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We present an experimental study of the aspect-ratio dependence of two-phase displacement flows in
channels of rectangular cross section. Above a buoyancy-dependent threshold Ca,, we find that the bulk
features of the flow depend only on a modified capillary number Ca = [1 + 0.12(a — 1) + 0.018(a —
1)?]Ca, where Ca is the unmodified capillary number and « is the aspect ratio. This novel scaling has
tremendous practical significance because it implies that the bulk features of the flows in any rectangular
channel can be inferred from those in a square channel for Ca > Ca,.

DOI: 10.1103/PhysRevLett.99.234501

The displacement of a liquid by an air finger is a generic
two-phase flow that underpins applications as diverse as
microfluidics, thin-film coating, enhanced oil recovery,
flows in porous media, manufacture of catalytic converters
[1], gas-assisted manufacture of plastic moulds [2], and
biomechanics of the lungs [3]. When a large volume of air
is driven through a tube initially filled with a viscous
liquid, after a short distance, the air forms a single finger
that advances at a constant speed. The finger is surrounded
by a liquid film whose thickness increases monotonically
with the capillary number, Ca = uU,/c, the ratio of
viscous to surface-tension forces; w is the viscosity of
the liquid, Uy is the velocity of the finger tip, and o is
the interfacial tension. These interfacial flows were origi-
nally studied in tubes of circular cross section [4—6], but
circular tubes are rarely encountered in applications [7].
Thus, flows in rectangular tubes have been proposed as a
paradigm for flows in nonaxisymmetric geometries. The
majority of previous studies in rectangular geometries,
however, have been limited to flows in square or near-
square tubes [1,8], or in quasi-two-dimensional channels
(Hele-Shaw cells) [9,10]. Those few studies at intermediate
aspect ratios considered the buoyancy-driven “free” rise of
bubbles [11], rather than the more general driven-flow
problem. In this Letter, we examine the dependence on
the aspect ratio, @ = w/b (where w and b are the width
and depth of the channel, respectively), of driven two-
phase displacement flows in rectangular channels. Our
experimental results indicate that the bulk features of these
flows have a simple dependence on «. This study has a
direct impact on the field of microfluidic devices, where
rectangular microchannels are routinely manufactured
with moderate aspect ratios 1 = « = 10 [12]. The choice
of the microchannel aspect ratio is important, because the
channel width is often used to control the local flow
velocity, the channel depth and flow rate being kept
constant.

In a Hele-Shaw cell, the development of the advancing
finger is known as the Saffman-Taylor instability and is an
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archetype of front-propagating, pattern-forming systems.
In this geometry, the flow can be modeled [9,13] in two
dimensions (2D) by using the depth-averaged Navier-
Stokes equations, which support steadily propagating
single-finger solutions governed by one parameter: 1/B =
12a2Ca. Experimental studies [10,14] measured the ratio
of the finger width L to the width of the channel w, A =
L/w, as a function of 1/B. Quantitative agreement with
theory was found for moderate values of 1/B and a = 20
by including the effect of the deposited fluid film in an
effective surface tension [15]. For very large values of «,
however, A depends on Ca and « separately, rather than the
combined parameter 1/B [16]. In square and near-square
tubes, depth averaging is not appropriate and the natural
governing parameter is the unmodified capillary number
Ca; but an analytical description of the flow above the
asymptotic limit of small Ca remains elusive [17,18]. In
these cases A, a 2D measure, no longer captures the three-
dimensional nature of the flow. A suitable bulk measure is
the wet fraction m = 1 — Q/(AUy): the ratio of the liquid
volume that remains once the finger has exited the channel
to the total volume of the channel; here, Q is the flow rate
of the liquid and A the cross-sectional area of the channel.
In this Letter we uncover a novel scaling that connects the
bulk features of the flow, quantified by the wet fraction,
between the two geometric limits of the square channel and
the Hele-Shaw cell.

Our channel consisted of two 60 cm long float-glass
plates separated by two precision-machined stainless steel
spacers. The use of movable spacers, connected to a trans-
lation stage, allowed us to study rectangular channels with
aspect ratios ranging from a = 1 to 15. The silicone oil
that initially filled the channel was withdrawn at a constant
flow rate Q, using a syringe pump. Air at atmospheric
pressure penetrated the liquid and formed a single finger
with a constant tip velocity Uy after initial transients had
subsided. Uy was determined by analyzing movies of the
advancing finger recorded with a top view camera, whose
maximum resolution was 31 pixels/mm. We used three
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grades of silicone oil, which fully wet the channel and
whose physical properties are listed in [19]. By varying the
viscosity of the liquid over three orders of magnitude, four
decades of capillary number could be explored (1 X
1074 < Ca < 3).

The channel width was also measured by computer
analysis of pictures taken with the camera. The accuracy
of the width measurement determines the precision with
which m and « can be obtained, and so a relatively large
channel depth, » = 3.00 mm, was chosen, in order to
ensure an error lower than 1% in the determination of the
wet fraction for the square channel, in which the width is
minimum, w = 3.00 mm. The plates were adjusted until
the difference between three width measurements, taken at
distances 15, 30, and 45 cm from one end of the channel,
was less than 0.02 mm (i.e., less than 0.6% of the width of
the square channel). A consequence of this choice of b is a
non-negligible Bond number (ratio between buoyancy and
capillary forces: Bo = pgh?/40 = 1.0; p is the density of
the liquid and g the acceleration due to gravity), which is
sufficient to suppress the Rayleigh-Plateau instability [20].

To test our setup, we first measured the wet fraction in a
square channel as a function of the capillary number (see
Fig. 1). The excellent collapse of the experimental data
measured for all three grades of silicone oil indicates that
inertial effects are negligible. This is not surprising be-
cause the Weber number, the ratio of inertial to capillary
forces [21], was very low (We = pUJ%b/20' < 0.02). We
compare our data with the numerical results of Hazel and
Heil [8] who simulated the system in the absence of
gravity. Our measurements are in close agreement only at
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FIG. 1. Wet fraction in a square channel as a function of the

capillary number. Each data point represents the average of five
separate experiments; the standard deviation is indicated by the
error bars. The experiments were performed with silicone oils of
nominal dynamic viscosities 0.934 cP (V), 4.815 cP (<) and
97.4 cP (M). The line is Hazel and Heil’s zero-gravity numerical
prediction [8] and the open circles represent the experimental
results of Kolb and Cerro [1] in a vertical channel of depth b =
2.0 mm.

high capillary numbers (Ca > 0.25) when viscous forces
dominate and the air finger is centered in the channel’s
cross section. As Ca decreases, buoyancy forces over-
whelm the viscous forces, the air finger rises, and its
cross-sectional area decreases, leading to an increase in
the wet fraction compared to the zero-gravity simulations.
In the regime where buoyancy can be neglected, our results
are also consistent with the measurements of Kolb and
Cerro [1] in a vertical channel of depth b = 2.0 mm.

In Fig. 2 the relative finger width, A, is shown as a
function of the (Saffman-Taylor) parameter 1/B for differ-
ent values of . Each data point on the graph represents an
average of several experiments and the small (often indis-
tinguishable) error bars indicate the high level of repro-
ducibility of the results. The relative finger widths mea-
sured at the aspect ratios @ = 8, 10, 12, and 15 collapse
almost perfectly onto a single curve, whereas at smaller
aspect ratios ( = 6) the data do not superpose. Our results
for &« = 8 compare favorably with the measurements per-
formed by Tabeling et al. [14] at higher aspect ratios (a =
20.3, 34, and 65), establishing 1/B as the appropriate
governing parameter for A when @ = 7. The Bond number
in their experiments was at least four times smaller (Bo <
0.25) than in our setup, which suggests that buoyancy
forces do not significantly affect the finger width in high-
aspect-ratio channels. Our results are also consistent with
the experiments of Clanet ef al. [11], who found that the
velocity of long, gravity-driven bubbles in rectangular
tubes varies according to two different scaling laws de-
pending on whether « = 7 or a <7.

Figure 3 shows the measured wet fractions as functions
of the capillary number for the same set of experiments as
presented in Fig. 2. At high Ca the wet fraction increases
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FIG. 2 (color online). Relative finger width as a function of the
Saffman-Taylor parameter for 11 different values of the aspect
ratio, a, between a = 1.00 and & = 15.01. The open hexagons
represent the experimental results of Tabeling et al. [14] at
aspect ratios a = 20.3, 32.3, and 65. The results collapse onto
a single line for aspect ratios & = 8.
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FIG. 3 (color online). Wet fraction as a function of the capil-
lary number for 11 different values of the aspect ratio, «. Note
that the measurements for & = 1.00, « = 1.50, and a = 1.99
collapse for Ca > 0.01, indicating virtual independence of « in
near-square channels.

with the aspect ratio, while at low Ca the opposite tendency
is observed. This is important in liquid recovery applica-
tions because it implies that at high Ca more liquid can be
recovered by using a narrow tube, but at low Ca a wide tube
recovers the greatest relative volume of liquid. At the lower
aspect ratios (¢ = 1.00, 1, 50, and 1.99), the points appear
to lie on a single curve for Ca > 0.01, in agreement with
the numerical results of Hazel and Heil [8], who found that
the wet fraction in channels with 1 = @ = 2 is indepen-
dent of the aspect ratio, despite significant variations in the
flow details.

As Ca approaches zero, the wet fraction approaches an
aspect-ratio-dependent asymptotic value, the static wet
fraction. We estimate the static wet fractions for each
aspect ratio by taking the mean value of the four points
corresponding to the lowest values of Ca in Fig. 3 (ranging
over half an order of magnitude in Ca), see Fig. 4. The
static wet fraction decreases monotonically with aspect
ratio. Indeed, m(Ca = 0) in a square channel is approxi-
mately twice that in a rectangular channel with a = 15.
For comparison, we plot the theoretical prediction in the
absence of buoyancy, calculated by analytically solving the
Laplace-Young equation (see, e.g., [17,18] ). The presence
of a hydrostatic pressure gradient modifies the static inter-
face shapes [22] and increases the wet fraction by a factor
of approximately 2 to 3. Yet, both the experimental and
theoretical curves exhibit a similar variation with «. For
a = 8, the experimentally measured wet fraction remains
approximately constant, indicating that the system be-
comes independent of the aspect ratio in this limit in
accordance with the Saffman-Taylor theory.

The similar curve shapes in Fig. 3 suggest the existence

of a single control parameter, say Ca. A balance between
viscous and surface-tension forces in the liquid film gives
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FIG. 4. Static wet fraction as a function of the aspect ratio,
obtained by taking the mean value of the four points correspond-
ing to the lowest values of Ca in Fig. 3 for each aspect ratio; the
error bars represent the standard deviation of the four data points.
The line is the theoretical prediction in absence of buoyancy
(see, e.g., [17,18]).

CaV?u* ~ Vk, where « is the sum of the two principal
curvatures of the finger, and u* = u/Uy is the dimension-
less liquid velocity. The capillary number naturally sepa-
rates from the geometrical factors (derivatives and cur-

vature) motivating a scaling of the form Ca = f(a)Ca.
Moreover, this form is appropriate in the square-channel
limit [f(«) = 1] and in Hele-Shaw channels. In the latter
case, w > b implies that V> ~ 1/b? and assuming negli-
gible vertical interface curvature gives k ~ 1/w. The result
f(a) = a? then follows directly from the axial component
of the force balance. We approximate the scaling function
by a polynomial f(a) =1+ a(a — 1)+ ay(a — 1)?,
consistent with the two limits described above. Fitting a
cubic polynomial to each curve in Fig. 3 and minimizing
the sum of the squares of the differences between these
curves yields a; = 0.12 = 0.02 and a, = 0.018 = 0.001
[23]. Order-of-magnitude estimates for the coefficients can
be found by assuming that all three terms balance at a
transitional aspect ratio «;, so a; ~ 1/(a;, — 1) and a, ~
1/(a, — 1). Clanet et al.’s [11] work and our A measure-
ments suggest that &, ~ 8 and, indeed, minimizing the sum
of the relative errors between the above estimates and
numerical values gives a, ~ 8.5.

In Fig. 5 we plot the wet fraction as a function of the

rescaled capillary number Ca. All the data collapse almost
perfectly over two orders of magnitude in Ca above a
threshold value, Ca, = 0.035. The threshold is chosen to
be the lowest value of Ca for which the wet fractions for all
values of « differ by less than 2%, i.e., they remam equal to
within our experimental error (%1%). For Ca< Ca,, the
points separate with a monotonic dependence on the aspect
ratio. For high Ca the wet fraction approaches a buoyancy-
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FIG. 5 (color online). Wet fraction as a function of the scaled
capillary number for 11 different values of the aspect ratio, «.
Above a threshold value Ca, = 0.035, the wet fraction depends

solely on a new modified capillary number, Ca= [1+0.12(ax —
1) + 0.018(a — 1)*]Ca.

independent asymptotic limit [8] and so we expect the
scaling to be valid beyond the measured upper limit of

Ca. We also expect that the scaling will apply at lower
Bond numbers (channels of smaller depttl\or a liquid of
higher surface tension), but the threshold Ca, at which the
scaling breaks down is likgly to be dependent on l/olloyancy,

which dominates at low Ca. We speculate that Ca, would

decrease in the absence of buoyancy. Ca, will remain
nonzero, however, because m always depends on « in the
static limit, irrespective of the buoyancy forces, see Fig. 4.

In conclusion, we have shown that the scaling parameter
governing the Saffman-Taylor instability, 1/B, is relevant
for channels with aspect ratios @ = 8. In the case of square
or near-square channels, our measurements confirm that
the wet fraction is independent of the aspect ratio. For
channels of arbitrary aspect ratios the wet fraction, a bulk

measure of the flow, depends on a single parameter Ca=
[1+0.12(a — 1) + 0.018(a — 1)*]Ca, for values of Ca
beyond a threshold value Ca, that depends on buoyancy.

For Ca < Ca, the scaling breaks down and the wet fraction
tends to an asymptotic value that depends monotonically
on «. This novel scaling allows the determination of the
wet fraction in any rectangular channel from the results in a
square tube. From a fundamental standpoint this result
establishes a quantitative connection between the bulk
properties of interfacial flows in Hele-Shaw cells and
square channels, despite significant local variations. The
further understanding and prediction of the scaled parame-

ter, transitional aspect ratio, «,, and threshold Ca, pre-

sented in this Letter offer a challenge to future theo-
retical studies.
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