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BACKWARD ERROR OF POLYNOMIAL EIGENPROBLEMS
SOLVED BY LINEARIZATION∗

NICHOLAS J. HIGHAM† , REN-CANG LI‡ , AND FRANÇOISE TISSEUR†

Abstract. The most widely used approach for solving the polynomial eigenvalue problem
P (λ)x =

(∑m
i=0 λ

iAi

)
x = 0 in n × n matrices Ai is to linearize to produce a larger order pencil

L(λ) = λX + Y , whose eigensystem is then found by any method for generalized eigenproblems.
For a given polynomial P , infinitely many linearizations L exist and approximate eigenpairs of P
computed via linearization can have widely varying backward errors. We show that if a certain
one-sided factorization relating L to P can be found then a simple formula permits recovery of right
eigenvectors of P from those of L, and the backward error of an approximate eigenpair of P can
be bounded in terms of the backward error for the corresponding approximate eigenpair of L. A
similar factorization has the same implications for left eigenvectors. We use this technique to derive
backward error bounds depending only on the norms of the Ai for the companion pencils and for
the vector space DL(P ) of pencils recently identified by Mackey, Mackey, Mehl, and Mehrmann. In
all cases, sufficient conditions are identified for an optimal backward error for P . These results are
shown to be entirely consistent with those of Higham, Mackey, and Tisseur on the conditioning of
linearizations of P . Other contributions of this work are a block scaling of the companion pencils
that yields improved backward error bounds; a demonstration that the bounds are applicable to
certain structured linearizations of structured polynomials; and backward error bounds specialized
to the quadratic case, including analysis of the benefits of a scaling recently proposed by Fan, Lin,
and Van Dooren. The results herein make no assumptions on the stability of the method applied to
L or whether the method is direct or iterative.

Key words. backward error, scaling, eigenvector, matrix polynomial, matrix pencil, lineariza-
tion, companion form, quadratic eigenvalue problem, alternating, palindromic
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1. Introduction. The polynomial eigenvalue problem (PEP) is to find scalars
λ and nonzero vectors x and y satisfying P (λ)x = 0 and y∗P (λ) = 0, where

P (λ) =
m∑
i=0

λiAi, Ai ∈ C
n×n, Am �= 0(1.1)

is a matrix polynomial of degree m. Here, x and y are right and left eigenvectors
corresponding to the eigenvalue λ. We will assume throughout that P is regular, that
is, detP (λ) �≡ 0.

The standard way of solving this problem is to convert P into a linear polynomial

L(λ) = λX + Y, X, Y ∈ C
mn×mn
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with the same spectrum as P and solve the eigenproblem for L. This generalized
eigenproblem is usually solved with the QZ algorithm [20] for small to medium size
problems or a projection method for large sparse problems [1]. That L has the same
spectrum as P is assured if

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(m−1)n

]
(1.2)

for some unimodular E(λ) and F (λ). (A matrix polynomial E(λ) is unimodular
if its determinant is a nonzero constant, independent of λ.) Such an L is called a
linearization of P (λ) [5, sec. 7.2]. As an example, the pencil

C1(λ) = λ

⎡
⎣A3 0 0

0 I 0
0 0 I

⎤
⎦+

⎡
⎣A2 A1 A0

−I 0 0
0 −I 0

⎤
⎦(1.3)

can be shown to be a linearization for the cubic P (λ) = λ3A3 + λ2A2 + λA1 + A0; it
is known as the first companion linearization.

Among the infinitely many linearizations L of P we are interested in those whose
right and left eigenvectors permit easy recovery of the corresponding eigenvectors of
P . For example, if (x, y) and (z, w) denote pairs of right and left eigenvectors of the
cubic P (λ) and its companion linearization C1(λ), respectively, associated with the
simple, finite eigenvalue λ, then

(z, w) =

⎛
⎝
⎡
⎣λ2x

λx
x

⎤
⎦ ,

⎡
⎣ y

(λ̄A∗
3 + A∗

2)y
(λ̄2A∗

3 + λ̄A∗
2 + A∗

1)y

⎤
⎦
⎞
⎠ ,(1.4)

so that x can be recovered from one of the first two blocks (if λ �= 0) or the third
block of n components of z, and y can be recovered from the first n components of w.
This correspondence extends to all eigenvalues and arbitrary m, as we will explain in
section 3.

In practice, the eigenpairs of L are not computed exactly because of rounding
errors and, in the case of iterative methods, truncation errors. For a given approximate
eigenpair of L, it is important to know how good an approximate eigenpair of P will
be produced. Here, “good” can have various meanings; in particular, it can refer to
the relative error of the eigenvalue or the backward error of the eigenpair. The relative
error question has been investigated by Higham, Mackey, and Tisseur [7], by analyzing
the conditioning of both the polynomial P and the linearization L. The purpose of the
present work is to investigate the backward error for a wide variety of linearizations.
Two key aspects of this task can be seen by considering the companion pencil (1.3).
First, a small but arbitrary perturbation to C1, such as that introduced by the QZ
algorithm, does not respect the zero and identity blocks and so may not correspond to
a small perturbation of P . Second, the block from which the approximate eigenvector
is recovered will influence the backward error.

Our work builds on that of Tisseur [22], who shows that solving a quadratic
eigenvalue problem (QEP) by applying a numerically stable method to the companion
linearization can be backward unstable, but that stability is guaranteed if all the
coefficient matrices have unit norm.

In section 2.1 we define the backward error ηP of an approximate eigenpair and
eigentriple of P for the polynomial both in the λ-form (1.1) and in homogeneous (α, β)-
form. In section 2.2 we show that given appropriate one-sided factorizations relating
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a linearization L to the original polynomial P , we can bound the backward error of
an approximate eigenpair of P in terms of the backward error of the approximate
eigenpair of L from which it was obtained. The bounds have the useful feature of
separating the dependence on L, P , and (α, β) from the dependence on how the
(right or left) eigenvector is recovered.

In section 3 we introduce the first and second companion linearizations and the
vector spaces L1 and L2 of pencils associated with P . As a by-product of our analysis
we obtain in section 3.1 new formulae for recovering a left (right) eigenvector of P
from one of a linearization in L1 (L2). In section 3.2 we obtain backward error bounds
for the companion pencils and deduce sufficient conditions for a small backward error
ηP . We show in section 3.3 that applying a block scaling to the companion pencils
yields smaller backward error bounds when maxi ‖Ai‖2 is much different from 1. The
vector space DL(P ) = L1(P )∩L2(P ) is then considered in section 3.4, where bounds
of the same form as for the block-scaled companion pencils are obtained. In section 3.5
we explain how the backward error results provide essentially the same guidance on
optimal choice of linearizations as the condition number bounds of Higham, Mackey,
and Tisseur [7]. In section 4 we show that the results of section 3 also apply to certain
structured linearizations of structured polynomials.

The special case of quadratic polynomials λ2A + λB + C is studied in detail in
section 5, concentrating on the companion linearization and the DL(P ) basis pencils
L1 and Lm. Bounds for ηP are obtained and then specialized to exploit a scaling
procedure recently proposed by Fan, Lin, and Van Dooren [2]. The bounds involve a
growth factor ω that is shown to be bounded by 1+ τ , where τ = ‖B‖2/

√
‖A‖2‖C‖2.

Our analysis improves upon that in [2], which contains a growth term max(1 + τ, 1 +
τ−1). The bounds are particularly satisfactory for elliptic QEPs and, more generally,
QEPs that are not too heavily damped. Numerical experiments illustrating these and
other aspects of the theory are given in section 6.

Finally, we note that our results are of interest even in the case n = 1, although
we will not consider this case specifically here. The roots of a scalar polynomial, p,
are often found by computing the eigenvalues of a corresponding companion matrix,
C. Our analysis provides new bounds on the backward errors of the computed roots
of p in terms of the backward errors of the computed eigenvalues of C.

2. Backward errors.

2.1. Definition and notation. The normwise backward error of an approxi-
mate (right) eigenpair (x, λ) of P (λ), where λ is finite, is defined by

ηP (x, λ) = min{ ε : (P (λ) + ΔP (λ))x = 0, ‖ΔAi‖2 ≤ ε‖Ai‖2, i = 0:m },(2.1)

where ΔP (λ) =
∑m

i=0 λ
iΔAi. Tisseur [22, Thm. 1] obtained the explicit formula

ηP (x, λ) =
‖P (λ)x‖2

(
∑m

i=0 |λi|‖Ai‖2) ‖x‖2

.(2.2)

Similarly, for an approximate left eigenpair (y∗, λ), we have

ηP (y∗, λ) := min{ ε : y∗(P (λ) + ΔP (λ)) = 0, ‖ΔAi‖2 ≤ ε‖Ai‖2, i = 0:m }(2.3)

=
‖y∗P (λ)‖2

(
∑m

i=0 |λi|‖Ai‖2) ‖y‖2

.(2.4)
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Also of interest is the backward error of the approximate triplet (x, y, λ) [22, Thm. 4]:

ηP (x, y∗, λ) := min{ ε : (P (λ) + ΔP (λ))x = 0, y∗(P (λ) + ΔP (λ)) = 0,(2.5)

‖ΔAi‖2 ≤ ε‖Ai‖2, i = 0:m }
= max

(
ηP (x, λ), ηP (y∗, λ)

)
.(2.6)

We make two comments on notation. As an argument of η, a left eigenvector
is written as a row vector to distinguish it from a right eigenvector. Symbols such
as λ, x, and y will denote both exact and (more often) approximate quantities, with
the context making clear which usage is in effect. The alternative of using a tilde to
denote approximate quantities leads to rather cumbersome formulae.

In order to define backward errors valid for all λ, including ∞, we rewrite the
polynomial in the homogeneous form

P (α, β) =

m∑
i=0

αiβm−iAi

and identify λ with any pair (α, β) �= (0, 0) for which λ = α/β. The definitions (2.1),
(2.3), and (2.5) are trivially rewritten in terms of α and β. Using P (α, β) = βmP (α/β)
for β �= 0, we find that in place of (2.2), (2.4), and (2.6) we have

ηP (x, α, β) =
‖P (α, β)x‖2

(
∑m

i=0 |α|i|β|m−i‖Ai‖2) ‖x‖2

,(2.7)

ηP (y∗, α, β) =
‖y∗P (α, β)‖2

(
∑m

i=0 |α|i|β|m−i‖Ai‖2) ‖y‖2

,(2.8)

ηP (x, y∗, α, β) = max
(
ηP (x, α, β), ηP (y∗, α, β)

)
.(2.9)

Note that these expressions are independent of the choice of α and β representing
the eigenvalue; that is, a scaling α ← θα, β ← θβ with θ �= 0 leaves the expressions
unchanged.

2.2. Bounding the backward error for P relative to that for L. Let
L(λ) = λX + Y be a linearization of P (λ). For approximate right eigenvectors z of
L and x of P , both corresponding to an approximate eigenvalue(α, β), our aim is to
compare ηP (x, α, β) with

ηL(z, α, β) =
‖L(α, β)z‖2

(|α|‖X‖2 + |β|‖Y ‖2)‖z‖2
,(2.10)

which is obtained by applying (2.7) to L(α, β) = αX+βY . Of course, this comparison
is possible only if there is some well-defined relation between x and z. Such a relation,
and a means for bounding ηP , both follow from one key assumption: that we can find
an n× nm matrix polynomial G(α, β) such that

G(α, β)L(α, β) = gT ⊗ P (α, β)(2.11)

for some nonzero g ∈ C
m, where ⊗ denotes the Kronecker product [15, sec. 12.1].

Necessarily, G(α, β) will have degree m − 1. Note that this is a one-sided transfor-
mation as opposed to the two-sided transformation in the definition of linearization.
Then we have

G(α, β)L(α, β)z =
(
gT ⊗ P (α, β)

)
z = P (α, β)(gT ⊗ In)z,(2.12)
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where the latter equation relies on gT being a row vector. Thus if z is an eigenvector
of L then

x := (gT ⊗ In)z =

m∑
i=1

gizi, zi := z((i− 1)n + 1: in)(2.13)

is an eigenvector of P , provided that x is nonzero. This latter requirement is not
satisfied in general but will be proved for some important classes of linearizations. As
an example, for the first companion linearization C1(α, β) = β3C1(α/β) in (1.3), it is
easily checked that G(α, β) = [α2I −(β2A0 + αβA1) −αβA0 ] satisfies (2.11) with
g = e1, the first column of the identity matrix, and that if z is a right eigenvector of
C1 and α �= 0 then x = z1 = z(1:n) �= 0 is a right eigenvector for P (cf. (1.4)).

Suppose now that (2.11) is satisfied, an approximate right eigenvector z of L is
given, and x is given by (2.13). Then, by (2.7), (2.10), and (2.12),

ηP (x, α, β) ≤ ‖G(α, β)‖2‖L(α, β)z‖2

(
∑m

i=0 |α|i|β|m−i‖Ai‖2) ‖x‖2

(2.14)

≤ |α|‖X‖2 + |β|‖Y ‖2∑m
i=0 |α|i|β|m−i‖Ai‖2

· ‖G(α, β)‖2‖z‖2

‖x‖2
· ηL(z, α, β).

This bound largely separates the dependence on L, P , and (α, β) (in the first term)
from the dependence on G and z (in the second term).

For left eigenvectors the appropriate analogue of the assumption (2.11) is that
there exists an mn× n matrix polynomial H(α, β) such that

L(α, β)H(α, β) = h⊗ P (α, β)(2.15)

for some nonzero h ∈ C
m. We then have, for w ∈ C

mn,

w∗L(α, β)H(α, β) = w∗(h⊗ P (α, β)) = w∗(h⊗ In)P (α, β).(2.16)

Hence if w is a left eigenvector of L then

y := (h∗ ⊗ In)w =

m∑
i=1

hiwi, wi := w((i− 1)n + 1: in)(2.17)

is a left eigenvector of P , provided that it is nonzero. From (2.8) and (2.17) we obtain
for an approximate left eigenvector w of L the bound

ηP (y∗, α, β) ≤ |α|‖X‖2 + |β|‖Y ‖2∑m
i=0 |α|i|β|m−i‖Ai‖2

· ‖H(α, β)‖2‖w‖2

‖y‖2
· ηL(w∗, α, β).(2.18)

In the rest of this paper we show that one or both of assumptions (2.11) and
(2.15) are satisfied for a wide class of linearizations, and we study the upper bounds
(2.14) and (2.18).

3. Unstructured linearizations. We first concentrate on general, unstruc-
tured matrix polynomials, treating companion and DL(P ) linearizations.

Associated with P are two companion pencils, C1(λ) = λX1 + Y1 and C2(λ) =
λX2 + Y2, called the first and second companion forms [15, sec. 14.1], respectively,
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where

X1 = X2 = diag(Am, In, . . . , In),

Y1 =

⎡
⎢⎢⎣
Am−1 Am−2 . . . A0

−In 0 . . . 0
...

. . .
. . .

...
0 . . . −In 0

⎤
⎥⎥⎦ , Y2 =

⎡
⎢⎢⎢⎣
Am−1 −In . . . 0

Am−2 0
. . .

...
...

...
. . . −In

A0 0 . . . 0

⎤
⎥⎥⎥⎦ .(3.1)

They are widely used in practice. For example, the MATLAB function polyeig that
solves the PEP uses the reversed first companion linearization revC1(λ) of the reversed
matrix polynomial revP (λ). The reversal operator is defined for P in (1.1) by

revP (λ) = λmP (1/λ) =

m∑
i=0

λiAm−i.(3.2)

The companion forms have the important property that they are always linearizations
[19, sec. 4].

C1(λ) and C2(λ) belong to large sets of potential linearizations recently iden-
tified by Mackey et al. [19] and studied in [6] and [19]. With the notation Λ =
[λm−1, λm−2, . . . , 1]T , these sets are

L1(P ) =
{
L(λ) : L(λ)(Λ⊗ In) = v ⊗ P (λ), v ∈ C

m
}
,(3.3)

L2(P ) =
{
L(λ) : (ΛT ⊗ In)L(λ) = ṽT ⊗ P (λ), ṽ ∈ C

m
}
.(3.4)

There are many L(λ) ∈ L1(P ) corresponding to a given v, and likewise for L2(P );
indeed, L1(P ) and L2(P ) both have dimension m(m − 1)n2 + m [19, Cor. 3.6]. It is
easy to check that C1(λ) and C2(λ) belong to L1(P ) and L2(P ), respectively, with
ṽ = v = e1; so the pencils in L1 and L2 can be thought of as generalizations of the
first and second companion forms. It is proved in [19, Prop. 3.2, Prop. 3.12, Thm. 4.7]
that L1(P ) and L2(P ) are vector spaces and that almost all pencils in these spaces
are linearizations of P .

One of the underlying reasons for the interest in L1 and L2 is that eigenvectors of
P can be directly recovered from eigenvectors of linearizations in L1 and L2. As with
the backward errors, it is more convenient to use the (α, β) notation, so we define

Λα,β = [αm−1, αm−2β, . . . , βm−1]T = βm−1Λ.

Theorem 3.1 (eigenvector recovery from L1 and L2).

• If L ∈ L1(P ) is a linearization of P then every right eigenvector of L with
eigenvalue (α, β) is of the form Λα,β ⊗ x for some right eigenvector x of P .

• If L ∈ L2(P ) is a linearization of P then every left eigenvector of L with
eigenvalue (α, β) is of the form Λα,β ⊗ y for some left eigenvector y of P .

Proof. See [19, Thms. 3.8, 3.14, 4.4].
Theorem 3.1 shows that from any right eigenvector z of L ∈ L1 we can read off

a right eigenvector of P by looking at any nonzero subvector zi = z((i− 1)n + 1: in),
and similarly a left eigenvector of L ∈ L2 yields a left eigenvector of P .

3.1. L1(P ) and L2(P ). It is immediate from (3.3) and (3.4) that the pencils
in L1 satisfy (2.15), while those in L2 satisfy (2.11). Therefore our backward error
bounds are applicable to left eigenvectors of pencils in L1 and right eigenvectors of
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pencils in L2, provided that the vectors x in (2.13) and y in (2.17) are nonzero when
z and w are exact eigenvectors. In fact, for L1 and L2 (2.13) and (2.17) define a
bijection between eigenvectors of the pencil and of P and so allow recovery of all
the eigenvectors. The following two new results supplement the existing eigenvector
recovery formulae in Theorem 3.1.

Theorem 3.2 (left eigenvector recovery from L1). Let L ∈ L1(P ) be a lineariza-
tion of P , with vector v (necessarily nonzero) in (3.3). If w is a left eigenvector of L
with eigenvalue (α, β) then

y = (v∗ ⊗ In)w(3.5)

is a left eigenvector of P with eigenvalue (α, β). Moreover, any left eigenvector of P
corresponding to (α, β) can be recovered from one of L from the formula (3.5).

Proof. Assume, first, that μ ≡ (α, β) is finite. For arbitrary λ, premultiplying the
condition defining L1 by w∗ (or simply using the λ-analogue of (2.16)) gives

w∗L(λ)(Λ⊗ In) = w∗(v ⊗ P (λ)
)

= w∗(v ⊗ In)P (λ) =: y∗P (λ).

Since w∗L(μ) = 0, it follows that y∗P (μ) = 0. We therefore just have to show that
y �= 0. We suppose that y = 0 and will obtain a contradiction. If y = 0 then
w∗L(λ)(Λ⊗ In) ≡ 0. Since L is linear, we can write

w∗L(λ) = [b1(λ), b2(λ), . . . , bm(λ)],

where bi(λ) = ciλ + di ∈ C
1×n is linear. Then

0 ≡ w∗L(λ)(Λ⊗ In) = [b1(λ), b2(λ), . . . , bm(λ)]

⎡
⎢⎢⎣
λm−1In
λm−2In

...
In

⎤
⎥⎥⎦

= λm−1b1(λ) + λm−2b2(λ) + · · · + bm(λ)
= λmc1 + λm−1(d1 + c2) + · · · + λ(dm−1 + cm) + dm.

Hence c1 = 0, d1 = −c2, . . . , dm−1 = −cm, dm = 0. Then

0 = w∗L(μ) = [b1(μ), b2(μ), . . . , bm(μ)] = [−c2, μc2 − c3, . . . , μcm−1 − cm, μcm],

which implies c2 = c3 = · · · = cm = 0. Hence bi(λ) ≡ 0 for all i. Thus w∗L(λ) ≡ 0,
which means that L is a nonregular polynomial. But by [19, Thm. 4.3], L ∈ L1(P )
being nonregular implies that L is not a linearization of P . This is a contradiction,
and so y �= 0, as required.

The case μ = ∞ can be handled by expressing L and P in homogeneous (α, β)-
form and using μ ≡ (1, 0). The details are a minor variation on those above.

Finally, consider the map w �→ (v∗ ⊗ In)w from K1 = left kerL(α, β) to K2 =
left kerP (α, β), where left ker denotes the left kernel. The first part showed that
this map has kernel {0}. Since L ∈ L1(P ) is a linearization and P is regular, L
is a strong linearization1 [19, Thm. 4.3]. Hence the geometric multiplicity of any
eigenvalue (including ∞) is the same for L and P [14]; that is, K1 and K2 have the
same dimension. It follows that the map is a bijection, and the result is proved.

1L is a strong linearization of P if it is a linearization for P and revL is a linearization for revP .
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Theorem 3.3 (right eigenvector recovery from L2). Let L ∈ L2(P ) be a lin-
earization, with vector ṽ (necessarily nonzero) in (3.4). If z is a right eigenvector of
L with eigenvalue (α, β) then

x = (ṽT ⊗ In)z(3.6)

is a right eigenvector of P with eigenvalue (α, β). Moreover, any right eigenvector of
P corresponding to (α, β) can be recovered from one of L from the formula (3.6).

Proof. The proof is entirely analogous to that of Theorem 3.2.
The broader significance of Theorems 3.2 and 3.3 combined with Theorem 3.1

is that both left and right eigenvectors of pencils in L1 and L2 yield corresponding
eigenvectors of P via simple formulae.

We will not write down backward error bounds for L1 and L2, but will do so for
their intersection in section 3.4.

3.2. Companion linearizations. It is easy to see that C2(P ) = C1(P
T )T ,

where PT denotes the polynomial obtained by transposing each coefficient matrix Ai.
This property implies that any backward error results for C1 have a counterpart for
C2, and so it suffices to concentrate on the first companion form.

Is the factorization (2.11) possible for the first companion linearization? For C1

in (1.3) with m = 3 it is straightforward to verify that E(α, β)C1(α, β) = I3⊗P (α, β)
with

E(α, β) =

⎡
⎣ α2In −(β2A0 + αβA1) −αβA0

αβIn αβA2 + α2A3 −β2A0

β2In β2A2 + αβA3 β2A1 + αβA2 + α2A3

⎤
⎦

(indeed the first block row of this equation was mentioned in section 2.2), so that we
have three choices for G(α, β), namely, Gk(α, β) := (eTk ⊗ In)E(α, β), k = 1: 3. This
result generalizes to arbitrary degrees m.

Lemma 3.4. For the first companion form C1(α, β) = αX1 + βY1, for any m,
there exists a block m×m matrix E(α, β) ∈ C

mn×mn such that

E(α, β)C1(α, β) = Im ⊗ P (α, β),(3.7)

where the blocks are given by

[E(α, β)]i1 = αm−iβi−1In, [E(α, β)]ij =

m−1∑
k=0

skα
kβm−k−1A�k

for j > 1,

where sk ∈ {−1, 0, 1} and the indices �k are distinct (our notation suppresses the
dependence of sk and �k on i and j). The condition (2.11) is satisfied for

Gk(α, β) = (eTk ⊗ In)E(α, β), g = ek, k = 1:m.(3.8)

Proof. The proof consists of a direct verification that E(α, β) defined by

[E(α, β)]ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αm−iβi−1In, 1 ≤ i ≤ m, j = 1,

−(α/β)j−i

m−j∑
k=0

αk−1βm−kAk, 1 ≤ i < j, 1 < j ≤ m,

(α/β)j−i

m∑
k=m−j+1

αk−1βm−kAk, 1 < j ≤ i ≤ m,
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satisfies (3.7).
The next lemma will be useful when taking norms of block matrices.
Lemma 3.5. For any block �×m matrix B we have ‖B‖2 ≤

√
�m maxi,j ‖Bij‖2.

Proof. Partitioning x conformably with B, we have

‖Bx‖2
2 =

�∑
i=1

∥∥∥∥
m∑
j=1

Bijxj

∥∥∥∥2

2

≤ max
i,j

‖Bij‖2
2

�∑
i=1

( m∑
j=1

‖xj‖2

)2

≤ max
i,j

‖Bij‖2
2

�∑
i=1

m

( m∑
j=1

‖xj‖2
2

)
= �m max

i,j
‖Bij‖2

2 ‖x‖2
2.

The result follows.
To investigate the size of the upper bound in (2.14) for L(α, β) = C1(α, β) =

αX1 + βY1 we need to bound ‖X1‖2, ‖Y1‖2, and the norm of the kth block row
Gk(α, β) of E(α, β). We find that

‖X1‖2 = max(‖Am‖2, 1), ‖Y1‖2 ≤ mmax
(
1, max

i=0:m−1
‖Ai‖2

)
,(3.9)

where we used Lemma 3.5 for Y1. From Lemma 3.4 we have, for j > 1,

‖E(α, β)ij‖2 ≤ max
�

‖A�‖2

m−1∑
k=0

|α|k|β|m−k−1 = ‖Λα,β‖1 max
�

‖A�‖2,

so that on using Lemma 3.5,

‖Gk(α, β)‖2 ≤
√
m‖Λα,β‖1 max(1,max

i
‖Ai‖2),(3.10)

this upper bound being independent of k. We can now bound the ratio ηP (zk, α, β)/
ηL(z, α, β) in terms of the approximate right eigenpair (z, α, β) and the coefficient
matrices defining P .

Theorem 3.6. Let z be an approximate right eigenvector of C1 corresponding to
the approximate eigenvalue (α, β). Then for zk = z((k − 1)n + 1: kn), k = 1:m, we
have

1

m1/2
≤ ηP (zk, α, β)

ηC1
(z, α, β)

≤ m3/2 (|α| + |β|)‖Λα,β‖1 max
(
1,maxi ‖Ai‖2

)2∑m
i=0 |α|i|β|m−i‖Ai‖2

‖z‖2

‖zk‖2

≤ m5/2 max
(
1,maxi ‖Ai‖2

)2
min

(
‖A0‖2, ‖Am‖2

) ‖z‖2

‖zk‖2
.(3.11)

Proof. The first upper bound is obtained by combining (2.14) with (3.9) and
(3.10). For the second upper bound it suffices to note that

(|α| + |β|)‖Λα,β‖1∑m
i=0 |α|i|β|m−i‖Ai‖2

≤ (|α| + |β|)(|α|m−1 + |α|m−2|β| + · · · + |β|m−1)

min
(
‖A0‖2, ‖Am‖2

)
(|α|m + |β|m)

≤ m

min
(
‖A0‖2, ‖Am‖2

)
by [7, Lem. A.1, (A.1)]. To prove the lower bound, let {ΔAi} be an optimal set
of perturbations in the definition of ηP . These trivially yield feasible perturbations
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ΔX1 = diag(ΔAm, 0, . . . , 0) of X1 and ΔY1 of Y1, with ΔY1 being zero except for
the first block row [ΔAm−1, . . . , ΔA0]. ‖ΔX1‖2 ≤ ηP ‖X1‖2 is immediate. Using
Lemma 3.5,

‖ΔY1‖2 ≤ m1/2 max
i=0:m−1

‖ΔAi‖2 ≤ m1/2ηP max
i=0:m−1

‖Ai‖2 ≤ m1/2ηP ‖Y1‖2.

The theorem reveals two main sufficient conditions for ηP to be not much larger
than ηC1 . The first is that ‖z‖2/‖zk‖2 is not much larger than 1. In the context of
floating point arithmetic this requirement is to be expected, because if ‖z‖2 � ‖zk‖2

then zk is likely to have suffered damaging subtractive cancellation in its formation.
The second condition is that min(‖A0‖2, ‖Am‖2) ≈ maxi ‖Ai‖2 ≈ 1, which is certainly
true if ‖Ai‖2 ≈ 1 for all i. Since C1 ∈ L1(P ), Theorem 3.1 shows that the exact
eigenvector is of the form z = Λα,β ⊗x; since the largest element of Λα,β is the first or
the last we can achieve ‖z‖2/‖zk‖2 ∈ [1,

√
m] by taking k = 1 if |α| ≥ |β| or k = m if

|α| ≤ |β|. The importance for achieving a good backward error of recovering x from
the largest block component of z has already been noted and shown empirically for
the QEP by Tisseur [22, sec. 3.2]; our analysis provides theoretical confirmation for
all degrees m.

We now turn to the backward error for a left eigenpair. Since C1 ∈ L1(P ) with
v = e1 we have L(α, β)(Λα,β ⊗ In) = e1 ⊗ P (α, β), so that (2.15) is satisfied with
H(α, β) = Λα,β ⊗ In and h = e1. The ensuing eigenvector recovery property is,
from (2.17) or (3.5), y = w(1:n). Before obtaining a backward error bound we give
a more complete description of the relation between y and w, which will aid in the
interpretation of the bound. The following result extends [7, Lem. 7.2], which is
stated for simple, finite, nonzero eigenvalues, to an arbitrary eigenvalue expressed in
(α, β)-form.

Lemma 3.7 (left eigenvector recovery for C1). The vector y ∈ C
n is a left

eigenvector of P corresponding to the eigenvalue (α, β) if and only if

w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

[αm−1In]∗

−[αm−2βAm−2 + · · · + αβm−2A1 + βm−1A0]
∗

−[αm−2βAm−3 + · · · + α2βm−3A1 + αβm−2A0]
∗

...
−[αm−2βA0]

∗

⎤
⎥⎥⎥⎥⎦ y, α �= 0,

⎡
⎢⎢⎣

[βm−1In]∗

[αβm−2Am + βm−1Am−1]
∗

...
[αm−1Am + · · · + αβm−2A2 + βm−1A1]

∗

⎤
⎥⎥⎦ y, β �= 0,

(3.12)

is a left eigenvector of C1 corresponding to (α, β). Every left eigenvector of C1 with
eigenvalue (α, β) is of the form (3.12) for some left eigenvector y of P . For a finite
eigenvalue, an alternative representation of w is

w∗ = y∗ [ In, Bm−2, . . . B1, B0 ] ,

where (P (t) − P (λ))/(t− λ) =
∑m−1

i=0 Bi t
i and Bi = Bi(λ).

Proof. Note first that the two different formulae in (3.12) (either of which can
be obtained from the other by multiplying through by the conjugate of (α/β)m−1 or
its reciprocal and using y∗P (α, β) = 0) are needed because when α = 0 (and hence
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y∗A0 = 0), the first expression is zero, while when β = 0 (and hence y∗Am = 0), the
second expression is zero.

For the first part it suffices to note that for w as defined by (3.12) we have

w∗C1(α, β) =

{
y∗P (α, β)(eT1 ⊗ In), α �= 0,
y∗P (α, β)(eTm ⊗ In), α = 0.

For the next part, since C1 is a strong linearization [4] and P is regular, any eigen-
value (α, β) of C1 of geometric multiplicity k is also an eigenvalue of P of geometric
multiplicity k. Any k linearly independent eigenvectors y of P for (α, β) clearly yield
via (3.12) k linearly independent eigenvectors of L. Hence any eigenvector of L for
(α, β) has the form (3.12).

The last part generalizes the analogous formula for scalar companion matrices
given by Stewart [21, sec. 2]; we omit the proof.

Lemma 3.7 shows that even when the eigenvalue is multiple all the left eigenvectors
of P can be obtained from the first n components of the left eigenvectors of C1.

We can now obtain the desired backward error bounds.
Theorem 3.8. Let w be an approximate left eigenvector of C1 corresponding to

the approximate eigenvalue (α, β). Then for w1 = w(1:n) we have

1

m1/2
≤ ηP (w∗

1 , α, β)

ηC1
(w∗, α, β)

≤ m
(|α| + |β|)‖Λα,β‖2 max(1,maxi ‖Ai‖2)∑m

i=0 |α|i|β|m−i‖Ai‖2

‖w‖2

‖w1‖2

≤ m3/2 max
(
1,maxi ‖Ai‖2

)
min(‖A0‖2, ‖Am‖2)

‖w‖2

‖w1‖2
.(3.13)

Proof. The first upper bound follows directly from (2.18), (3.9), and ‖H1(α, β)‖2 =
‖Λα,β ⊗ In‖2 = ‖Λα,β‖2. For the second upper bound it suffices to note that

(|α| + |β|)‖Λα,β‖2∑m
i=0 |α|i|β|m−i‖Ai‖2

≤ (|α| + |β|)(|α|2(m−1) + |α|2(m−2)|β2| + · · · + |β|2(m−1))1/2

min
(
‖A0‖2, ‖Am‖2

)
(|α|m + |β|m)

≤ m1/2

min
(
‖A0‖2, ‖Am‖2

)(3.14)

by [7, Lem. A.1, (A.3)]. The proof of the lower bound is exactly the same as in
Theorem 3.6.

Notice that compared with the bounds in Theorem 3.6 for right eigenpairs, the
factor maxi ‖Ai‖2 is not squared. However, k is no longer a free parameter and so
the ratio ‖w‖2/‖w1‖2 is fixed. Theorem 3.8 shows that ηP (w∗

1 , α, β) ≈ ηC1
(w∗, α, β)

is guaranteed provided that min(‖A0‖2, ‖Am‖2) ≈ maxi ‖Ai‖2 ≈ 1 and ‖w‖2/‖w1‖2

is not much larger than 1. If ‖Ai‖2
<∼ 1 for all i then for an exact left eigenvector w

the ratio ‖w‖2/‖w1‖2 is bounded by about (m3/3)1/2; this can be seen from the first
equation in (3.12) if |α| ≥ |β| and the second if |α| ≤ |β|.

A comparison with earlier work is instructive. Tisseur [22, Thm. 7] and Van
Dooren and Dewilde [24, sec. 7] both show that solving a PEP by applying a backward
stable solver to the first companion pencil is backward stable for the PEP, under
certain conditions on the Ai. Van Dooren and Dewilde measure the perturbation ΔP
to P by ‖[ΔAm, . . . , ΔA0]‖F /‖[Am, . . . , A0]‖F and show that ‖[Am, . . . , A0]‖F = 1
implies stability. Tisseur uses the more stringent measure maxi ‖ΔAi‖2/‖Ai‖2, as in
(2.1), and proves that ‖Ai‖2 ≡ 1 implies stability. These analyses are carried out
without reference to specific eigenpairs or eigenvector recovery formulae and so they
provide much less precise information than the bounds in Theorems 3.6 and 3.8.
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3.3. Scaled companion linearizations. When the coefficient matrices of P
have norms that differ widely, the companion matrices Ci(λ), i = 1, 2, are badly
scaled and the bounds of Theorems 3.6 and 3.8 signal that ηP � ηC1

is possible. In
this section we study the effect on the backward error of scaling the identity blocks
of Ci.

Let D = diag(d) ⊗ In, where d ∈ R
m with d1 = 1 and di > 0, i = 2:m. It

is easily checked that DC1(λ) ∈ L1(P ) with v = e1, that C2(λ)D ∈ L2(P ) with
ṽ = e1, and that both scaled companion pencils are always linearizations. Since
C2(P )D = (DC1(P

T ))T we can concentrate on DC1. The condition (2.11) becomes
Gk(α, β)D−1 · DC1(α, β) = eTk ⊗ P (α, β), where Gk is defined in (3.8), and we find
that

‖DX1‖2 = max
(
max
i>1

di, ‖Am‖2

)
,(3.15)

‖DY1‖2 ≤ mmax
(
max
i>1

di, max
i=0:m−1

‖Ai‖2

)
,(3.16)

‖Gk(α, β)D−1‖2 ≤
√
m‖Λα,β‖1 max

(
1,

maxi ‖Ai‖2

mini>1 di

)
.(3.17)

In particular, if we choose di = max� ‖A�‖2, i = 2:m, then

‖DX1‖2 = max
i

‖Ai‖2, ‖DY1‖2 ≤ mmax
i

‖Ai‖2,

‖Gk(α, β)D−1‖2 ≤
√
m‖Λα,β‖1.

As we now show, this scaling yields bounds for ηP /ηDC1
better than those for ηP /ηC1

.
We introduce the quantity

ρ =
maxi ‖Ai‖2

min(‖A0‖2, ‖Am‖2)
,(3.18)

which measures the scaling of the problem.
Theorem 3.9. Let Ds = diag(1, s, . . . , s) ⊗ In ∈ R

mn×mn with s = maxi ‖Ai‖2.
Let z and w be approximate right and left eigenvectors of DsC1 corresponding to the
approximate eigenvalue (α, β). Then for zk = z((k − 1)n + 1: kn), k = 1:m, we have

1

m1/2
≤ ηP (zk, α, β)

ηDsC1
(z, α, β)

≤ m3/2 (|α| + |β|)‖Λα,β‖1 maxi ‖Ai‖2∑m
i=0 |α|i|β|m−i‖Ai‖2

‖z‖2

‖zk‖2
≤ m5/2 ρ

‖z‖2

‖zk‖2
,

and for w1 = w(1:n),

1

m1/2
≤ ηP (w∗

1 , α, β)

ηDsC1
(w∗, α, β)

≤ m
(|α| + |β|)‖Λα,β‖2 maxi ‖Ai‖2∑m

i=0 |α|i|β|m−i‖Ai‖2

‖w‖2

‖w1‖2
≤ m3/2 ρ

‖w‖2

‖w1‖2
.

Proof. The proof is analogous to the proofs of Theorems 3.6 and 3.8, making use
of (3.15)–(3.17).

The bounds of Theorem 3.9 for the scaled companion pencil improve upon those
for the unscaled pencil in several ways.

1. For the right eigenvector, the term max(1,maxi ‖Ai‖2
2)/min(‖A0‖2, ‖Am‖2)

in (3.11) is replaced by ρ, which is much smaller if maxi ‖Ai‖2 � 1 or maxi ‖Ai‖2 � 1.
2. For the left eigenvector, the term max(1,maxi ‖Ai‖2)/min(‖A0‖2, ‖Am‖2) in

(3.13) is replaced by ρ, which is much smaller if maxi ‖Ai‖2 � 1.
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3. For the scaled companion pencil, ‖w‖2/‖w1‖2 is guaranteed to be O(m3/2)
for the exact eigenvector, as can be seen from the appropriate choice of formula in
(3.12), bearing in mind that scaling changes w in (3.12) to D−1

s w. To draw the same
conclusion for the unscaled pencil we require maxi ‖Ai‖2

<∼ 1.
Our bounds suggest that scaling the identity blocks of C1 can significantly improve

the backward error of the recovered eigenvectors of P . We can, of course, employ
more sophisticated two-sided scalings, including balancing [16], [25]. However, these
scalings produce a new pencil not belonging to L1, so our backward error bounds are
not applicable to them.

3.4. DL(P ) linearizations. From section 2.2 and the definition of L1 in (3.3),
it is clear that for pencils L ∈ L1 our analysis provides upper bounds for the backward
error ηP associated with approximate left eigenvectors of P recovered from approx-
imate left eigenvectors of L. The same is true for L ∈ L2 and approximate right
eigenvectors. We now concentrate on the intersection

DL(P ) = L1(P ) ∩ L2(P ),(3.19)

since for pencils in DL(P ) we can obtain backward error bounds for both left and
right eigenvectors. DL(P ) is a much smaller space than L1(P ) and L2(P ), being
just m-dimensional. Indeed, it is shown in [19, Thm. 5.3] and [6, Thm. 3.4] that
L ∈ DL(P ) if and only if L satisfies the conditions in (3.3) and (3.4) with ṽ = v. The
general form of DL(P ) for the quadratic P (λ) = λ2A2 + λA1 + A0 is given by

DL(P ) =

{
L(λ) = λ

[
v1A2 v2A2

v2A2 v2A1 − v1A0

]
+

[
v1A1 − v2A2 v1A0

v1A0 v2A0

]
: v ∈ C

2

}
,

which illustrates the fact that the companion pencils are not contained in DL(P ) for
any m. Just as for L1 and L2, almost all pencils in DL(P ) are linearizations [19,
Thm. 6.8]. In fact, there is a beautiful characterization of the subset of pencils L ∈
DL(P ) that are linearizations [19, Thm. 6.7]: they are those for which no eigenvalue
of P is a root of the polynomial p(λ; v) := vTΛ =

∑m
i=1 viλ

m−i, where when v1 = 0
we define ∞ to be a root of p(λ; v). Throughout this section we assume that the
pencils L ∈ DL(P ) under consideration are linearizations.

For pencils L ∈ DL(P ), we have, by definition,

L(α, β)(Λα,β ⊗ In) = v ⊗ P (α, β), (ΛT
α,β ⊗ In)L(α, β) = vT ⊗ P (α, β),

so that (2.11) and (2.15) hold with G(α, β) = ΛT
α,β ⊗ In and H(α, β) = Λα,β ⊗ In.

Moreover, ‖G(α, β)‖2 = ‖H(α, β)‖2 = ‖Λα,β‖2. From [7, Lem. 4.1] we know that
L(α, β) = αX + βY satisfies

max
(
‖X‖2, ‖Y ‖2

)
≤ mr1/2 max

i
‖Ai‖2,(3.20)

where r is the number of nonzeros in v and we assume ‖v‖2 = 1 without loss of
generality. We now have the ingredients to obtain a backward error bound. Recall
that ρ is defined in (3.18).

Theorem 3.10. Let L ∈ DL(P ) with vector v in (3.3) be a linearization, where
v has unit 2-norm and r nonzeros. Let z be an approximate right eigenvector of L
corresponding to the approximate eigenvalue (α, β). Then for x =

∑m
i=1 vizi, where

zi = z((i− 1)n + 1: in), we have

ηP (x, α, β)

ηL(z, α, β)
≤ mr1/2 (|α| + |β|)‖Λα,β‖2 maxi ‖Ai‖2∑m

i=0 |α|i|β|m−i‖Ai‖2

‖z‖2

‖x‖2
≤ m3/2r1/2 ρ

‖z‖2

‖x‖2
.
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Proof. Combine (2.14), (3.20), and (3.14).
Note that the exact z has the form Λα,β ⊗ ξ so that ‖z‖2 = ‖Λα,β‖2‖ξ‖2, and

‖x‖2 = ‖
∑m

i=1 vizi‖2 = |ΛT
α,βv|‖ξ‖2. Hence ‖z‖2/‖x‖2 = ‖Λα,β‖2/|p(α, β; v)|, where

p(α, β; v) = ΛT
α,βv =

∑m
i=1 viα

m−iβi−1. Thus min{ ‖z‖2/‖x‖2 : ‖v‖2 = 1 } = 1,

with equality attained for v∗ = Λα,β/‖Λα,β‖2. This choice of v minimizes the second
upper bound of Theorem 3.10. However, simply choosing v = ek where ‖zk‖2 =
maxi=1:m ‖zi‖2 ensures that ‖z‖2/‖x‖2 ≤

√
m, which is perfectly adequate.

Intuitively, we might expect that ηP (x, α, β) ≥ ηL(z, α, β), at least to within some
constant factor, but this is not necessarily the case. Consider, for example, the pencil

L(λ) = λ

[
A A
A B − C

]
+

[
B −A C
C C

]
∈ DL(λ2A + λB + C),

which corresponds to v = [1 1]T in (3.3). Suppose A = B = I and C = εI with
0 < ε � 1, and let ΔA = δI and ΔB = ΔC = 0. These perturbations have
relative size max(‖ΔA‖2/‖A‖2, ‖ΔB‖2/‖B‖2, ‖ΔC‖2/‖C‖2) = δ, but for the pencil
max(‖ΔX‖2/‖X‖2, ‖ΔY ‖2/‖Y ‖2) ≈ max(δ, δ/ε) = δ/ε. Hence a small perturbation
to P does not necessarily correspond to a small perturbation to L and ηP /ηL cannot
therefore be bounded below by a positive constant. This phenomenon is not present
for the pencils corresponding to v = ek, which form the standard basis for DL(P ) [6],
because for these pencils each block of X and Y is plus or minus a single block Ai.
We now specialize Theorem 3.10 to these pencils.

Corollary 3.11. Let Lk ∈ DL(P ) corresponding to v = ek in (3.3) be a lin-
earization. Let z be an approximate right eigenvector of Lk corresponding to the
approximate eigenvalue (α, β). Then for zk = z((k − 1)n + 1: kn), we have

1

m
≤ ηP (zk, α, β)

ηLk
(z, α, β)

≤ m
(|α| + |β|)‖Λα,β‖2 maxi ‖Ai‖2∑m

i=0 |α|i|β|m−i‖Ai‖2

‖z‖2

‖zk‖2
≤ m3/2ρ

‖z‖2

‖zk‖2
.

Proof. The upper bound follows from Theorem 3.10. The lower bound is proved
in a similar way to the lower bound of Theorem 3.6.

Analogues of Theorem 3.10 and Corollary 3.11 hold for approximate left eigen-
vectors w of Lk: z is simply replaced by w and x by y =

∑m
i=1 viwi.

With the notation in Corollary 3.11, the exact eigenvector z satisfies z = Λα,β⊗x,
and it is easy to see that ‖z‖2/‖zk‖2 ≈ 1 for k = 1 if |α| ≥ |β| and for k = m
if |α| ≤ |β|. Assuming the approximate eigenvector z shares the latter property, the
pencils in DL(P ) with v = e1 and v = em yield backward errors ηP ≈ ηL for eigenpairs
with eigenvectors of modulus greater than or less than 1, respectively, provided that
the measure ρ of the scaling of the problem is of order 1. Two points are worth
noting.

1. Although an eigenvector of P can be recovered from any of the blocks zi =
z((i − 1)n + 1: in) of an eigenvector z of Lk (see Theorem 3.1), our backward error
bounds in Corollary 3.11 require i = k.

2. The pencils L1 and Lm are indeed linearizations if A0 and Am, respectively,
are nonsingular, as can be seen from the characterization mentioned at the start of
this subsection.

3.5. Comparison with conditioning results. Backward error and condition-
ing are complementary concepts. Ideally, we would like the linearization L that we
use to be as well conditioned as the original polynomial P and for it to lead, after
recovering an approximate eigenpair of P from one of L, to a backward error ηP
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of the same order of magnitude as ηL. Therefore to show that one linearization is
preferable to another we need to show that it enjoys a better bound for ηP /ηL as
well as a better condition number bound. Remarkably, our backward error results are
entirely harmonious with the results of Higham, Mackey, and Tisseur [7] concerning
eigenvalue conditioning, as we now explain.

For the companion forms the analysis in [7, sec. 7] provides bounds on the ratio
κC1

(λ)/κP (λ) of appropriately defined condition numbers in the case of quadratics.
That analysis is readily extended to (α, β)-form and general degrees, and it shows
that, like the backward error ratio in Theorem 3.6, κC1

(α, β)/κP (α, β) is bounded by

a multiple of max
(
1,maxi ‖Ai‖2

2

)
/min(‖A0‖2, ‖Am‖2). Thus if min(‖A0‖2, ‖Am‖2) ≈

maxi ‖Ai‖2 ≈ 1 and if a relatively large block is used for right eigenvector recovery
then C1 is an optimal linearization from the points of view of both backward error
and conditioning.

For the scaled companion forms we can show that κDsC1
(α, β)/κP (α, β) is bounded

by a multiple of ρ, just as for the backward error ratios in Theorem 3.9. So if ρ ≈ 1
and a relatively large block is used for eigenvector recovery then DsC1 is an optimal
linearization.

For the DL(P ) pencils with v = e1 (if |λ| ≥ 1) or v = em (if |λ| ≤ 1) it is once
again the case that the factor ρ in the backward error bound (in Corollary 3.11) is
also the key quantity in a bound on the ratio of condition numbers κLk

/κP . We can
conclude that if ρ ≈ 1 then L1 and Lm are optimal with respect to both backward
error and conditioning over all linearizations for |λ| greater than 1 and less than 1,
respectively, assuming ‖z1‖2 ≈ ‖z‖2 for L1 and ‖zm‖2 ≈ ‖z‖2 for Lm (properties that
hold for the exact eigenvectors).

4. Structured linearizations. We now briefly consider to what extent the re-
sults above extend to structured linearizations for structured polynomials. Our defi-
nition of backward error remains the same and so does not incorporate structure. The
issue is that structure may change some key properties of a linearization and thereby
may limit our freedom in choosing how to recover eigenvectors.

4.1. Symmetric and Hermitian structures. If P is symmetric, that is, P (λ) =
P (λ)T , then all the pencils in DL(P ) are symmetric, and these comprise all the sym-
metric pencils in L1(P ) [6, Thm 5.2]. Hence Theorem 3.10 and Corollary 3.11 are
both applicable with L symmetric. If P is Hermitian, that is, P (λ) = P (λ̄)∗, then it
is precisely the pencils in DL(P ) with a real vector v that are Hermitian [6, Thm 6.2].
Theorem 3.10 remains applicable for Hermitian L with the minor restriction that v
is real. Thus symmetry and Hermitian structure impose no significant limitations on
the applicability of our backward error bounds.

4.2. Alternating and palindromic structures. We now consider some other
classes of structures for which we can identify structured linearizations. These struc-
tures are less familiar than symmetric or Hermitian structures but still important
in a variety of applications [17, Chap. 7]. In what follows, the symbol � is used as
an abbreviation for transpose (T ) in the real case and either transpose or conjugate
transpose (∗) in the complex case. The �-adjoint of P is defined by

P�(λ) =

m∑
i=0

λiA�
i .

P (λ) is said to be
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�-even if P�(−λ) = P (λ), �-odd if P�(−λ) = −P (λ),
�-palindromic if revP�(λ) = P (λ), �-antipalindromic if revP�(λ) = −P (λ),

where rev is defined in (3.2). For example, the quadratic Q(λ) = λ2M +λG+K with
M , K symmetric and G skew-symmetric, arising in gyroscopic systems, is T -even
since QT (−λ) = Q(λ). On the other hand, the quadratic Q(λ) = λ2A + λB + AT

with B complex symmetric, arising in the study of vibration of rail tracks under the
excitation of high speed trains [10], [11], is T -palindromic since revQT(λ) = Q(λ).

Linearizations in L1(P ) that reflect the structure of these polynomials and there-
fore preserve symmetries in their spectra have recently been investigated by Mackey
et al. [18]. It is shown in [18, Thms. 3.5, 3.6] that if L(λ) ∈ L1(P ) is �-structured
with vector v then (M ⊗ In)L(λ) is in DL(P ) with vector Mv, where M is either a
diagonal matrix of alternating signs, M = diag((−1)m−1, . . . , (−1)0), in the case of
even/odd structures, or the reverse identity matrix, R = (δi,n+1−i), in the context of
palindromic structures.

Since L itself is in general not in DL(P ) we cannot apply Theorem 3.10. However,
the proof of the theorem is readily adapted, and by exploiting the fact that M ⊗ In
is unitary the same bound is obtained.

Theorem 4.1. Let L ∈ L1(P ) with vector v be a �-structured linearization
and assume that v has unit 2-norm and r nonzeros. Let z be an approximate right
eigenvector of L corresponding to the approximate eigenvalue (α, β). Then for x =∑m

i=1 vizi we have

ηP (x, α, β)

ηL(z, α, β)
≤ mr1/2 (|α| + |β|)‖Λα,β‖2 maxi ‖Ai‖2∑m

i=0 |α|i|β|m−i‖Ai‖2

‖z‖2

‖x‖2
≤ m3/2r1/2ρ

‖z‖2

‖x‖2
.

For approximate left eigenvectors an analogous bound holds with z replaced by w and
x by y =

∑m
i=1(Mv)iwi.

Theorem 4.1 shows that ηP ≈ ηL as long as ρ = O(1) and ‖z‖2/‖x‖2 ≈ 1. How-
ever, whereas for DL(P ) v can be freely chosen, in particular to minimize ‖z‖2/‖x‖2,
now the choice of v is constrained by the requirement that L be �-structured. For
example, for T -palindromic polynomials P , L ∈ L1(P ) with vector v is T -palindromic
if and only Rv = v [18, Thm. 3.5]; in the case of a quadratic, v = [1 1]/

√
2 is forced.

5. Quadratic polynomials. We now concentrate our attention on quadratic
polynomials, Q(λ) = λ2A + λB + C, for which we can give a more detailed analysis
than in the general case, covering in particular a potentially very beneficial scaling of
the polynomial. We write

a = ‖A‖2, b = ‖B‖2, c = ‖C‖2.(5.1)

Note that Λα,β = [α, β]T . We will recover eigenvectors of Q from the components z1 =
z(1:n) and z2 = z(n + 1: 2n) (and similarly for w) of eigenvectors of a linearization.

The first companion form of Q is given by

C1(λ) = λ

[
A 0
0 In

]
+

[
B C
−In 0

]
,

and DsC1(λ) = diag(In, sIn)C1(λ) with s = max(a, b, c). We normalize so that
|α|2 + |β|2 = 1. Theorems 3.6 and 3.9 say that for right eigenpairs

ηQ(zk, α, β)

ηC1
(z, α, β)

≤ 25/2 max
(
1, a, b, c

)2
|α|2a + |α||β|b + |β|2c

‖z‖2

‖zk‖2
, k = 1, 2,(5.2)
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ηQ(zk, α, β)

ηDsC1
(z, α, β)

≤ 25/2 max(a, b, c)

|α|2a + |α||β|b + |β|2c
‖z‖2

‖zk‖2
, k = 1, 2.(5.3)

Analogous bounds hold for left eigenvectors: they have factor 23/2 and there is no
square in the numerator for the analogue of (5.2). In interpreting these bounds and
those below recall that, for the exact eigenvectors of any pencil in L1(Q),

‖z‖2

‖z1‖2
≈ 1 for |α| ≥ |β|, ‖z‖2

‖z2‖2
≈ 1 for |α| ≤ |β|.(5.4)

The DL(Q) pencils with v = e1 and v = e2 are given by

L1(λ) = λ

[
A 0
0 −C

]
+

[
B C
C 0

]
, L2(λ) = λ

[
0 A
A B

]
+

[
−A 0
0 C

]
.

We know from Corollary 3.11 that

ηQ(z1, α, β)

ηL1
(z, α, β)

≤ 23/2 max(a, b, c)

|α|2a + |α||β|b + |β|2c
‖z‖2

‖z1‖2
.(5.5)

In view of (5.4) this bound is appropriate when |α| ≥ |β|. If |α| ≤ |β| then we wish
to take z2 rather than z1 as eigenvector of Q, but Theorem 3.10 does not provide
a bound for L1 and z2. We now derive such a bound, by explicitly constructing an
appropriate G matrix. It is easy to check that GQ(α, β) = [βIn, −(αA + βB)C−1 ]
satisfies GQ(α, β)L1(α, β) = eT2 ⊗Q(α, β) so that (2.11) holds, and by Lemma 3.5

‖GQ(α, β)‖2 ≤
√

2‖Λα,β‖∞ max
(
1, (a + b)‖C−1‖2

)
.

Hence (2.14) yields

ηQ(z2, α, β)

ηL1
(z, α, β)

≤ 4
max(a, b, c) max(1, (a + b)‖C−1‖2)

|α|2a + |α||β|b + |β|2c
‖z‖2

‖z2‖2
.(5.6)

Similarly we have for L2, by an analogue of the GQ analysis and by Corollary 3.11,

ηQ(z1, α, β)

ηL2
(z, α, β)

≤ 4
max(a, b, c) max(1, (b + c)‖A−1‖2)

|α|2a + |α||β|b + |β|2c
‖z‖2

‖z1‖2
,(5.7)

ηQ(z2, α, β)

ηL2
(z, α, β)

≤ 23/2 max(a, b, c)

|α|2a + |α||β|b + |β|2c
‖z‖2

‖z2‖2
.(5.8)

Essentially the same bounds (5.5)–(5.8) hold for approximate left eigenvectors: z is
simply replaced by w and zi by wi.

In Table 5.1 we summarize for unstructured quadratics the main conclusions
from these bounds concerning conditions that guarantee ηP ≈ ηL. Here, using ρ from
(3.18),

ρ =
max(a, b, c)

min(a, c)
≥ max(a, b, c)

|α|2a + |α||β|b + |β|2c .(5.9)

In view of the bounds, it is natural to scale the problem to try to bring the 2-
norms of A, B, and C close to 1. The scaling of Fan, Lin, and Van Dooren [2] has
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Table 5.1

Sufficient conditions for ηP ≈ ηL; ρ is defined in (5.9).

Linearization Eigenvalue
Right

eigenvector
Left

eigenvector
Condition

Companion
|α| ≥ |β|
|α| ≤ |β|

z1
z2

w1 b ≤ a ≈ c ≈ 1

Scaled
companion

|α| ≥ |β|
|α| ≤ |β|

z1
z2

w1 ρ ≈ 1

L1
|α| ≥ |β|
|α| ≤ |β|

z1
z2

w1

w2

ρ ≈ 1
ρmax

(
1, (a + b)‖C−1‖2

)
≈ 1

L2
|α| ≥ |β|
|α| ≤ |β|

z1
z2

w1

w2

ρmax
(
1, (b + c)‖A−1‖2

)
≈ 1

ρ ≈ 1

precisely this aim. It converts Q(λ) = λ2A+λB+C to Q̃(μ) = μ2Ã+μB̃+ C̃, where

λ = γμ, Q(λ)δ = μ2(γ2δA) + μ(γδB) + δC ≡ Q̃(μ),(5.10a)

γ =
√
c/a, δ = 2/(c + bγ).(5.10b)

Letting

ã = ‖Ã‖2, b̃ = ‖B̃‖2, c̃ = ‖C̃‖2,(5.11)

τ =
b√
ac

,(5.12)

we have

ã = c̃ =
2

1 + τ
, b̃ =

2τ

1 + τ
,

ã

2
+ b̃ +

c̃

2
= 2,

so that 2/3 ≤ max(ã, b̃, c̃) ≤ 2. It is straightforward to show that ρ̃ = max(ã, b̃, c̃)/min
(ã, c̃) = max(1, τ) ≤ ρ. Note that ηQ(x, λ) = ηQ̃(x, μ), so this scaling has no effect on
the backward error for the quadratic; its purpose is to improve the backward error for
the linearization. For Q̃(μ), the bounds (5.2), (5.3), and (5.5)–(5.8) can be simplified.

Theorem 5.1. Let (z, w, α, β) be an approximate eigentriple of a linearization of

the scaled quadratic Q̃ in (5.10) with |α|2 + |β|2 = 1. Define

ω = ω(α, β) :=
1 + τ

1 + |αβ|τ ,(5.13)

with τ as in (5.12). We have

ηQ̃(zi, α, β)

ηC1
(z, α, β)

≤ 27/2ω
‖z‖2

‖zi‖2
, i = 1, 2,

ηQ̃(w∗
1 , α, β)

ηC1
(w∗, α, β)

≤ 23/2ω
‖w‖2

‖w1‖2
.

The same bounds hold for DsC1 and the constant 27/2 can be replaced by 25/2. Fur-
thermore,

ηQ̃(x, α, β)

ηLi
(z, α, β)

≤ fi(x)ω
‖z‖2

‖x‖2
, i = 1, 2,
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with

f1(x) =

{
23/2 if x = z1,
8‖C̃−1‖2 if x = z2,

f2(x) =

{
8‖Ã−1‖2 if x = z1,
23/2 if x = z2,

where the nonsingularity of C and A is required for f1(z2) and f2(z1). Similar bounds
hold for approximate left eigenvectors and Li, i = 1, 2: z is replaced by w and zi by
wi.

Proof. For the scaled norms in (5.11) we have

|α|2ã + |α||β |̃b + |β|2c̃ =
2

1 + τ
+ |α||β| 2τ

1 + τ
=

2(1 + |α||β|τ)

1 + τ
=

2

ω(α, β)
(5.14)

and the upper bounds follow from (5.2), (5.3), and (5.5)–(5.8).
We can regard ω in (5.13) as a growth factor bound in the translation from

backward error for L to backward error for Q̃. With the normalization |α|2 + |β|2 = 1,
which implies |α||β| ≤ 1/2, this factor satisfies the bounds

1 ≤ 1 + τ

1 + 1
2τ

≤ ω ≤ min

{
1 + τ,

1

|αβ|

}
≤ 1 + τ.(5.15)

Fan, Lin, and Van Dooren [2] identify max(1 + τ, 1 + τ−1) as a growth factor. Our
bounds for ω, which unlike in [2] are for individual eigenpairs and apply to Li as
well as C1, are sharper in two respects. First, they show that τ satisfying τ � 1
are harmless, since our upper bound for ω is O(1). Second, even when τ � 1 the
penultimate bound in (5.15) will still be of order 1 if |α||β| = |α|

√
1 − |α|2 = O(1),

which is the case unless |λ| = |α|/|β| = |α|/
√

1 − |α|2 is small or large.
The most striking consequence of the theorem is that if

‖B‖2
<∼ (‖A‖2‖C‖2)

1/2,(5.16)

so that τ = O(1) and hence ω = O(1), then the ηQ/ηL ratios are 1 for the relevant

choice of zi, provided Ã−1 and C̃−1 have norms of order 1 in the case of two of the
bounds for L1 and L2. In the terminology of quadratics arising from mechanical
systems with damping, the condition (5.16) holds for systems that are not too heavily
damped. A class of problems for which (5.16) is satisfied is the elliptic Q [9], [13]: those
for which A is Hermitian positive definite, B and C are Hermitian, and (x∗Bx)2 <
4(x∗Ax)(x∗Cx) for all nonzero x ∈ C

n.
Our conclusions about the benefits to the backward error of scaling Q apply

equally well to the condition numbers. Indeed, using (5.14) the analysis in [7] can
be improved to provide bounds for κL/κQ̃ expressed in terms of ω instead of ρ for
L = C1, L1, and L2. Therefore for these three choices of L both backward error
(modulo the potential requirement that ‖Ã−1‖, ‖C̃−1‖ = O(1) for L1 and L2) and
conditioning are essentially optimal for the scaled problem if ω = O(1).

6. Numerical experiments. We illustrate the theory on three symmetric QEPs.
Our experiments were performed in MATLAB 7, for which the unit roundoff is
u = 2−53 ≈ 1.1 × 10−16. The eigenpairs of L(λ) were computed by MATLAB’s
function qz. Table 6.1 reports the problem sizes, the coefficient matrix norms, and
the values of ρ in (3.18) (or (5.9)) before and after scaling via (5.10). In our figures,
the x-axis is the eigenvalue index and the eigenvalues are sorted in increasing order
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Table 6.1

Problem statistics. Here, |λmin| = mini |λi|, |λmax| = maxi |λi|.

Problem Wave Nuclear Mass-spring
n 25 8 50

Unscaled Scaled Unscaled Scaled Unscaled Scaled
|λmin| 1.0e0 4.0e-2 1.8e1 6.6e-2 1.6e-2 7.0e-3
|λmax| 2.5e1 1.0e0 3.6e2 1.4e0 3.2e2 1.4e2
‖A‖2 1.6e0 1.9e0 2.4e8 1.2e0 1.0e0 1.4e-2
‖B‖2 3.2e0 1.5e-1 4.4e10 8.2e-1 3.2e2 2.0e0
‖C‖2 9.8e2 1.9e0 1.7e13 1.2e0 5.0e0 1.4e-2

‖A−1‖2 6.4e-1 5.4e-1 1.8e-1 3.7e7 1.0e0 7.2e1
‖C−1‖2 6.4e-1 3.4e2 2.1e-4 2.9e9 1.0e0 3.6e2

ρ 6.2e2 1.0e0 7.1e4 1.0e0 3.2e2 1.4e2
τ = 8.0e-2, maxω = 1.1e0 τ = 7.0e-1, maxω = 1.6e0 τ = 1.4e2, maxω = 7.2e1

of absolute value. Throughout this section “companion” refers to the first companion
linearization, C1.

Our first problem comes from applying the Galerkin method to a PDE describing
the wave motion of a vibrating string with clamped ends in a spatially inhomogeneous
environment [3], [9]. The quadratic Q is elliptic. Table 6.2 displays the smallest
and largest ratios ηQ(x, α, β)/ηL(z, α, b) over all computed eigenvalues for several
linearizations and for the two ways of recovering the right eigenvector: x = z1 and x =
z2. These ratios are compared with the corresponding theoretical upper bounds (5.2),
(5.3), and (5.5)–(5.8) (taking the same (α, β) as for the smallest/largest backward
error ratio). The upper bounds for the scaled companion linearization are smaller
than those for the companion linearization, as expected by the theory since c � 1,
and they also are sharper. For DL(Q) linearizations, the theory suggests using L1 with
x = z1, since all the eigenvalues of Q have modulus at least 1. This is reflected in Table
6.2, where the L1, z1 pairing produces smaller ratios and upper bounds than L2, z1.
For the scaled quadratic Q̃ in (5.10), we computed the bounds of Theorem 5.1. Since
this problem is elliptic, we know from Theorem 5.1 that for the scaled problem, whose
eigenvalues lie between 0.04 and 1 in modulus, the scaled and unscaled companion
linearizations and the DL(Q̃) linearization L2 will have backward errors similar to

those for Q̃ for every eigenvalue with the choice x = z2. This is confirmed by the
boldface entries in the last two columns of Table 6.2.

Our second problem is a simplified model of a nuclear power plant, as described in
[12], [23]. The largest ratios ηQ(x, α, β)/ηL(z, α, b) and corresponding upper bounds
are displayed in Table 6.3. Similar conclusions to those for the wave problem can
be drawn for this problem. Since ρ = 7 × 104, it is not surprising that some very
large ratios are obtained. This example also illustrates the advantage of scaling the
companion matrix. This is even more striking in Figure 6.1, where the ratios for all
the right and left eigenpairs are displayed. For the companion linearization, these
ratios can be up to 1010 times as large as those for DsC1. Although the problem is
not elliptic, ‖B‖2 ≤

√
‖A‖2‖C‖2 holds, and so our theory says that scaling will make

the scaled and unscaled companion linearizations and the DL(Q) linearization L2 with
x = z2 (since the scaled eigenvalues have modulus at most 1) optimally stable. This
prediction is confirmed by the boldface entries in Table 6.3. Notice that for the scaled
quadratic Q̃, the bounds for L1 with z2 and L2 with z1 are very weak, due to the
large values of ‖Ã−1‖2 and ‖C̃−1‖2 shown in Table 6.1.

Our third problem is a standard damped mass-spring system, as described in [23,
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Table 6.2

Wave problem, n = 25.

Unscaled, ρ = 6e2 Scaled, ρ = 1

Linearization
L

Ei’vec
x

min
ηQ
ηL

Upper
bound

max
ηQ
ηL

Upper
bound

max
η
Q̃

ηL

Upper
bound

Companion
z1 2.0e1 1.7e6 3.7e2 1.5e6 2.9e1 3.0e2
z2 1.4e0 1.6e4 3.8e2 3.5e7 2.5e0 1.6e1

Scaled z1 9.8e-1 1.6e1 1.1e2 1.7e3 1.4e1 1.5e2
companion z2 6.9e-1 1.6e1 1.1e2 4.3e4 1.7e0 8.3e0

L1

z1 1.9e0 2.2e1 9.0e1 1.1e3 1.8e1 7.6e1
z2 1.7e0 2.4e1 8.3e2 6.4e4 8.9e1 2.8e3

L2

z1 2.2e1 9.8e5 1.7e2 2.0e4 1.4e1 1.6e2
z2 1.5e0 8.0e0 1.5e2 2.1e4 1.7e0 8.3e0

Table 6.3

Nuclear problem, n = 8.

Unscaled, ρ = 7e4 Scaled, ρ = 1

Linearization
L

Ei’vec
x

min
ηQ
ηL

Upper
bound

max
ηQ
ηL

Upper
bound

max
η
Q̃

ηL

Upper
bound

Companion
z1 6.1e5 3.2e18 2.6e11 2.8e16 4.2e0 2.8e2
z2 5.5e5 1.2e21 9.3e9 9.9e19 3.1e-1 1.8e1

Scaled z1 3.4e-1 4.1e4 2.3e1 5.1e4 1.0e1 1.4e2
companion z2 3.0e-1 4.1e6 2.1e1 5.9e6 2.2e-1 9.2e0

L1

z1 2.1e1 1.2e3 2.3e3 1.4e5 1.4e1 6.9e1
z2 2.0e1 1.4e11 5.7e5 3.2e14 8.3e2 2.4e10

L2

z1 4.4e3 6.0e17 4.6e4 1.6e17 4.4e1 3.7e9
z2 1.2e2 1.5e4 1.9e3 6.2e6 7.6e-1 9.1e0

sec. 3.9]. The matrix A = I, B is tridiagonal with super- and subdiagonal elements
all −64 and diagonal 128, 192, 192, . . . , 192, and C is tridiagonal with super- and
subdiagonal elements all −1 and diagonal 2, 3, . . . , 3. The eigenvalues are all negative,
with 50 eigenvalues of large modulus ranging from −320 to −6.4 and 50 small modulus
eigenvalues approximately −1.5×10−2. For the approximate right eigenvector, we take
x = z1 if |λ| ≥ 1 and x = z2 otherwise, as suggested by the theory. The largest ratios
ηQ(x, α, β)/ηL(z, α, b) and corresponding upper bounds are displayed in Table 6.4.
Notice that for this problem the upper bound on the ratio ηQ(x, α, β)/ηC1(z, α, β) is
nearly attained, which suggests that the factor max(1, a, b, c)2 in the bound should
indeed contain the square. The largest ratio for L = L1 corresponds to a small
eigenvalue with x = z2 and, for L = L2, the largest ratio corresponds to a large
eigenvalue with x = z1. Hence, the reported upper bounds contain the extra factors
(a + b)‖C−1‖2 and (b + c)‖A−1‖2, respectively, which explains why the bounds are
larger than those for the scaled companion linearization (on the scaled and unscaled
problems), which are small multiples of ρ. The top plot in Figure 6.2 shows that

for the scaled quadratic Q̃, small backward error ratios are obtained for L = L1 and
large eigenvalues, whereas the ratios are small with the choice L = L2 for the small
eigenvalues—all as the theory predicts. The bottom plot in Figure 6.2 confirms that
the actual backward errors ηQ are what we would expect, given the ratios and the
fact that the computed eigenpairs of L are obtained via the QZ algorithm and so
necessarily have a backward error of order u.

Finally, we mention that further numerical illustration of the bounds developed
here, on a symmetric QEP arising from a finite element model of a simply supported
beam, can be found in [8].
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Fig. 6.1. Nuclear problem. Ratios ηQ/ηL for companion linearization L = C1 and scaled
companion linearization L = DsC1 for right eigenpairs (top) and left eigenpairs (bottom).
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Fig. 6.2. Damped mass-spring problem. Ratios ηQs (x, α, β)/ηL(z, α, β) and actual backward
errors ηQs (x, α, β) with x = z1 if |α| ≥ |β| and x = z2 otherwise, for L = DsC1 (∗) and for L = L1

(�) and L = L2 (©). Here, Qs denotes the scaled quadratic Q̃.
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Table 6.4

Damped mass-spring problem, n = 50.

Unscaled, ρ = 3e2 Scaled, ρ = 1e2

Linearization
L

max
ηQ
ηL

Upper
bound

max
η
Q̃

ηL

Upper
bound

C1 8.8e3 5.8e4 1.7e2 8.1e2
DsC1 1.0e2 9.0e2 1.4e2 4.1e2
L1 2.0e3 2.9e4 1.0e4 1.5e5
L2 1.8e3 1.1e5 5.7e2 3.8e4
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