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Abstract. Let A belong to an automorphism group, Lie algebra, or Jordan algebra of a scalar
product. When A is factored, to what extent do the factors inherit structure from A? We answer
this question for the principal matrix square root, the matrix sign decomposition, and the polar
decomposition. For general A, we give a simple derivation and characterization of a particular
generalized polar decomposition, and we relate it to other such decompositions in the literature.
Finally, we study eigendecompositions and structured singular value decompositions, considering in
particular the structure in eigenvalues, eigenvectors, and singular values that persists across a wide
range of scalar products.

A key feature of our analysis is the identification of two particular classes of scalar products,
termed unitary and orthosymmetric, which serve to unify assumptions for the existence of structured
factorizations. A variety of different characterizations of these scalar product classes are given.
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1. Introduction. The factorization of a general matrix into a product of struc-
tured factors plays a key role in theoretical and computational linear algebra. In this
work we address the following question: if we apply one of the standard factorizations
to a matrix that is already structured, to what extent do the factors have additional
structure related to that of the original matrix?

Many applications generate structure, and there are potential benefits to be
gained by exploiting it when developing theory and deriving algorithms. For ex-
ample, algorithms that preserve structure may have reduced storage requirements
and operation counts, may be more accurate, and may also provide solutions that are
physically more meaningful in the presence of rounding and truncation errors.

The structured matrices we consider belong to the automorphism group G, the
Lie algebra L, and the Jordan algebra J associated with a scalar product, that is, a
nondegenerate bilinear or sesquilinear form on Kn. These classes of matrices include
linear structures such as complex symmetric, pseudosymmetric, and Hamiltonian ma-
trices, as well as nonlinear structures such as complex orthogonal, pseudo-orthogonal
and symplectic matrices. Section 2 introduces concepts and notation needed for our
unified treatment of structured factorizations in scalar product spaces. We introduce
two important special types of scalar products, termed unitary and orthosymmetric,
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and describe several equivalent ways to characterize them. The proofs of these equiv-
alences have been delegated to an appendix to avoid disrupting the flow of the paper.
These characterizations are essential in clarifying existing results in the literature and
in formulating simple, unified assumptions on the scalar product that guarantee the
existence of structured factors.

The factorizations we study are the principal square root, the matrix sign decom-
position, the polar decomposition, and the generalized polar decomposition (i.e., polar
decomposition with respect to a general scalar product). Our results in sections 3 and
4 show that structured principal square roots and structured factors for the matrix
sign decomposition exist in arbitrary scalar product spaces. As shown in sections 5
and 6, structured polar factors are guaranteed to exist whenever the scalar product is
unitary, while the generalized polar decomposition always exists in an orthosymmetric
scalar product space.

Much work has been done on structured spectral decompositions, Schur-like
forms, and Jordan-like canonical forms for matrices arising in the context of a specific
scalar product or restricted classes of scalar products. An overall unified structured
eigendecomposition theory for all scalar products appears to be difficult. However,
we show in section 7 that even in an arbitrary scalar product space, the eigenvalues
and eigenvectors of matrices in G, L, and J have a significant level of structure.

Finally, we discuss in section 8 the extent to which the singular values of matrices
in G, L, or J are structured and survey what is known about structured singular value
decompositions (SVDs).

2. Scalar products and structured matrices. We begin with the basic def-
initions and properties of scalar products, and the structured classes of matrices as-
sociated with them.

2.1. Scalar products. Consider scalar-valued maps from Kn×Kn to K: (x, y) �→
〈x, y〉, where K denotes the field R or C. When such maps are linear in each argument
they are called bilinear forms on Kn. For K = C, maps that are conjugate linear in
the first argument and linear in the second are called sesquilinear forms.

A real or complex bilinear form has a unique matrix representation given by
〈x, y〉 = xTMy, while a sesquilinear form can be represented by 〈x, y〉 = x∗My. We
will denote 〈x, y〉 by 〈x, y〉

M
as needed. Note that 〈·, ·〉

M is nondegenerate if and only
if M is nonsingular. For brevity, the term scalar product will be used to refer to any
nondegenerate bilinear or sesquilinear form on Kn. The space Kn equipped with a
fixed scalar product is said to be a scalar product space.

2.2. Adjoints, automorphisms, and algebras. To each scalar product there
corresponds a notion of adjoint , generalizing the idea of transpose T and conjugate
transpose ∗. That is, for any operator A there exists a unique operator A�, called the
adjoint of A with respect to the scalar product 〈·, ·〉M , such that

〈Ax, y〉
M = 〈x,A�y〉

M for all x, y ∈ K
n.(2.1)

An explicit formula for the adjoint is given by

A� =

{
M−1ATM for bilinear forms,
M−1A∗M for sesquilinear forms.

(2.2)

This immediately yields the following useful result. Here A ∼ B denotes similarity
between matrices A and B.
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Lemma 2.1. For real or complex bilinear forms, A� ∼ A, while for sesquilinear
forms, A� ∼ A.

As one might expect, the adjoint has a number of properties analogous to those
of transpose. The following basic properties hold for all scalar products. We omit the
simple proofs.

(A + B)� = A� + B�, (AB)� = B�A�, (A−1)� = (A�)−1,
(αA)� = αA� for bilinear forms, (αA)� = αA� for sesquilinear forms.

Notice the absence of the involutory property (A�)� = A from this list. Only a
restricted class of scalar products have an involutory adjoint, as discussed in Ap-
pendix A.

Associated to each scalar product are three classes of structured matrices: the
automorphisms, self-adjoint matrices, and skew-adjoint matrices. A matrix G is said
to be an automorphism (or isometry) of the scalar product 〈·, ·〉

M if 〈Gx,Gy〉M =
〈x, y〉M for all x, y ∈ Kn, or equivalently, 〈Gx, y〉

M = 〈x,G−1y〉M for all x, y ∈ Kn. In
terms of adjoint this corresponds to G� = G−1. Thus, the automorphism group of
〈·, ·〉

M
is the set

G = {G ∈ K
n×n : G� = G−1}.

Matrices S that are self-adjoint with respect to the scalar product, i.e., 〈Sx, y〉M =
〈x, Sy〉

M for all x, y ∈ Kn, form a Jordan algebra,

J = {S ∈ K
n×n : S� = S},

and matrices K that are skew-adjoint with respect to the scalar product, i.e., 〈Kx, y〉M =
−〈x,Ky〉

M for all x, y ∈ Kn, belong to the Lie algebra L, defined by

L = {K ∈ K
n×n : K� = −K}.

Some important instances of G, L and J are listed in Table 2.1.

G always forms a multiplicative group (indeed a Lie group), although it is not
a linear subspace. By contrast, the sets L and J are linear subspaces, but they are
not closed under multiplication. Instead L is closed with respect to the Lie bracket
[K1,K2] = K1K2 − K2K1, while J is closed with respect to the Jordan product
{S1, S2} = 1

2 (S1S2 + S2S1). Technical correctness dictates that the symbols �, G, L,
and J all bear the subscript M. For the sake of readability, however, we will usually
suppress this subscript.

G is always closed under products and inverses, being a multiplicative group. The
following closure properties of L and J will be useful; we omit the simple proofs.

Lemma 2.2.

(a) Inverses: For nonsingular A, A ∈ L ⇒ A−1 ∈ L and A ∈ J ⇒ A−1 ∈ J.

(b) Powers: A ∈ J ⇒ An ∈ J for all n ∈ N. A ∈ L ⇒ An ∈
{

L for n odd,
J for n even.

(c) Polynomials: For bilinear forms, L is closed under all odd polynomials over
K, while J is closed under all polynomials over K. When the scalar product
is sesquilinear, the same results hold only for real polynomials.

(d) Linear combinations: For bilinear forms, L and J are closed under arbi-
trary K-linear combinations and hence are K-linear subspaces. However, for
sesquilinear forms L and J are closed only under real linear combinations and
hence are only R-linear subspaces.
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(e) Commuting products: Suppose A and B commute. Then

A,B ∈ L =⇒ AB ∈ J,

A,B ∈ J =⇒ AB ∈ J,

A ∈ L, B ∈ J =⇒ AB ∈ L, BA ∈ L.

In general, noncommuting products retain neither L nor J structure.

2.3. Unitary and orthosymmetric scalar products. We aim to present re-
sults on structured factorizations that use a minimum number of hypotheses on the
scalar product defining the structures. As shown in the next sections, some results
on structured factorizations need no assumptions on the scalar product at all, while
others require at least one of the following properties:

(a) (A∗)� = (A�)∗ for all A ∈ Kn×n.
(b) Adjoint preserves unitarity; that is, U unitary ⇒ U� is unitary.
(c) Adjoint preserves Hermitian positive (semi)definite structure; that is, H Her-

mitian positive (semi)definite ⇒ H� is Hermitian positive (semi)definite.
(d) M = βU for some unitary U and β > 0.
(e) Adjoint with respect to 〈·, ·〉

M is involutory; that is, (A�)� = A for all A ∈
Kn×n.

(e’) (A�)� = A for all A in some CS-set1 for Kn×n.
(f) Kn×n = L ⊕ J.
(g) For bilinear forms, MT = ±M . For sesquilinear forms, M∗ = αM with

α ∈ C, |α| = 1.
(h) Vector orthogonality is a symmetric relation; that is,

〈x, y〉
M = 0 ⇐⇒ 〈y, x〉

M
= 0 for all x, y ∈ Kn.

At first glance there is no obvious connection or relationship among these conditions.
However, it turns out that they cluster together into two groups of equivalent prop-
erties,

(a) ⇔ (b) ⇔ (c) ⇔ (d) and (e) ⇔ (e’) ⇔ (f) ⇔ (g) ⇔ (h).

These equivalences are proved in Appendix A, together with the equivalence of some
additional properties. We can now identify two natural classes of scalar products.

Definition 2.3. A scalar product is said to be unitary if it satisfies any one
(and hence all) of the properties (a), (b), (c), (d) above.

Definition 2.4. A scalar product is said to be orthosymmetric if it satisfies any
one (and hence all) of the properties (e), (e’), (f), (g), (h) above.

The name “orthosymmetric” has been adopted in Definition 2.4 because of prop-
erty (h). Note that all the “classical” examples of scalar products listed in Table 2.1
are both orthosymmetric and unitary.

We like to abbreviate property (a) by saying, “In unitary scalar products, the
stars commute.” This commutativity leads to another useful closure property needed
for the structured polar decomposition.

Proposition 2.5. For any unitary scalar product with automorphism group G,
Lie algebra L, and Jordan algebra J, we have A ∈ S ⇒ A∗ ∈ S, where S = G, L or J.

Proof. We consider only the case when S = G, as the proof for S = L or S = J is
similar. Since the stars commute in a unitary scalar product space, A ∈ G ⇒ A� =
A−1 ⇒ (A�)∗ = (A−1)∗ ⇒ (A∗)� = (A∗)−1 ⇒ A∗ ∈ G.

1A CS-set for Kn×n is any set of matrices S ⊆ Kn×n such that BS = SB for all S ∈ S implies
B = αI for some α ∈ K. For example, any open subset S ⊆ Kn×n is a CS-set (see Lemma A.2(e)).
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Table 2.1

A sampling of structured matrices associated with scalar products 〈·, ·〉M , where M is the matrix
defining the scalar product.

Space M Automorphism group Jordan algebra Lie algebra
G = {G : G� = G−1} J = {S : S� = S} L = {K : K� = −K}

Bilinear forms

Rn I real orthogonals symmetrics skew-symmetrics

Cn I complex orthogonals complex symmetrics cplx. skew-symmetrics

Rn Σp,q pseudo-orthogonalsa pseudosymmetrics pseudoskew-symmetrics

Cn Σp,q cplx. pseudo-orthogonals cplx. pseudosymm. cplx. pseudoskew-symm.

Rn R real perplectics persymmetrics perskew-symmetrics

R2n J real symplectics skew-Hamiltonians Hamiltonians

C2n J complex symplectics cplx. J–skew-symm. complex J–symmetrics

Sesquilinear forms

Cn I unitaries Hermitian skew-Hermitian

Cn Σp,q pseudo-unitariesb pseudo-Hermitian pseudoskew-Hermitian

C2n J conjugate symplectics J–skew-Hermitian J–Hermitian

Here, R =

[ 1
. .

.

1

]
, J =

[
0 In

−In 0

]
, Σp,q =

[
Ip 0
0 −Iq

]
∈ Rn×n.

aPhysicists refer to the pseudo-orthogonal group with Σ3,1 =
[
I3

−1

]
as the Lorentz group.

bPseudo-unitary matrices are sometimes called Σp,q-unitaries, or hypernormal matrices in the
signal processing literature.

This result allows us to say that in a unitary scalar product space, G, L, and J

are all “closed under the stars.”

3. Structured square roots. A matrix X ∈ Kn×n such that A = X2 is said to
be a square root of A. Much is known about the existence of matrix square roots and
their computation; see [4], [21], [26], for example. In general, the number of square
roots may be zero, finite, or infinite. When a square root does exist, the one of most
significance for theory and computation is the principal square root, identified by
having all its eigenvalues in the open right half-plane and denoted by A1/2. It is well
known that A1/2 exists if and only if A has no eigenvalues on R− := {x ∈ R : x ≤ 0},
and that A1/2 is unique whenever it exists.

If a structured matrix A has a principal square root with the same or related
structure, then we can view the equation A = A1/2 ·A1/2 as a structured factorization.
Square roots with structure related to the original matrix have been studied in, for
example, [17], [24]. In this section we address the question of whether the principal
square root of a matrix in G, L, or J associated with an arbitrary scalar product
is also structured. The answer will have a significant impact on many of the other
structured factorizations considered in this paper.

Lemma 3.1. Suppose A has a principal square root, and let A� denote the adjoint
of A with respect to an arbitrary scalar product (bilinear or sesquilinear). Then

(a) (A�)1/2 and (A−1)1/2 both exist,
(b) (A�)1/2 = (A1/2)� and (A−1)1/2 = (A1/2)−1.
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Proof. (a) A has no eigenvalues on R−, so neither does A�, since by Lemma 2.1
A� is similar to either A or A. Now A−1 also has no eigenvalues on R−, since
the eigenvalues of A−1 are the reciprocals of those of A. Hence A1/2, (A�)1/2, and
(A−1)1/2 all exist.

(b) (A1/2)� is a square root for A�, since (A1/2)� ·(A1/2)� = (A1/2 ·A1/2)� = A� .

But (A1/2)�, being similar to either A1/2 or A1/2, has all its eigenvalues in the open
right half-plane and hence must be the principal square root of A�. The proof of the
second part of part (b) is similar.

Theorem 3.2 (structured principal square roots). Suppose G, L, and J are the
automorphism group, Lie algebra, and Jordan algebra, respectively, of an arbitrary
scalar product and A is a matrix that has a principal square root. Then

(a) A ∈ G =⇒ A1/2 ∈ G,
(b) A ∈ L =⇒ A1/2 is not in L,
(c) A ∈ J =⇒ A1/2 ∈ J.
Proof. Using Lemma 3.1, we have
(a) A ∈ G ⇒ A� = A−1 ⇒ (A�)1/2 = (A−1)1/2 ⇒ (A1/2)� = (A1/2)−1 ⇒

A1/2 ∈ G .
(b) Suppose A1/2 ∈ L . Then A = (A1/2)2 ∈ J , since the square of any matrix in

L is in J . But L ∩ J = {0} ; thus A = 0 , contradicting the existence of A1/2 .
(c) A ∈ J ⇒ A� = A ⇒ (A�)1/2 = A1/2 ⇒ (A1/2)� = A1/2 ⇒ A1/2 ∈ J .
In section 5.2 we need to consider square roots of structured matrices that are

singular and hence do not have a principal square root. These singular matrices,
though, are Hermitian positive semidefinite and thus have a distinguished square
root—the unique Hermitian positive semidefinite square root [25]. Note that whenever
a matrix A has both a principal square root and a Hermitian positive semidefinite
square root, these two roots coincide, and so without ambiguity we can use A1/2 to
denote this unique distinguished square root. In the following analogues of Lemma
3.1 and Theorem 3.2, we consider only unitary scalar products.

Lemma 3.3. Suppose A is Hermitian positive semidefinite, and let A� denote the
adjoint of A with respect to a unitary scalar product. Then

(a) (A�)1/2 exists, and (A�)1/2 = (A1/2)�.
(b) If A is nonsingular, then (A−1)1/2 exists and (A−1)1/2 = (A1/2)−1.
Proof. (a) A and A1/2 are both Hermitian positive semidefinite; hence by Defini-

tion 2.3(c) so are both A� and (A1/2)�. Thus (A�)1/2 exists. Since (A1/2)� ·(A1/2)� =
(A1/2 · A1/2)� = A�, (A1/2)� must be the unique Hermitian positive semidefinite
square root of A�, i.e., (A�)1/2 = (A1/2)�.

(b) If A is nonsingular, then the Hermitian positive semidefinite square root is
the same as the principal square root; thus Lemma 3.1 applies.

Theorem 3.4 (structured Hermitian positive semidefinite square roots). Suppose
G, L, and J are the automorphism group, Lie algebra, and Jordan algebra, respectively,
of a unitary scalar product, and A is Hermitian positive semidefinite. Then

(a) A ∈ G =⇒ A1/2 ∈ G,
(b) A ∈ L =⇒ A1/2 ∈ L only if A = 0,
(c) A ∈ J =⇒ A1/2 ∈ J .
Proof. Using Lemma 3.3 in place of Lemma 3.1, the proofs are all formally

identical to the corresponding ones in Theorem 3.2. The only difference is that (·)1/2
denotes the Hermitian positive semidefinite square root.

4. Structured matrix sign decomposition. The matrix sign function, de-
fined for matrices A ∈ Cn×n with no pure imaginary eigenvalues, was originally
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introduced and developed by Roberts [47] as a tool to solve algebraic Riccati equa-
tions. In [20], Higham extended this notion to a factorization A = SN , where S is the
matrix sign of A and N := S−1A, and showed how this “matrix sign decomposition”
is closely related to the polar decomposition. The next result shows that for a matrix
A structured with respect to an arbitrary scalar product, the sign factors S and N
are also structured.

Theorem 4.1. Let S be the automorphism group G, the Lie algebra L, or the
Jordan algebra J of an arbitrary scalar product, and suppose A ∈ Kn×n has a sign
decomposition A = SN . Then

A ∈ S =⇒ S ∈ S and N ∈
{

S when S = G, J,
J when S = L.

(4.1)

Proof. In each case we focus first on the structure of the factor N and then
from this deduce the structure of S, using the characterizations N = (A2)1/2 and
S = A(A2)−1/2 from [20]. Note that A has a matrix sign if and only if A has no
eigenvalues on the imaginary axis, so that A2 then has no zero or negative eigenvalues,
and hence (A2)1/2 exists.

First suppose that A ∈ G. Then A2 ∈ G, so N = (A2)1/2 ∈ G by Theorem 3.2.
Since G is a group, it follows that S = AN−1 is also in G .

Next let A ∈ L. Then A2 ∈ J by Lemma 2.2(b); hence N = (A2)1/2 ∈ J

by Theorem 3.2, and thus N−1 ∈ J by Lemma 2.2(a). Finally, since A and N−1

commute, we have S = AN−1 ∈ L by Lemma 2.2(e).
Finally, consider A ∈ J. Then A2 ∈ J, and thus N = (A2)1/2 ∈ J and N−1 ∈ J just

as above. With A and N−1 being commuting elements of J, we have S = AN−1 ∈ J

by Lemma 2.2(e).
Theorem 4.1 can also be proved using globally convergent structure-preserving it-

erations for the matrix sign. Such iterations Xk+1 = f(Xk) converge to sign(X0)
for any X0 ∈ S for which sign(X0) is defined, and have Xk ∈ S for all k. A
family of such iterations is discussed in [23], but only in the context of preserv-
ing automorphism group structure. Two particular examples are the cubically con-
verging Xk+1 = f(Xk) = Xk(3I + X2

k)(I + 3X2
k)−1 and the quintically converging

Yk+1 = g(Yk) = Yk(5I +10Y 2
k +Y 4

k )(I +10Y 2
k +5Y 4

k )−1. That the matrix functions f
and g preserve automorphism group structure is shown in [23] and [24], but by using
Lemma 2.2 they can also be shown to preserve L and J structure. The well-known
Newton iteration Zk+1 = 1

2 (Zk + Z−1
k ) for matrix sign also preserves L and J. The

existence of these structure-preserving iterations gives perhaps a more direct insight
into why the sign S of a matrix A should have the same structure as A. The fact that
A, S, and N all commute then implies that N ∈ J whenever A ∈ L or A ∈ J.

5. Structured polar decomposition. The polar decomposition of a matrix
A ∈ Cn×n factors A as a product A = UH, where U is unitary and H is Hermitian
positive semidefinite. The Hermitian factor is always unique, whereas the unitary
factor is unique only if A is nonsingular [25]. When A is real, so are U and H.
We begin by considering the polar factors of matrices belonging to automorphism
groups, Lie algebras, and Jordan algebras associated with unitary scalar products,
and investigate the extent to which these factors have similar structure. In section 5.2
the question of the structure of polar factors is addressed for automorphism groups
of more general scalar products.

5.1. Unitary scalar products. Several conditions equivalent to a scalar prod-
uct being unitary were given in section 2.3. Two of them are key to establishing the
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structure of the polar factors of matrices in G, L, and J: in a unitary scalar prod-
uct space, adjoint preserves both unitarity and Hermitian positive definite structure
(Definition 2.3, properties (b) and (c)).

5.1.1. Automorphism groups.
Theorem 5.1. Suppose G is the automorphism group of a unitary scalar product,

and A ∈ G. Then in the polar decomposition A = UH the factors U and H also belong
to G.

Proof. The matrix A is nonsingular since A ∈ G; thus U and H exist and are
unique. We have

A ∈ G ⇔ A = A−� = (UH)−� = U−�H−� .

By Definition 2.3, properties (b) and (c), U� is unitary and H� is Hermitian positive
definite. Thus A = U−�H−� exhibits another polar decomposition of A. Uniqueness
of polar factors implies that U = U−� and H = H−�; i.e., U and H are in G.

Just as for the sign function, an alternate proof of this result can be given based
on the existence of globally convergent structure-preserving iterations for the unitary
polar factor of matrices in automorphism groups. Details about such iterations and
their theoretical and numerical properties may be found in [23]. Connections between
these polar factor iterations and other matrix iterations are explored and developed
further in [24].

Note that Theorem 5.1 is known for some particular automorphism groups; for
real symplectic matrices see [45], and for real pseudo-orthogonal matrices see [50].

5.1.2. Lie and Jordan algebras. Next we consider the polar factors of matrices
in Lie and Jordan algebras associated with unitary scalar products. For a matrix A
in L or J, when can we expect the polar factors of A to be in L or J? An added
feature of this question that was not present for matrices in automorphism groups
is that elements of L and J may be singular and thus have nonunique unitary polar
factors. We look first at the unitary factor in the nonsingular case.

Theorem 5.2. Suppose A is nonsingular with polar decomposition A = UH. Let
S denote either the Lie algebra L or the Jordan algebra J associated with a unitary
scalar product. Then A ∈ S ⇒ U ∈ S.

Proof. We prove only the case when S = L; the argument when S = J is almost
identical. Since A ∈ L, A� = −A and

A = UH ⇒ A� = H�U� ⇒ −A = H�U� ⇒ A = H�(−U�) = H̃Ũ .

This displays a “backwards” polar decomposition for A, since H� is Hermitian pos-
itive definite and U� is unitary. But for nonsingular matrices, the “forward” and
“backward” unitary factors are equal [25]. Hence U = Ũ = −U� ; i.e., U ∈ L .

An alternative proof for Theorem 5.2 can be given using the Newton iteration
Xk+1 = 1

2 (Xk + X−∗
k ) for computing the unitary polar factor of the matrix X0. For

unitary scalar products it can be shown that this iteration is structure-preserving
for all nonsingular matrices in L or J. The global convergence of the iteration on
nonsingular matrices then implies the desired result. More on Newton-like iterations
can be found in [23] and [24].

To handle the singular case we need the following lemma.
Lemma 5.3. Suppose W ⊆ Kn×n is a (real or complex) subspace of matrices. Let

Inv(W) denote the subset of invertible matrices in W. Then either Inv(W) is empty,
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or it is an open dense subset of W whose complement W\ Inv(W) is a set of measure
zero in W.

Proof. Let {W1,W2, . . . ,W�} be a basis for W, so that every X ∈ W is uniquely
expressed as X = a1W1 + · · ·+a�W�. Then p(a1, a2, . . . , a�) = det(a1W1 + · · ·+a�W�)
is a polynomial in the unknowns a1, . . . , a� that distinguishes the singular elements
from the nonsingular elements of W; the zero set of p in K� can be identified with the
set of singular matrices in W. This zero set is not empty because p(0, 0, . . . , 0) = 0;
thus it is either all of W (if and only if p ≡ 0), or it is a nontrivial algebraic variety
in W. But nontrivial varieties are always closed and nowhere dense (in the usual
Euclidean topology) and are of measure zero in W.

With this lemma we can now deal with singular matrices in L or J. It is possible
that L or J may contain only singular matrices, as the lemma indicates (consider, for
example, the Lie algebra of n×n skew-symmetric matrices for n odd). In such a case,
L (or J) would contain no unitary matrices at all; this would be an insurmountable
obstruction to the existence of a structured polar decomposition. Thus we must
assume that L (or J) contains at least one nonsingular matrix.

Theorem 5.4. Let S denote either the Lie algebra L or the Jordan algebra J of a
unitary scalar product, and suppose A ∈ S is a singular matrix. If S contains at least
one nonsingular matrix, then there exists a polar decomposition A = UH such that
U ∈ S; however, even this polar decomposition with U ∈ S need not be unique.

Proof. We consider only A ∈ L, using a limit argument based on the already
established result for the nonsingular case. The proof when A ∈ J is similar.

By assumption, L contains at least one nonsingular matrix; thus by Lemma 5.3 the
nonsingular matrices are dense in L. Let An → A with An ∈ L and An nonsingular.
By Theorem 5.2 each An has a polar decomposition An = UnHn with Un ∈ L. Since
the unitary group is compact, we may pick a subsequence Unk

that converges to a
unitary U ; because L is closed, this U is also in L. Then the sequence Hnk

= U−1
nk

Ank

converges, say to H. The set of Hermitian positive semidefinite matrices is also a
closed set, and thus H is Hermitian positive semidefinite. Then

A = limAn = limAnk
= limUnk

· limHnk
= UH

displays a polar decomposition for A with U ∈ L. The nonuniqueness assertion is
concretely demonstrated by Example 5.5.

Example 5.5. Consider the matrix

A =

[
0 −2
2 0

0 0
0 0

]
in the Lie algebra L of 4 × 4 real skew-symmetric matrices. For A ∈ L we have the
polar decompositions

A = U1H =

[
0 −1
1 0

1 0
0 1

][
2 0
0 2

0 0
0 0

]
with U1 /∈ L ,

A = U2H =

[
0 −1
1 0

0 −1
1 0

][
2 0
0 2

0 0
0 0

]
with U2 ∈ L ,

and A = U3H =

[
0 −1
1 0

0 1
−1 0

][
2 0
0 2

0 0
0 0

]
with U3 ∈ L ,

illustrating the fact that a singular A ∈ L may have polar decompositions with the
unitary factor in L or not in L, as well as having more than one polar decomposi-
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tion with the unitary factor in L. Similar examples may be constructed for singular
matrices in the Jordan algebra of 4 × 4 real symmetric matrices.

What about the structure of the Hermitian factor H when A is in L or J? Though
H is always unique, regardless of whether A is singular or nonsingular, in general H
does not seem to have any additional structure beyond Hermitian positive semidefi-
niteness. However, there is one special situation where H does have extra structure.

Theorem 5.6. Suppose A is in L or J of a unitary scalar product, and H is the
Hermitian positive semidefinite polar factor of A. Then H ∈ J if and only if A is
normal, i.e., A∗A = AA∗.

Proof. We consider only the case A ∈ L, since the proof for A ∈ J is almost
identical.

(⇒) : By Lemma 2.2(b), H = (A∗A)1/2 ∈ J ⇒ A∗A ∈ J; i.e., (A∗A)� = A∗A.
So then A∗A = (A∗A)� = A�(A∗)� = A�(A�)∗, since the stars commute in any
unitary scalar product space (see Definition 2.3(a)). But A ∈ L means A� = −A, and
therefore A∗A = A�(A�)∗ = (−A)(−A)∗ = AA∗. Thus A is normal.

(⇐) : By Proposition 2.5, A ∈ L ⇒ A∗ ∈ L. Then since A is normal, we have
A∗A ∈ J by Lemma 2.2(e). By Theorem 3.4 we then have H = (A∗A)1/2 ∈ J.

5.2. General scalar products. We now turn to the question of the polar fac-
tors of matrices in the automorphism group of a general scalar product. The results
of section 3 on structured principal square roots allow us to give conditions under
which an individual A ∈ G has both of its polar factors in G, without making any
global assumption about the scalar product or the automorphism group.

Theorem 5.7. Let G be the automorphism group of an arbitrary scalar product,
and suppose A ∈ G. Then the following are equivalent:

(a) (A∗)� = (A�)∗ (i.e., “the stars commute on A”).
(b) A∗ ∈ G.
(c) A has a structured polar decomposition; i.e., A = UH with U,H ∈ G.
Proof. (a ⇒ b): A� = A−1 ⇒ (A�)∗ = (A−1)∗ ⇒ (A∗)� = (A∗)−1 ⇒ A∗ ∈ G .
(b ⇒ c): Suppose A = UH is the polar decomposition of A. Since A∗ ∈ G we

have A∗A = H2 ∈ G, and thus H = (H2)1/2 ∈ G by Theorem 3.2. But then U =
AH−1 ∈ G because G is a group, and thus A has a structured polar decomposition.

(c ⇒ a): On one side, (A∗)� = ((UH)∗)� = (HU−1)� = U−�H� = UH−1, while
on the other side, (A�)∗ = ((UH)�)∗ = (H−1U−1)∗ = U−∗H−∗ = UH−1.

In what follows, for any scalar product, we say that the automorphism group G

“has structured polar decompositions” if for every A ∈ G we have U,H ∈ G, where
A = UH is the polar decomposition of A.

Corollary 5.8. An automorphism group G has structured polar decompositions
if and only if G is closed under conjugate transpose.

The next results identify two classes of scalar products whose automorphism
groups have structured polar decompositions. Characterizing the set of all scalar
products whose automorphism groups have structured polar decompositions is still
an open question.

Corollary 5.9. The automorphism group of any unitary scalar product has
structured polar decompositions.

Proof. This has already been proved in Theorem 5.1. But it is also a consequence
of Corollary 5.8, together with the fact that G is closed under conjugate transpose
when the scalar product is unitary (Proposition 2.5).

Corollary 5.10 extends a result of Horn, Merino, and Serre [28], who considered
scalar products 〈·, ·〉

M defined by real M with M2 = ±I. In this corollary, note that
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M may be complex in the sesquilinear case.
Corollary 5.10. Let 〈·, ·〉M be a scalar product on Kn such that M2 = αI for

some nonzero α ∈ K. In the complex bilinear case, further assume that M is real.
Then the associated automorphism group G has structured polar decompositions.

Proof. From (2.2) it follows that

(A∗)� =

{
M−1AM, bilinear forms,
M−1AM, sesquilinear forms.

(5.1)

Observe that M2 = αI implies

M−1AM = MAM−1 for all A ∈ K
n×n.(5.2)

Our strategy will be to show that G is closed under conjugate transpose.
Complex sesquilinear forms: A ∈ G ⇒ A�A = I ⇒ M−1A∗MA = I. Thus

M−1A∗ and MA are inverses and hence commute, giving us MAM−1A∗ = I. Using
(5.2), this becomes M−1AMA∗ = I, or (A∗)�A∗ = I by (5.1). Hence A∗ ∈ G.

Real or complex bilinear forms with M real : Proceeding along similar lines we
obtain A ∈ G ⇒ M−1AMAT = I. Taking conjugates and using the fact that M is
real gives M−1AMA∗ = I, or (A∗)�A∗ = I, and thus A∗ ∈ G.

The example below illustrates that for complex bilinear forms 〈 · , · 〉M , the hy-
pothesis M2 = αI by itself is not sufficient to guarantee that G has structured polar
decompositions. Hence the necessity for some additional hypothesis like M is real in
Corollary 5.10.

Example 5.11. Consider the bilinear form on C2 defined by M =
[

1 i
0 −1

]
. Note

that M =
[

1 β
0 −1

]
satisfies M2 = I for any β ∈ C. A direct calculation shows that

A ∈ G if and only if A is of the form
[
a b
b a+ib

]
with a, b ∈ C and detA = +1. Hence

G is far from being closed under conjugate transpose. Indeed, both A and A∗ belong
to G only when A = ±I; therefore these are the only elements of G with structured
polar decompositions.

6. Generalized polar decomposition. In this section we look at a factor-
ization that is somewhat different in nature from all the others considered in this
paper. In other sections we take as starting point a matrix A in either G, L, or J of
a scalar product space and then study the extent to which some standard factoriza-
tion produces factors of A that are also in G, L, or J. Here we begin instead with a
general matrix A ∈ Kn×n and seek to decompose it as A = WS, where W is in the
automorphism group and S is in the Jordan algebra of some scalar product on Kn.
This notion generalizes the standard polar decomposition, where the scalar product
is the standard inner product 〈x, y〉 = x∗y on Cn, the automorphism group is the set
of unitary matrices, and the Jordan algebra is the set of Hermitian matrices. Since
there are scalar products for which the spectra of matrices in J can be arbitrary finite
subsets of C (e.g., 〈x, y〉 = xT y on Cn, with J the set of complex symmetric matrices),
it is not immediately clear what might constitute an appropriate replacement for the
positive semidefiniteness condition on the Hermitian factor in the usual polar decom-
position. We will return to this issue after briefly surveying some of the literature on
this factorization.

The idea of generalizing the polar decomposition in this way is not new; it has
been studied independently by several groups of authors using various notation and
terminology, and in various contexts. An extensive body of work on this topic is due
to Bolshakov, Reichstein, and others, starting with [5], [6], and [7], and continuing
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through the recent [33] and [42]. In these papers the basic setting is a scalar product
space defined by a Hermitian sesquilinear form on Cn, termed an “indefinite inner
(or scalar) product space.” Questions of existence of factorizations A = WS (W ∈
G , S ∈ J) are considered with S satisfying various types of extra conditions, and even
no extra condition at all, with technical emphasis on the more difficult case when A
is singular. Kintzel [33] studies the doubly structured existence question: Given two
scalar products with associated groups G1,G2 and Jordan algebras J1, J2, when can
a matrix A be factored as A = WS with W ∈ G1 ∩ G2 and S ∈ J1 ∩ J2? Another
recurring theme in these papers is the characterization of special classes of matrices
(e.g., matrices that are normal with respect to the given scalar product) for which
every A in the class can be factored as A = WS. Complementary to this work are
papers of Kaplansky [31] and Ikramov [29]; Kaplansky considers symmetric bilinear
forms on Kn for algebraically closed fields K, while Ikramov treats only the symplectic
bilinear form on C2n.

In [27], Horn and Merino investigate a matrix factorization which they term the
ΦS -polar decomposition. Here the setting is not a scalar product space but rather
the complex matrices Cn×n equipped with a linear operator ΦS (A) := SATS−1 for
some fixed nonsingular symmetric or skew-symmetric S ∈ Cn×n. Matrices A such
that ΦS (A) = A are called ΦS -symmetric, and matrices A such that ΦS (A) = A−1

are ΦS -orthogonal. Then A is said to have a ΦS -polar decomposition if A = XY
for some ΦS -orthogonal X and ΦS -symmetric Y . This way of generalizing the usual
polar decomposition (on Rn×n) is easily seen to be a special case of the generalized
polar decomposition in scalar product spaces described above; if M = S−1 is used
to define a bilinear form 〈x, y〉

M = xTMy on Cn, then ΦS (A) is the same as the
adjoint A� with respect to this scalar product, and G = {ΦS -orthogonals} while
J = {ΦS -symmetrics}. Horn and Merino show that for any such ΦS , every nonsingular
A has a ΦS -polar decomposition, and also give necessary and sufficient conditions for
a general A to have a ΦS -polar decomposition.

Yet a different approach to this factorization uses methods from Lie theory. Here
the setting is a Lie group (or Lie semigroup) G equipped with an involutive homo-
morphism σ : G → G; i.e., σ2 = id but σ �= id. A generalized polar decomposition
(or Ol’shanskii decomposition) of an element z ∈ G in this setting is a factorization
z = xy, where x is an element of the fixed point set Gσ = {x ∈ G : σ(x) = x} and
y is an element of the anti-fixed point set Gσ = {y ∈ G : σ(y) = y−1}. See [35]
for a development of the basic theory of this decomposition. A fundamental exam-
ple is the group G = GL(n,R) of all nonsingular real n × n matrices with the map
σ(A) = A−T . In this example Gσ is the group of real orthogonal matrices and Gσ

is the set of all nonsingular symmetric matrices, and thus we are back to the usual
notion of polar decomposition. Indeed, for any orthosymmetric scalar product on Kn,
the map σ(A) = A−� is an involutive homomorphism on the group G = GL(n,K),
with Gσ = G and Gσ the set of all nonsingular elements of J.

A disadvantage of this Lie group setting is that singular matrices are not con-
sidered at all; however, there are compensating advantages. The most important
advantage is that many more examples than just the scalar product space notion of
generalized polar decomposition can be encompassed in a unified development, in-
cluding both matrix groups equipped with involutions σ that do not arise from any
scalar product structure, as well as nonmatrix Lie groups associated with the study of
differential equations. For more on such examples and a further development of the
theory, see [46]. This Lie group notion of generalized polar decomposition has also
recently been exploited in [51] and [30] to develop new structure-preserving algorithms
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for computing the matrix exponential.
We return now to consider the question of an appropriate generalization for the

positive definiteness condition on the self-adjoint (Hermitian) factor in the usual polar
decomposition. Several such replacements have been suggested in the literature, but
to us the simplest approach is to restrict the eigenvalues of the self-adjoint factor
S ∈ J to some region of the complex plane containing the positive real axis, so as to
compatibly generalize the usual positive definiteness condition. The most natural such
region for the eigenvalues of S is the open right half-plane; this eigenvalue condition
is concisely expressed as sign(S) = I. Bhatia [3] and Kintzel [33] use this condition:
Bhatia only for the bilinear form 〈x, y〉 = xT y on Cn, and Kintzel for Hermitian
sesquilinear and real symmetric bilinear forms.

Further justifying the choice of this particular condition is that it gives a gen-
eralized polar decomposition (GPD) that is strongly connected with the matrix sign
function and the principal square root, both of which are well known to be com-
putable by matrix iterations (see [21] and [32]). This connection is elaborated on and
expanded in [24] to show how large families of matrix iterations for the matrix sign
function and the principal square root are related to each other and to iterations for
the GPD with the sign(S) = I condition (see also [33] for one particular iteration from
this family). One may reasonably view this GPD as the “computable” generalized
polar decomposition, and thus we adopt the following definition, both for this paper
and for [24], where iterations to compute this GPD are derived and analyzed.

Definition 6.1 (“computable” GPD). Suppose Kn is a scalar product space
with automorphism group G and Jordan algebra J. Then for a matrix A ∈ Kn×n,
a generalized polar decomposition (GPD) with respect to this scalar product is a
factorization A = WS, where W ∈ G, S ∈ J, and sign(S) = I.

Although the condition sign(S) = I immediately restricts us to considering only
nonsingular A, it also leads to a connection between this notion of a GPD and the
principal square root, as will be seen in the proof of Theorem 6.2. This theorem deals
with the existence and uniqueness of a (“computable”) GPD for an individual matrix,
with respect to an arbitrary scalar product.

Theorem 6.2. Let Kn be an arbitrary scalar product space. Then a matrix
A ∈ Kn×n has a GPD with respect to this scalar product if and only if (A�)� = A
and A�A has no eigenvalues on R− := {x ∈ R : x ≤ 0}. When such a factorization
exists it is unique.

Proof. (⇒) Note first that if the factorization exists, then

(A�)� = (S�W�)� = (SW−1)� = W−�S� = (W−1)−1S = WS = A.

Also we must have

A�A = S�W�WS = S�S = S2.(6.1)

But if sign(S) = I is to hold, then the only possible choice for S is the principal square
root S = (A�A)1/2, and this square root exists only if A�A has no eigenvalues on R−.

(⇐) By hypothesis, A�A has a principal square root. Letting S = (A�A)1/2, the
condition sign(S) = I is automatically satisfied. It remains to show that S� = S.
Using Lemma 3.1(b) together with the assumption that (A�)� = A, we have

S� =
(
(A�A)1/2

)�
=

(
(A�A)�

)1/2
= (A�A)1/2 = S.

Finally, since S2 = A�A, the uniquely defined matrix W = AS−1 satisfies

W�W = (AS−1)�(AS−1) = S−�(A�A)S−1 = S−1(S2)S−1 = I,
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and thus W ∈ G.
A matrix factorization is most useful in practice if it exists for a large set of matri-

ces, certainly for at least an open subset of Kn×n. With this in mind, we examine the
two conditions in Theorem 6.2 to see which scalar products are capable of supporting
a generalized polar decomposition (with or without the condition sign(S) = I) that
exists on some open subset of matrices.

For any scalar product the matrix A = I produces an A�A that has no eigenvalues
on R−. The continuity of the eigenvalues of A�A under perturbation of A then
implies that there will always be some (perhaps very large) open neighborhood of
the identity in Kn×n where the eigenvalue condition σ(A�A) ∩ R− = ∅ holds for
all A in the neighborhood. Thus the eigenvalue condition on A�A in Theorem 6.2
puts no constraint on which scalar products can support a useful generalized polar
decomposition.

Turning next to the involutory property (A�)� = A, we will see that the situation
is somewhat different. For a general scalar product we can always expect there to be
a large set of matrices for which (A�)� = A holds, as the next result shows, but this
set need not always contain an open set.

Lemma 6.3. For a scalar product space Kn, (A�)� = A holds for all A in the
K-subalgebra of n× n matrices generated by G ∪ L ∪ J.

Proof. The straightforward proof is omitted.
However, from property (e’) in Definition 2.4 we know that the involutory property

of adjoint holds in some open set of matrices if and only if the scalar product is
orthosymmetric. Thus we are led to the following theorem.

Theorem 6.4. Let 〈·, ·〉 be a scalar product on Kn. Then there exists some open 2

subset U ⊆ Kn×n of matrices such that every A ∈ U can be factored as A = WS with
W ∈ G and S ∈ J if and only if the scalar product 〈·, ·〉 is orthosymmetric. (Note that
we make no assumption here on S other than S ∈ J, nor is the factorization A = WS
assumed to be unique. See Theorem A.5 for a further strengthening of this result.)

Proof. (⇒) For all A ∈ U we have

(A�)� = (S�W�)� = (SW−1)� = W−�S� = (W−1)−1S = WS = A.

Thus by Lemma A.2(e) and Theorem A.5(a’) we know that 〈·, ·〉 must be orthosym-
metric.

(⇐) From Theorem A.5(a), Theorem 6.2, and the earlier discussion of the spec-
trum of A�A for A near I, we see that there is some open neighborhood of I in which
every matrix A has a GPD.

Theorem 6.4 provides a compelling reason why one might choose to consider only
orthosymmetric scalar products when studying generalized polar decompositions of
any kind, even those without the condition sign(S) = I, or those that lack uniqueness
of the factorization. Furthermore, this result also clarifies the mathematical neces-
sity of the choices of scalar product made in previous work, which might otherwise
appear to be unnecessarily restrictive or motivated only by a particular application.
For orthosymmetric scalar products, then, we have the following simplification of
Theorem 6.2.

Corollary 6.5. For Kn equipped with an orthosymmetric scalar product, a
matrix A ∈ Kn×n has a GPD if and only if A�A has no eigenvalues on R−. Whenever
this GPD exists it is unique.

2This is with respect to the standard Euclidean topology on Kn×n.
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Fig. 7.1. Eigenvalue pairings relative to the unit circle in (a) general bilinear, (b) sesquilinear,
and (c) real bilinear cases.

7. Eigenvalue and eigenvector structure. Even when no restrictions are
imposed on the scalar product, matrices in the corresponding automorphism group
and Lie and Jordan algebras have structure in their eigenvalues and eigenvectors.
Some of this structure has been observed and exploited before, but usually in specific
cases. In the context of a fixed scalar product or a restricted class of scalar products,
the pursuit of spectral decompositions, Jordan canonical forms, and other condensed
forms under structure-preserving similarities or general similarities has been the focus
of intense study. The literature on this subject is extensive; see, for example, [1], [2],
[12], [15], [18], [36], [38], [40], [41], [44], [43], and the references therein.

In this section we give a simple, unified presentation of the common eigenstructure
shared by matrices in G, L, or J associated with an arbitrary scalar product. Our aim
is to shed light on the extent to which the structure of eigenvalues and eigenvectors
is independent of the particular scalar product defining the classes G, L, and J.

7.1. Eigenvalues of automorphisms. The determinant and eigenvalues that
are possible for matrices in automorphism groups are restricted.

Proposition 7.1. Let A ∈ G. Then detA = ±1 for any bilinear form, while for
sesquilinear forms |detA| = 1.

Proof. For bilinear forms, A ∈ G ⇒ A�A = I ⇒ M−1ATMA = I ⇒ (detA)2 =
1 ⇒ detA = ±1, while for sesquilinear forms, A�A = I ⇒ M−1A∗MA = I ⇒
detA detA = 1 ⇒ |detA| = 1.

In some automorphism groups, the determinant can be even more restricted; for
example, real and complex symplectic matrices have only +1 determinant, and −1 is
never realized. For a collection of proofs of this result, see [37].

Next we turn to the pairing structure found in the eigenvalues of matrices in G.

Theorem 7.2. Let A ∈ G. The eigenvalues of A come in pairs λ and 1/λ for
bilinear forms and in pairs λ and 1/λ for sesquilinear forms. In both cases these
pairs have the same Jordan structure and hence the same algebraic and geometric
multiplicities.

Proof. From Lemma 2.1 we have A−1 = A� ∼ A for bilinear forms, whereas
A−1 = A� ∼ A for sesquilinear forms. The result is now immediate.

These eigenvalue pairings are illustrated in Figure 7.1(a) and (b). Instances of
Theorem 7.2 for specific automorphism groups can be found, for example, in [8] and
[22].

The automorphism group of a real bilinear form can be viewed as a restriction
to real matrices of either the automorphism group of a complex bilinear form or the
automorphism group of a complex sesquilinear form. Hence both eigenvalue structure
results apply to real automorphisms, yielding the following corollary.
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Corollary 7.3. Let A ∈ G, where G is the automorphism group of a real
bilinear form. Then the eigenvalues of A come in quartets λ, 1/λ, λ, 1/λ. Figure
7.1(c) depicts such quartets of eigenvalues relative to the unit circle in C.

7.2. Characteristic polynomials of automorphisms. We next describe a
nice property of the characteristic polynomials of matrices in automorphism groups.
For a polynomial p(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 of degree n (i.e., an �= 0),

we define the “reversal of p(x)” to be the polynomial revp (x) = a0x
n + a1x

n−1 +
· · · + an−1x + an, that is, the polynomial p with its coefficients in reverse order. It is
easy to see that

revp (x) = xnp (1/x).

The “conjugate of p(x)” is the polynomial p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.
Definition 7.4. We say that p(x) is
• palindromic if revp (x) = p(x),
• anti-palindromic if revp (x) = −p(x),
• conjugate palindromic if revp (x) = p(x),
• conjugate anti-palindromic if revp (x) = −p(x).
Theorem 7.5. Suppose A ∈ G. Let pA(x) = det(xI−A) denote the characteristic

polynomial of A, and let s := (−1)n det(A).
(a) For bilinear forms, s = ±1; pA(x) is palindromic if s = 1 and anti-palindromic

if s = −1.

(b) For sesquilinear forms, |s| = 1, and qA(x) := s1/2 pA(x) is conjugate palin-
dromic. Thus pA(x) is a scalar multiple of a conjugate palindromic polyno-
mial.

Proof. These results can be derived as consequences of the eigenvalue structure
proved in Theorem 7.2, but we include a more direct proof here.

(a) As shown in the proof of Theorem 7.2, we have A ∼ A−1. From Proposi-
tion 7.1 we know that detA = ±1. Thus,

pA(x) = pA−1(x) = (detA)2 det(xI −A−1)

= (detA) det(xA− I) = (detA) det
(
(−xI)(x−1I −A)

)
= (detA)(−x)npA(x−1) = (−1)n(detA) revpA (x)

= (±1) revpA (x).

Hence pA(x) is either palindromic or anti-palindromic, depending on the sign of s =
(−1)n det(A).

(b) In this case we have A ∼ Ā−1 and (detA) (detA) = 1 . Since detA can
now have complex values other than ±1, it will not be as straightforward to see
palindromicity here. We have

pA(x) = pĀ−1(x) = (detA) (detA) det(xI − Ā−1)

= (detA) det(xĀ− I) = (detA) det
(
(−xI)

(
x−1I − Ā

))
= (detA)(−x)npĀ(x−1) = (−1)n(detA) revpA (x).(7.1)

So if detA = ±1, then pA(x) is already conjugate palindromic or conjugate anti-
palindromic. But in general s := (−1)n detA = eiθ, and pA(x) itself will not usually be
conjugate (anti)palindromic. However, it is always possible to “symmetrize” pA(x) by
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an appropriate complex scalar multiple that makes the resulting polynomial conjugate

palindromic. Define qA(x) = s1/2pA(x) = e−iθ/2pA(x). Then using (7.1) we get

qA(x) = e−iθ/2 eiθ revpA (x) = eiθ/2 revpA (x) = revqA (x).

Thus qA(x) is conjugate palindromic.

7.3. Eigenvalues of matrices in Lie and Jordan algebras. Analogous to
the situation for automorphism groups, the relationship between matrices in L or J

and their adjoints also leads to a pairing of eigenvalues and their corresponding Jordan
blocks, as the next result shows.

Theorem 7.6. Let A ∈ L or A ∈ J. Then the eigenvalues of A occur in pairs as
shown below, with the same Jordan structure for each eigenvalue in a pair.

Bilinear Sesquilinear

A ∈ L λ,−λ λ,−λ

A ∈ J “no pairing” λ, λ

Proof. When A ∈ L, then A� = −A by definition. Lemma 2.1 now implies
A ∼ −A in the bilinear case and A ∼ −A in the sesquilinear case, thus forcing
eigenvalue pairings λ, −λ and λ, −λ, respectively, as well as the identical Jordan
block structure for each eigenvalue in a pair.

On the other hand, when A ∈ J, A� = A. In the bilinear case Lemma 2.1 puts
no constraints on the eigenvalues. However, in the sesquilinear case we get A ∼ A,
forcing the pairing λ, λ as eigenvalues of A with the same Jordan structure.

It is well known that any finite subset of C can be realized as the spectrum
of a complex symmetric matrix [25, Thm. 4.4.9]. Thus there can be no eigenvalue
structure property that holds in general for Jordan algebras of all bilinear forms; this
explains the “no pairing” entry in the table in Theorem 7.6. On the other hand, for
certain special classes of L or J there may be additional structure in the eigenvalues
for reasons other than those considered in Theorem 7.6. For example, it is known
that the eigenvalues of any real or complex skew-Hamiltonian matrix all have even
multiplicity [16], [17], [29]. This is a special case of the following result.

Proposition 7.7. Let J be the Jordan algebra of any skew-symmetric bilinear
form on Kn. Then for any A ∈ J, the eigenvalues of A all have even multiplicity.
Moreover, for any m > 0 and eigenvalue λ, the number of m × m Jordan blocks
corresponding to λ in the Jordan form for A is even.

Proof. Suppose M is the n×n matrix defining the given skew-symmetric bilinear
form; note that n is even since M is nonsingular. Then A ∈ J ⇒ A� = A ⇒
M−1ATM = A ⇒ ATM = MA ⇒ (MA)T = −MA . Thus A = M−1 · (MA)
expresses A as the product of two skew-symmetric matrices, the first of which is
nonsingular. But any such product has an even number of m × m Jordan blocks
for any eigenvalue λ, by Propositions 3 and 4 in [29]. The even multiplicity of all
eigenvalues of A now follows immediately.

7.4. Eigenvector structure. The eigenvectors of matrices in G, L, or J cannot
in general be arbitrarily chosen from Kn, nor can they be arbitrarily matched up with
scalars in K to form eigenpairs. In this section we will see what these restrictions on
eigenvectors are and how they can sometimes feed back to put extra constraints on
the spectra of structured matrices.

To concisely describe the relationships among the eigenvectors and their corre-
sponding eigenvalues, we introduce various eigenvalue “pairing functions” ℘ to sum-
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marize the eigenvalue structure results of Theorems 7.2 and 7.6. The function ℘
depends on the type of structured matrix under consideration, and associates to a
scalar λ the eigenvalue “partner” appropriate to that structure.

Scalar product G L J

Bilinear ℘(λ) := 1/λ ℘(λ) := −λ “no pairing”

Sesquilinear ℘(λ) := 1/λ ℘(λ) := −λ ℘(λ) := λ

We will also need to recall the notion of isotropic vector. A nonzero vector v in a
scalar product space Kn is said to be isotropic if 〈v, v〉

M = 0, and nonisotropic if
〈v, v〉M �= 0. Note that the set of all isotropic vectors in any scalar product space
can be only one of the following three types: empty, all of Kn \ {0}, or a nontrivial
algebraic variety in Kn \ {0} (and hence a set of measure zero in Kn). Then we have
the following result.

Theorem 7.8. Suppose A ∈ S, where S is any one of G, L, or J for a scalar
product space Kn. Let x, y ∈ Kn be eigenvectors for A with Ax = λx and Ay = αy.
Then

(a) λ �= ℘(α) ⇒ 〈x, y〉
M = 0 (x and y are “M -orthogonal”),

(b) λ �= ℘(λ) ⇒ x is an isotropic vector.
Proof. We give the proof only for G belonging to a sesquilinear form. The

arguments for the other four cases are similar. We have

〈λx, y〉
M

= 〈Ax, y〉
M = 〈x,A�y〉M = 〈x,A−1y〉M = 〈x, (1/α)y〉M .

Thus (λ− 1
α )〈x, y〉M = 0 or, equivalently, (λ−℘(α))〈x, y〉

M
= 0 from the table above.

Part (a) now follows immediately, and letting x = y gives part (b).
Thus eigenvectors of structured matrices can be nonisotropic only if their eigen-

values are on the fixed point set of the corresponding pairing function. For sesquilinear
forms these fixed point sets are the unit circle for G, the imaginary axis for L, and
the real axis for J. When a scalar product space contains no isotropic vectors at
all, eigenvalues of structured matrices are all forced to be on these fixed point sets,
constraining the eigenvalues even more than is generally the case. The simplest and
best known example of this is the standard inner product 〈x, y〉 = x∗y on Cn, where
G is the unitary group with all eigenvalues on the unit circle, L is the skew-Hermitian
matrices with all imaginary eigenvalues, and J is the Hermitian matrices with all real
eigenvalues.

8. Structured singular value decomposition. The SVD is one of the most
important factorizations in all of linear algebra. The SVD factors a matrix A ∈ Kn×n

into A = UΣV ∗, where U,Σ, V ∈ Kn×n, U and V are unitary, and Σ is a diagonal
matrix with only nonnegative entries [19], [25]. The factors U , Σ, and V are never
unique, although uniqueness is often forced on Σ by adopting the convention that its
diagonal entries are in nonincreasing order. For the structured matrices considered in
this paper it is sometimes useful to relax this ordering convention or replace it by a
different ordering convention.

In this section we will first discuss the extent to which the singular values of
matrices in G, L, and J are structured and then survey what is known about structured
SVDs.

8.1. Singular values of automorphisms. The singular values of matrices in
many (but not all) automorphism groups have a pairing structure analogous to the
eigenvalue pairings described in Theorem 7.2.
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Theorem 8.1. Suppose G is the automorphism group of a scalar product and
A ∈ G has a structured polar decomposition. Then A has reciprocally paired singu-
lar values; i.e., the singular values of A come in pairs, σ and 1/σ, with the same
multiplicity.

Proof. The singular values of A are the same as the eigenvalues of the Hermitian
factor H in the structured polar decomposition A = UH. Since H ∈ G, by Theo-
rem 7.2 the eigenvalues of H, which are real and positive, have the reciprocal pairing
property.

The converse of Theorem 8.1 does not hold. There are examples of automorphism
groups G for which every A ∈ G has reciprocally paired singular values, but not every
A ∈ G has a structured polar decomposition.

Example 8.2. Consider the automorphism group G of the bilinear form on R2

defined by M = [ 1 0
0 4 ] . Since detA = ±1 for every A ∈ G by Proposition 7.1, this

forces every A ∈ G to have reciprocally paired singular values. However, one can
easily verify that A = [

0 2
1
2 0 ] is in G while A∗ is not, thus showing (by Theorem 5.7)

that A does not have a structured polar decomposition. More generally, for any scalar
product on Rn defined by M = [ In−1 0

0 k
] with k > 0, it can be shown that every A ∈ G

has reciprocally paired singular values, but when k �= 1 almost every A ∈ G fails to
have a structured polar decomposition.

As an immediate consequence of Theorem 8.1 together with the results of sec-
tion 5, we have the following large classes of automorphism groups in which every
matrix has reciprocally paired singular values.

Corollary 8.3. Let G be the automorphism group of a unitary scalar product,
or of a scalar product 〈·, ·〉M with M2 = αI such that M is real when 〈·, ·〉

M
is complex

bilinear. Then every A ∈ G has reciprocally paired singular values.

Note that this result has previously been known for some particular groups, using
different arguments in each case. For real pseudo-orthogonal matrices, see [22]; for
symplectic matrices, see [14], [39], [49].

For scalar products that are neither unitary nor have M2 = αI, the conclusion
of Corollary 8.3 may or may not hold. For example, MATLAB experiments show
that reciprocal pairing of singular values is absent when M = diag(1, 2, 3). With
M = diag(1, 1, 2), though, numerical results indicate that singular value pairing is
present—indeed, this pairing is a special case of Example 8.2. Characterizing the set
of all scalar products whose automorphism groups have reciprocally paired singular
values remains an open question.

Although it is not yet known precisely which automorphism groups have struc-
tured polar factors, or which automorphism groups have reciprocally paired singular
values, Theorem 8.1 provides a necessary condition for the existence of a structured
polar decomposition: Any automorphism that does not have the singular value recip-
rocal pairing property cannot have structured polar factors.

8.2. Singular values of matrices in L or J. In general there is much less
structure in the singular values of matrices in L or J than there is for automorphisms;
real symmetric matrices and real Hamiltonian matrices are examples of Jordan and
Lie algebras whose elements can have arbitrary singular values. On the other hand,
there are also Lie and Jordan algebras in which all nonzero singular values of all
matrices have even multiplicity.3 Both of these phenomena are explained by the

3Note that all of the examples of L and J in Table 2.1 exhibit one of these two behaviors, either
no singular value structure at all or even multiplicity of all (nonzero) singular values.
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following result.
Theorem 8.4. Let S be either the Lie algebra L or the Jordan algebra J of a

scalar product 〈·, ·〉
M on Kn that is both orthosymmetric and unitary. Suppose A ∈ S,

so that A� = κA where κ = ±1.
(a) For bilinear forms, MT = εM where ε = ±1. If ε �= κ, then the (nonzero)

singular values of A all have even multiplicity, while if ε = κ, then the
singular values of matrices in S are unstructured; i.e., for an arbitrary list
of n nonnegative real numbers (repetitions allowed) there is some A ∈ S with
these singular values.

(b) For sesquilinear forms, the singular values of matrices in either L or J are
unstructured, in the same sense used in part (a).

Proof. (a) We begin by demonstrating the result for M = I, i.e., for

Skew(K) := {A ∈ K
n×n : AT = −A} and Sym(K) = {A ∈ K

n×n : AT = A}.(8.1)

For skew-symmetric A, A∗A = −AA is the product of two skew-symmetric ma-
trices, and thus all its nonzero eigenvalues have even multiplicity [13]. Hence the
nonzero singular values of A all have even multiplicity. By contrast, the set Sym(K)
contains the real symmetric positive semidefinite matrices, which clearly may have
arbitrary singular values.

Next we invoke the orthosymmetry of 〈·, ·〉
M to see that for any A ∈ S, MA is

either symmetric or skew-symmetric. First, recall from property (g) in Definition 2.4
that for any bilinear orthosymmetric scalar product 〈·, ·〉

M
, MT = εM where ε = ±1.

Then A ∈ S ⇒ κA = A� = M−1ATM ⇒ MA = κATM , and thus (MA)T =
κ(ATM)T = εκ(MA). By Definition 2.4 (f) we know that Kn×n = L ⊕ J, and hence
left multiplication by M is a bijection from Kn×n to Kn×n that maps L and J to
Skew(K) and Sym(K). To be more precise, we have shown that

M · S =

{
Skew(K) if ε �= κ,
Sym(K) if ε = κ

or, equivalently,

S =

{
M−1 · Skew(K) if ε �= κ,
M−1 · Sym(K) if ε = κ .

(8.2)

Finally, 〈·, ·〉M being a unitary scalar product means that M−1 = αU for some
unitary U and α > 0, by Definition 2.3, property (d). From (8.2) we can therefore
conclude that the singular value structure of S is the same as that of Skew(K) or
Sym(K), depending only on whether ε and κ are equal or not.

(b) For sesquilinear forms, orthosymmetry of 〈·, ·〉
M means that M∗ = γM for

some |γ| = 1 (see Definition 2.4(g)). Choosing β so that β2 = γ, an argument similar
to the one in part (a) shows that for any A ∈ S, βMA is either Hermitian or skew-
Hermitian. But the set of all skew-Hermitian matrices is i ·Herm(C), where Herm(C)
denotes the set of Hermitian matrices. Combining this with Cn×n = L ⊕ J, we have
the following analogue of (8.2):

S =

{
iβM−1 · Herm(C) if κ = −1 ,

βM−1 · Herm(C) if κ = +1 .
(8.3)

Since 〈·, ·〉M is also unitary we have M−1 = αU for some unitary U and α > 0.

Thus in all cases we have S = Ũ · Herm(C) for some unitary Ũ , so the singular
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value structure of every S is the same as that of Herm(C). But the singular values
of matrices in Herm(C) are unstructured, since Herm(C) contains all real symmetric
positive semidefinite matrices, which may have arbitrary singular values.

8.3. Structured SVD of automorphisms. In this section we survey (without
proof) some recent results on the structured SVD question:

For which scalar products does every matrix in the corresponding
automorphism group G have a “structured” SVD, that is, an SVD
UΣV ∗ such that U,Σ, V ∈ G?

By contrast with the other structured factorizations considered in this paper, there
is as yet no unified treatment of the structured SVD question for any large class of
scalar products. However, for particular scalar products there have recently been
some positive results, using arguments specific to the situation in each case. The
most important of these results are for the three varieties of symplectic matrices seen
in Table 2.1.

Theorem 8.5 (symplectic SVD). Let S be either the real symplectic, complex
symplectic, or conjugate symplectic group of 2n × 2n matrices. Then every A ∈ S

has an SVD, A = UΣV ∗, where the factors U,Σ, and V are also in S. Furthermore,
Σ can always be chosen to be of the form Σ = diag(D,D−1), where D is an n × n
diagonal matrix with d11 ≥ d22 ≥ · · · ≥ dnn ≥ 1. This Σ is unique.

This theorem can be found in [49] for real symplectic and conjugate symplectic
matrices, in [14] for complex symplectic matrices, and with a different proof in [39]
for all three types of symplectic matrices. Structure-preserving Jacobi algorithms for
computing a symplectic SVD of a real or complex symplectic matrix are developed
in [10]. Theorem 8.5 also has an analytic version, as shown in [39].

Theorem 8.6 (analytic symplectic SVD). Let S be as in Theorem 8.5, and sup-
pose A(t) ∈ S for t ∈ [a, b] is an analytically varying symplectic matrix. Then there
is an analytic SVD, A(t) = U(t)Σ(t)V (t)∗, such that U(t),Σ(t), V (t) ∈ S for all
t ∈ [a, b].

One class of automorphism groups G for which completely structured SVDs are
not possible are the pseudo-orthogonal groups, also known as the Lorentz groups.
The only positive diagonal matrix in these groups is the identity matrix; thus no
nonorthogonal Lorentz matrix can ever have an SVD in which all three factors are in
G. However, there is a closely related structured decomposition of Lorentz matrices
from which the singular values and vectors can be easily read off.

Theorem 8.7 (hyperbolic CS decomposition). Let G be one of the pseudo-
orthogonal groups O(p, q,R); here without loss of generality we will assume that p ≤ q.
Then any A ∈ G has a “hyperbolic CS decomposition”; that is, A has a factorization
A = U Σ̃V T , where U, V, Σ̃ ∈ G , U and V are orthogonal, and Σ̃ has the form

Σ̃ =

⎡⎣ C −S 0
−S C 0

0 0 Iq−p

⎤⎦
with p × p diagonal blocks C and S such that C2 − S2 = I and cii > sii ≥ 0 for
i = 1, . . . , p.

Theorem 8.7 can be found in [22], together with references to earlier work on this
factorization. An equivalent result is proved in [11] and also extended to the case of
a smoothly varying Lorentz matrix A(t), albeit with the restriction that the numbers
sii(t) remain distinct for all t. Note that this restriction is equivalent to assuming that
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the singular values of the block matrix [ C −S
−S C ] remain distinct for all t. Theorem 8.7

can also be easily extended to the pseudo-unitary groups U(p, q,C).
Characterizing which automorphism groups G have structured SVDs and which

do not, as well as which G have decompositions that are “almost” structured SVDs,
e.g., structured “CS-like” decompositions, is still an open question.

8.4. Structured SVD-like decomposition in Lie and Jordan algebras.
Since L and J are not closed under multiplication, we cannot in general expect SVDs
of such matrices to have all three factors in L or J. Instead we aim to find SVD-
like decompositions that reflect the L/J structure of the given matrix in a manner
analogous to the symmetric SVD of complex symmetric matrices [9], also known as
the Takagi factorization [25]. Let us begin by recalling this factorization and its
skew-symmetric analogue. Note that Sym(K) and Skew(K) are as defined in (8.1).

Theorem 8.8 (symmetric SVD/Takagi factorization). Let A ∈ Sym(C). Then
there exist a real nonnegative diagonal matrix Σ = diag(σ1, . . . , σn) and a unitary
matrix U such that A = UΣUT .

We refer to [25, Cor. 4.4.4] for a proof and to [25, p. 218] and [26, sect. 3.0] for
references to earlier work on this factorization. Note that the Takagi factorization is
a special SVD A = UΣV ∗ in which V = U . The σi are the singular values of A, and
the columns of U = [u1, . . . , un] are the corresponding left singular vectors; that is,
Aui = σiui.

Theorem 8.9 (skew-symmetric Takagi factorization). Suppose A ∈ Skew(C).
Then there exist a unitary matrix U and a block diagonal matrix

Σ = D1 ⊕ · · · ⊕Dk ⊕ 0 ⊕ · · · ⊕ 0(8.4)

such that A = UΣUT . Here Dj = [
0 zj

−zj 0 ]with nonzero zj ∈ C for j = 1, . . . , k . If

A ∈ Skew(R), then U can be chosen to be real orthogonal and the zj to be real. Note
that the nonzero singular values of A are |zj |, each with multiplicity two.

For a proof of this result see [25, sect. 4.4, problems 25–26].
Although the skew-symmetric Takagi factorization is not literally an SVD, it is

an example of something that might reasonably be termed an “SVD-like” decomposi-
tion, since the Σ-factor reveals the singular values of A in a simple and straightforward
fashion. Similarly, the real case of Theorem 8.8 may be viewed as an SVD-like de-
composition. Any real symmetric A may be factored as A = UΣUT with U real
orthogonal and Σ real diagonal, but in general one cannot arrange for all the entries
of Σ to be nonnegative. Nevertheless the singular values of A are easily recovered from
Σ by taking absolute values. It is in this sense that we seek SVD-like decompositions
for matrices in L and J.

We also want a factorization that reflects the structure of the given matrix from
L or J. Observe that the symmetric/skew-symmetric structure of the matrix A in
the Takagi factorizations is not expressed by structure in each individual factor, but
rather by the overall form of the decomposition, i.e., as a congruence of a condensed
symmetric or skew-symmetric matrix. In a scalar product space the analogue of con-
gruence is �-congruence, and it is not hard to see that L and J-structure is preserved
by arbitrary �-congruence whenever the scalar product is orthosymmetric; that is, for
S = L or J and any P ∈ Kn×n, A ∈ S ⇒ PAP� ∈ S. Indeed, this property gives an-
other characterization of orthosymmetric scalar products (see Theorem A.5(f)). The
next result gives a “Takagi-like” factorization for any A ∈ L or J using �-congruence
of matrices in L or J that are simple enough to reveal the singular values of A. Note
that we consider only scalar products that are both orthosymmetric and unitary.
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Theorem 8.10 (structured SVD-like decomposition for L and J). Let S be either
the Lie algebra L or Jordan algebra J of a scalar product 〈·, ·〉M on Kn that is both
orthosymmetric and unitary. Then every A ∈ S has an SVD-like decomposition of
the form A = UΣU�, where U is unitary and Σ ∈ S reveals the singular values of
A in the following sense: with α > 0 such that αM is unitary, the matrix αMΣ has
the same singular values as A and is either diagonal or block diagonal with diagonal
blocks of the form [ 0 z

−z 0 ]. If K = R, then U and Σ may be chosen to be real.
Proof. Orthosymmetry of a bilinear 〈·, ·〉M means that MT = εM with ε = ±1.

Also by definition A ∈ S ⇒ A� = κA with κ = ±1. Thus if Ã := MA, then by (8.2)

we have Ã ∈ S̃, where

S̃ =

{
Skew(K) if ε �= κ,
Sym(K) if ε = κ.

From Theorems 8.8 and 8.9 there exist V unitary and Σ̃ ∈ S̃ such that Ã = V Σ̃V T ;
this Σ̃ is real diagonal when S̃ = Sym(K), and block diagonal as in (8.4) when S̃ =

Skew(K). In either case, Σ̃ reveals the singular values of Ã. From this factorization

of Ã we get

A = M−1Ã = M−1V Σ̃V T =
(
M−1VM

)
M−1Σ̃V T = (V T )�(M−1Σ̃)V T = W�ΣW,

where W = V T is unitary and Σ = M−1Σ̃ ∈ S.
A similar argument also leads to a factorization A = W�ΣW when 〈·, ·〉M is

sesquilinear. In this case, orthosymmetry means that M∗ = γM for some |γ| = 1.
Using once again that A ∈ S ⇒ A� = κA with κ = ±1, we have by (8.3) that

Ã :=
√
γMA is an element of

S̃ =

{
Herm(C) if κ = 1,
i · Herm(C) if κ = −1.

Hence there exist a unitary V and diagonal Σ̃ ∈ S̃ such that Ã = V Σ̃V ∗. Thus

A = γ−1/2M−1Ã = γ−1/2
(
M−1VM

)
M−1Σ̃V ∗ = (V ∗)�(γ−1/2M−1Σ̃)V ∗ = W�ΣW,

where W = V ∗ is unitary and Σ = γ−1/2M−1Σ̃ ∈ S.
In both the bilinear and sesquilinear cases, the Takagi-like form A = UΣU� with

U unitary is now obtained by letting U = W� and using the involutory property (e)
in Definition 2.4 for orthosymmetric scalar products.

Finally, we invoke the hypothesis that 〈·, ·〉M is unitary to see how the factor
Σ reveals the singular values of A = UΣU�. Since U is unitary, so is U� by Def-
inition 2.3(b), and thus A and Σ share the same singular values. Property (d) in
Definition 2.3 gives us an α > 0 such that αM is unitary, and thus αMΣ also has the
same singular values as A. But αMΣ, being a scalar multiple of Σ̃, is either diagonal
or block diagonal of the form (8.4), and thus reveals the singular values of A.

9. Concluding remarks. This work adds to the growing literature on matri-
ces in automorphism groups, Lie algebras, and Jordan algebras associated with a
scalar product. Results on structured factorizations have been given here with as
few assumptions on the scalar products as possible. One of our main contributions
is the recognition that for many results the appropriate assumption is that the scalar
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product is either unitary or orthosymmetric, and we have given a number of different
characterizations of these two classes of scalar products.

Some open questions have been identified. A major area for future work concerns
the numerical computation of structured factorizations in a way that exploits—and
retains, in the presence of rounding errors—the structure. Some recent work along
these lines can be found in the references, but much remains to be done.

Appendix A. Special classes of scalar products.
Many useful properties, such as the involutory property (A�)� = A, do not hold in

every scalar product space. In this appendix we consider a number of such properties,
including all those listed earlier in section 2.3, and show that they cluster together into
two groups of equivalent properties, thereby delineating two natural classes of scalar
products. We have termed these classes orthosymmetric and unitary , and believe
that their identification has simplified the presentation in this paper and will also
help to clarify existing results in the literature. Note that all the “classical” examples
of scalar products listed in Table 2.1 are both orthosymmetric and unitary, as will
easily be seen from Theorems A.5 and A.7.

A.1. Preliminaries. To demonstrate the equivalence of various scalar product
properties, we need a flexible way to detect when a matrix A is a scalar multiple of
the identity. It is well known that when A commutes with all of Kn×n, then A = αI
for some α ∈ K. There are many other sets besides Kn×n, though, that suffice to give
the same conclusion.

Definition A.1. A set of matrices S ⊆ Kn×n will be called a CS-set for Kn×n

if the centralizer of S consists only of the scalar multiples4 of I; that is,

BS = SB for all S ∈ S =⇒ B = αI for some α ∈ K.

The following lemma describes a number of useful examples5 of CS-sets for Rn×n

and Cn×n. For this lemma, D denotes an arbitrary diagonal matrix in Kn×n with
distinct diagonal entries, D+ denotes a diagonal matrix with distinct positive diagonal
entries,

N =

[
0 1

0 1
· ·
· 1
0

]

is the n× n nilpotent Jordan block,

C =

[
0 1

0 1
· ·
· 1

1 0

]

is the cyclic permutation matrix, E = [ 0 1
1 0 ] ⊕ In−2, and F =

[
0 −1
1 0

]
⊕ In−2.

Lemma A.2. Suppose S ⊆ Kn×n. Then the following hold.
(a) S contains a CS-set ⇒ S is a CS-set.
(b) Let S denote {A : A ∈ S}. If S is a CS-set for Cn×n, then so is S.

4One may think of “CS” as standing for either “Commuting implies Scalar,” or “Centralizer
equals the Scalars.”

5Another important source of CS-sets for Cn×n is the classical “Schur’s lemma” [34], [48] from
representation theory: Any S ⊆ Cn×n for which there is no nontrivial S-invariant subspace in Cn is
a CS-set for Cn×n. Thus the matrices in any irreducible representation of a finite group will be a
CS-set.
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(c) Any vector space basis for Kn×n or algebra generating set for Kn×n is a CS-
set for Kn×n. More generally, any set whose span (either in the vector space
sense or the algebra sense) contains a CS-set is a CS-set.

(d) Each of the finite sets {D,N}, {D, N + NT }, {D+ , 3I + N + NT } , and
{C,E, F} is a CS-set for Kn×n.

(e) Any open subset S ⊆ Kn×n is a CS-set. (Indeed any open subset of Rn×n is
a CS-set for Cn×n.)

(f) The sets of all unitary matrices, all Hermitian matrices, all Hermitian pos-
itive semidefinite matrices, and all Hermitian positive definite matrices are
CS-sets for Cn×n. The sets of all real orthogonal matrices and all real sym-
metric matrices are CS-sets for Rn×n and for Cn×n.

Proof.
(a) This is an immediate consequence of Definition A.1.
(b) BS = SB for all S ∈ S ⇒ BS = SB for all S ∈ S. But S is a CS-set, so

B = αI or, equivalently, B = αI. Thus S is a CS-set.
(c) If B commutes with either a vector space basis or an algebra generating set

for Kn×n, then it commutes with all of Kn×n, and hence B = αI.
(d) Any matrix B that commutes with D must itself be a diagonal matrix, and

any diagonal B that commutes with N must have equal diagonal entries,
so that B = αI. Thus S = {D,N} is a CS-set. Similar arguments show
that {D, N + NT } and {D+ , 3I + N + NT } are also CS-sets. To see that
{C,E, F} is a CS-set, first observe that a matrix B commutes with C if and
only if it is a polynomial in C, i.e., if and only if B is a circulant matrix. But
any circulant B that commutes with E must be of the form B = αI + βK,
where K is defined by

Kij =

{
0 if i = j,
1 if i �= j.

Finally, B = αI + βK commuting with F forces β = 0, and thus B = αI,
showing that {C,E, F} is a CS-set.

(e) This follows from (a) and (c), since any open subset of Kn×n contains a vector
space basis for Kn×n.

(f) This follows from (a) and (d) by observing that {D, N +NT } consists of two
real symmetric matrices, {D+ , 3I +N +NT } consists of two real symmetric
positive definite matrices, and {C,E, F} consists of three real orthogonal
matrices.

A second simple result that is needed to show the equivalence of various scalar
product properties is the following lemma.

Lemma A.3. Let M ∈ Kn×n be a nonzero matrix. Then
1. MT = αM for some α ∈ K ⇔ MT = ±M ,
2. M∗ = αM for some α ∈ K ⇔ M∗ = αM for some |α| = 1

⇔ M = βH for some Hermitian H and |β| = 1,
3. MM∗ = αI for some α ∈ K ⇔ M = βU for some unitary U and β > 0.

Proof. Since the proofs of the reverse implications (⇐) in 1, 2, and 3 are imme-
diate, we include only the proofs of the forward implications (⇒) in each case.

1. MT = αM ⇒ M = (MT )T = (αM)T = αMT = α2M ⇒ α2 = 1 ⇒ α = ±1 .

2. M∗ = αM ⇒ M = (M∗)∗ = (αM)∗ = αM∗ = |α|2M ⇒ |α|2 = 1 ⇒ |α| = 1 .
To see the second implication, let H =

√
αM , where

√
α is either of the two

square roots of α on the unit circle. It is easy to check that H is Hermitian,
and that M = βH with β = (

√
α )−1 on the unit circle.
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3. MM∗ is positive semidefinite, so α ≥ 0; then M �= 0 implies α > 0. It follows
that U = 1√

α
M is unitary, and thus M = βU with β =

√
α > 0.

A.2. Orthosymmetric scalar products. In Shaw [48], scalar products that
enjoy property (b) in Theorem A.5 are called “orthosymmetric.” We adopt this name
in the following definition, which extends Definition 2.4.

Definition A.4 (orthosymmetric scalar product). A scalar product is said to be
orthosymmetric if it satisfies any one (and hence all) of the seven equivalent properties
in Theorem A.5.

Theorem A.5. For a scalar product 〈·, ·〉
M on Kn, the following are equivalent:

(a) Adjoint with respect to 〈·, ·〉
M is involutory; that is, (A�)� = A for all A ∈

Kn×n.
(a’) (A�)� = A for all A in some CS-set for Kn×n.
(b) Vector orthogonality is a symmetric relation; that is,

〈x, y〉M = 0 ⇐⇒ 〈y, x〉M = 0 for all x, y ∈ Kn.
(c) Kn×n = L ⊕ J.
(d) For bilinear forms, MT = ±M . For sesquilinear forms, M∗ = αM with

α ∈ C, |α| = 1; equivalently, M = βH with β ∈ C, |β| = 1, and Hermitian
H.

(e) There exists some CS-set for Kn×n with the property that every matrix A in
this CS-set can be factored as A = WS with W ∈ G and S ∈ J .

(f) L and J are preserved by arbitrary �-congruence; that is, for S = L or J and
P ∈ Kn×n, B ∈ S ⇒ PBP� ∈ S.

Proof. Using (2.2) we have

(A�)� =

{
(M−1MT )A(M−1MT )−1 for bilinear forms,
(M−1M∗)A(M−1M∗)−1 for sesquilinear forms.

(A.1)

Hence,

(A�)� = A ⇐⇒
{

(M−1MT )A = A(M−1MT ) for bilinear forms,
(M−1M∗)A = A(M−1M∗) for sesquilinear forms.

(A.2)

(a) ⇔ (a’) ⇔ (d)

(a) ⇒ (a’): Obvious.
(a’) ⇒ (d): Equation (A.2) holding for all A in some CS-set means that M−1MT =

αI (resp., M−1M∗ = αI). The desired conclusion now follows from Lemma A.3.
(d) ⇒ (a): This follows from a straightforward substitution into (A.1).

(a) ⇔ (c)

(a) ⇒ (c): For any scalar product, L∩J = {0}; if B ∈ L∩J, then −B = B� = B,
and thus B = 0. Now suppose that (a) holds and consider an arbitrary A ∈ Kn×n.
Define L = 1

2 (A − A�) and S = 1
2 (A + A�) so that A = L + S. From (A�)� = A,

we conclude that L� = −L so that L ∈ L. Similarly one sees that S ∈ J. The
decomposition A = L + S shows that Kn×n = L + J and because L ∩ J = {0}, the
sum is direct.

(c) ⇒ (a): A = L + S ⇒ A� = L� + S� = −L + S ⇒ (A�)� = (−L)� + S� =
L + S = A.
(b) ⇔ (d)

(b) ⇒ (d): Suppose 〈·, ·〉M is a bilinear form. Letting y = Mw, we have

xT y = 0 ⇔ xTMw = 0
(b)⇐⇒ wTMx = 0 ⇔ xTMTw = 0 ⇔ xT (MTM−1)y = 0.
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A similar argument for sesquilinear forms shows that x∗y = 0 ⇔ x∗(M∗M−1)y = 0 .
Thus, property (b) implies that

〈x, y〉
I

= 0 ⇔ 〈x, y〉
B

= 0 , where B =

{
MTM−1 for bilinear forms,
M∗M−1 for sesquilinear forms.

Using this relationship we can now probe the entries of B with various pairs x, y such
that 〈x, y〉

I
= 0 . Let x = ei and y = ej with i �= j. Then Bij = 〈ei, ej〉B = 0, and

thus B must be a diagonal matrix. Next, let x = ei + ej and y = ei − ej with i �= j.
Then

0 = 〈ei + ej , ei − ej〉B = Bii + Bji −Bij −Bjj = Bii −Bjj ;

hence Bii = Bjj for all i �= j. Thus B = αI for some nonzero α ∈ K, and the desired
conclusion follows from Lemma A.3.

(d) ⇒ (b): This direction is a straightforward verification. For bilinear forms,

〈x, y〉
M = 0 ⇔ xTMy = 0 ⇔ (xTMy)T = 0 ⇔ ±(yTMx) = 0 ⇔ 〈y, x〉M = 0,

and for sesquilinear forms,

〈x, y〉
M

= 0 ⇔ x∗My = 0 ⇔ (x∗My)∗ = 0 ⇔ α(y∗Mx) = 0 ⇔ 〈y, x〉M = 0.

(e) ⇔ (a)

(e) ⇒ (a): The proof of this equivalence is just a slightly modified version of the
proof of Theorem 6.4. For all A in our CS-set we have

(A�)� = (S�W�)� = (SW−1)� = W−�S� = (W−1)−1S = WS = A ,

and thus (a’) holds. That (a’) implies (a) was shown earlier.
(a) ⇒ (e): The continuity of the eigenvalues of A�A implies that there is an open

neighborhood U of the identity in which A�A has no eigenvalues on R−. Thus by
Theorem 6.2 every A in the CS-set U can be factored as A = WS with W ∈ G and
S ∈ J .
(a) ⇔ (f)

(a) ⇒ (f): Let B ∈ S so that B� = ±B. Then (PBP�)� = (P�)�B�P� =
±PBP�, and thus PBP� ∈ S.

(f) ⇒ (a): Consider S = J and B = I ∈ J. Then (f) implies that PP� ∈ J for any
P ∈ Kn×n, and thus PP� = (PP�)� = (P�)�P�. Since P� is nonsingular for any
nonsingular P , we have P = (P�)� for every nonsingular P . Thus by Lemma A.2(e)
we have property (a’), which was previously shown to be equivalent to (a).

A.3. Unitary scalar products. Finally, we prove the equivalence of a second
set of scalar product space properties. We adopt the name “unitary” for the scalar
products satisfying these properties because of (b) and (e) in Theorem A.7.

Definition A.6 (unitary scalar product). A scalar product is said to be unitary
if it satisfies any one (and hence all) of the six equivalent properties in Theorem A.7.

Theorem A.7. For a scalar product 〈·, ·〉
M

on Kn, the following are equivalent:
(a) (A∗)� = (A�)∗ for all A ∈ Kn×n.
(a’) (A∗)� = (A�)∗ for all A in some CS-set for Kn×n.
(b) Adjoint preserves unitarity: U unitary ⇒ U� is unitary.
(c) Adjoint preserves Hermitian structure: H Hermitian ⇒ H� is Hermitian.
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(d) Adjoint preserves Hermitian positive (semi)definite structure: H Hermitian
positive (semi)definite ⇒ H� is Hermitian positive (semi)definite.

(e) M = βU for some unitary U and β > 0.
Proof. From (2.2) it follows that

(A∗)� =

{
M−1AM for bilinear forms,
M−1AM for sesquilinear forms

and

(A�)∗ =

{
M∗AM−∗ for bilinear forms,
M∗AM−∗ for sesquilinear forms.

Thus for any individual matrix A ∈ Kn×n we have

(A∗)� = (A�)∗ ⇐⇒
{

A(MM∗) = (MM∗)A for bilinear forms,
A(MM∗) = (MM∗)A for sesquilinear forms.

(A.3)

(a) ⇔ (a’)

(a) ⇒ (a’): This implication is trivial.
(a’) ⇒ (a): Suppose (A∗)� = (A�)∗ holds for all A in some CS-set for Kn×n.

Then from (A.3) we conclude that MM∗ = αI and hence that the two sides of (A.3)
hold for all A ∈ Kn×n.
(a) ⇔ (b)

(a) ⇒ (b): U∗ = U−1 ⇒ (U∗)� = (U−1)�
(a)
=⇒(U�)∗ = (U�)−1 ⇒ U� is unitary.

(b) ⇒ (a): Suppose U , and hence also U�, is unitary. Then we have (U�)∗ =
(U�)−1 = (U−1)� = (U∗)�, showing that (A∗)� = (A�)∗ for all unitary A. But from
Lemma A.2(f), the set of all unitaries is a CS-set for Kn×n; thus (a’) holds, and hence
also (a).
(a) ⇔ (c)

(a) ⇒ (c): H∗ = H ⇒ (H∗)� = H� (a)
=⇒ (H�)∗ = H� ⇒ H� is Hermitian.

(c) ⇒ (a): Suppose H, and therefore also H�, is Hermitian. Then we have
(H�)∗ = H� = (H∗)�, and thus (A∗)� = (A�)∗ for all Hermitian A. But from
Lemma A.2(f), the set of all Hermitian matrices is a CS-set for Kn×n; thus (a’) holds,
and hence also (a).
(a) ⇔ (d)

(a) ⇒ (d): Because (a) ⇒ (c), we just need to show that positive (semi)definiteness
is preserved by adjoint. But for H Hermitian, H� and H are similar by definition of
the adjoint and hence the eigenvalues of H� and H are the same.

(d) ⇒ (a): This argument is the same as that for (c) ⇒ (a), using the fact that
the set of all Hermitian positive (semi)definite matrices is a CS-set for Kn×n.
(a) ⇔ (e)

(a) ⇒ (e): Suppose (A∗)� = (A�)∗ holds for all A ∈ Kn×n. Then we can
conclude from (A.3) that MM∗ = αI for some α ∈ K, and thus from Lemma A.3
that M = βU for some unitary U and β > 0.

(e) ⇒ (a): M = βU ⇒ MM∗ = (βU)(βU∗) = β2I. Then by (A.3) we have
(A∗)� = (A�)∗ for all A.
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