge: A geometric theory of phase transitions in convex optimization.*
[MIMS Preprint]

Buchstaber, V. and Panov, T. and Ray, N.
(2007)
*Spaces of polytopes and cobordism of quasitoric manifolds.*
Moscow Mathematical Journal, 7 (2).
pp. 219-242.
ISSN 1609-4514

Burgisser, Peter and Cucker, Felipe and Lotz, Martin
(2010)
*Coverage processes on spheres and condition numbers for linear programming.*
Annals of Probability, 38 (2).
pp. 570-604.

GrbiÄ‡, Jelena
(2006)
*Universal homotopy associative, homotopy commutative $H$-spaces and the EHP spectral sequence.*
Mathematical Proceedings of the Cambridge Philosophical Society, 140 (3).
pp. 377-400.
ISSN 0305-0041

GrbiÄ‡, Jelena and Theriault, Stephen
(2007)
*The homotopy type of the complement coordinate subspace arrangement.*
Topology, 46 (4).
pp. 377-400.
ISSN 0040-9383

Lotz, Martin
(2017)
*Persistent homology for low-complexity models.*
[MIMS Preprint]

Lotz, Martin
(2017)
*Persistent homology for low-complexity models.*
[MIMS Preprint]

Notbohm, Dietrich and Ray, Nigel
(2005)
*On Davis-Januszkiewicz homotopy types I; formality and rationalisation.*
Algebraic and Geometric Topology, 5.
pp. 31-51.
ISSN 1472-2747