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Abstract. We consider the Krohn-Rhodes complexity of certain semi-
groups of upper triangular matrices over finite fields. We show that for
any n > 1 and finite field k, the semigroups of all n × n upper triangu-
lar matrices over k and of all n × n unitriangular matrices over k have
complexity n− 1. A consequence is that the complexity c > 1 of a finite
semigroup places a lower bound of c+1 on the dimension of any faithful
triangular representation of that semigroup over a finite field.

1. Introduction

Among the most natural and frequently occurring finite semigroups are
those of upper triangular matrices over some finite field. For example, such
semigroups appear in the study of algebraic semigroups, where it is known
that a connected algebraic monoid with zero has a faithful triangular rep-
resentation if and only if its group of units is solvable [7]. As such, triangu-
larizable monoids can be thought of as a natural generalisation of solvable
groups. More recently, Almeida, Margolis and Volkov [1] have shown that
semigroups of matrices over finite fields generate natural pseudovarieties,
and hence have language-theoretic interpretations. More properties of these
semigroups can be found in [6].

In their groundbreaking work in the 1960s, Krohn and Rhodes showed
that every finite semigroup can be expressed as divisor (a homomorphic
image of a subsemigroup) of a wreath product of finite groups and finite
aperiodic semigroups [3, 5]. The Krohn-Rhodes complexity (also called the
group complexity or just complexity) of a finite semigroup S is the least
number of group terms in such a wreath product of which S is a divisor,
and is a key concept in the theory of finite semigroups. A major open
question is that of whether there is an algorithm which, given as input the
multiplication table of a finite semigroup S, determines the complexity of S
(see, for example, [9]). In the case where each regular J -class of S forms
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2 COMPLEXITY OF SEMIGROUPS OF TRIANGULAR MATRICES

a subsemigroup, however, Rhodes and Tilson [8] demonstrated that there is
an algorithm to perform this task.

In this paper, we consider the Krohn-Rhodes complexity of the semigroups
of all upper triangular matrices and of all upper unitriangular matrices over
a given finite field. In particular, we prove the following.

Theorem 1. Let S be the semigroup of all n×n upper unitriangular matrices
over a finite field k. Then S has complexity n − 1.

Theorem 2. Let S be the semigroup of all n× n upper triangular matrices
over a finite field k. Then S has complexity 1 if n = 1 and k has more than
two elements, or complexity n − 1 otherwise.

In addition to this introduction, this paper comprises five sections. In
Section 2, we analyse the structure of the semigroups of all upper triangu-
lar and all unitriangular matrices of a given size over a given finite field,
establishing some facts which will be useful in the sections that follow. In
Section 3 we recall a number of constructions and results of Krohn and
Rhodes, and analyse how these apply to the semigroups in which we are
interested. Section 4 employs this analysis to prove Theorems 1 and 2. Fi-
nally, in Section 5, we describe a consequence of our results for the theory
of triangularizable semigroups.

Throughout this paper we assume a familiarity with the standard termi-
nology of semigroup theory, including Green’s relations L , R, D and J
(where, of course, D and J coincide in a finite semigroup) and the natural
partial order ≤J on J -classes. The reader not acquainted with these is
referred to a text such as [3].

2. Structure of Upper Triangular Matrix Semigroups

Let k be a finite field with identity 1 and zero 0. Let n be a positive
integer. If x is an n × n matrix then for 1 ≤ i, j ≤ n we denote by xij

the entry of x in position (i, j), that is, in the ith row and jth column,
of x. Recall that the matrix x is (upper) triangular if xij = 0 whenever
1 ≤ j < i ≤ n. Following [1], we call an upper triangular matrix (upper)
unitriangular if, in addition, xii = 0 or xii = 1 for 1 ≤ i ≤ n. We call x a
subidentity if it is unitriangular and xij = 0 whenever i 6= j. We denote by
T (n, k) and UT (n, k) the semigroups of all n× n upper triangular matrices
and of all n×n unitriangular matrices respectively, with entries drawn from
k, the operation in both cases being usual matrix multiplication.

We define a relation σ on each semigroup T (n, k) by x σ y if and only
x = λy for some non-zero field element λ. This relation is easily verified to be
a congruence on T (n, k). We shall be interested in the quotient semigroups
of the form T (n, k)/σ which we call projective triangular semigroups and
denote by PT (n, k). We denote by x the element of PT (n, k) which is the
σ-equivalence class of a matrix x ∈ T (n, k).

By a row operation on an upper triangular matrix we shall mean:
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(i) adding a multiple of one row to a row above; or
(ii) scaling a row by a non-zero field element; or
(iii) scaling a row by zero.

A row operation is said to be invertible if it is of type (i) or (ii), or uni-
triangular if it is of type (i) or (iii). Column operations of different types
are defined analogously, a type (i) operation being adding a multiple of one
column to a column to the right, and so forth.

Let s, x ∈ T (n, k) [respectively, s, x ∈ UT (n, k)]. It is easy to see that
xs can be obtained from s by a certain sequence of [unitriangular] row op-
erations determined by the matrix x. Conversely, every [unitriangular] row
operation can be represented as left-multiplication by a certain triangular
[unitriangular] matrix. There is an analogous relationship between right-
multiplication and [unitriangular] column operations. An immediate con-
sequence of these observations is the following characterization of Green’s
relations L , R and J on the semigroups T (n, k) and UT (n, k).

Proposition 3. Two matrices in T (n, k) [respectively, UT (n, k)] are:

(i) L -related exactly if each can be obtained from the other by [unitri-
angular] row operations;

(ii) R-related exactly if each can be obtained from the other by [unitri-
angular] column operations;

(iii) J -related exactly if each can be obtained from the other by [unitri-
angular] row and column operations;

We shall use the following straightforward but helpful reformulation of a
known result characterising the regular elements of the semigroups T (n, k)
and UT (n, k).

Proposition 4. Let x ∈ T (n, k) or x ∈ UT (n, k). Then the following are
equivalent:

(i) x is regular;
(ii) every row in x is a linear combination of rows in x with non-zero

diagonal entries;
(iii) every column in x is a linear combination of columns in x with non-

zero diagonal entries;
(iv) x is J -related to a subidentity.

Proof. We prove the result first for matrices in T (n, k). In [1, Proposi-
tion 2.1], the regular elements of T (n, k) are characterized as those matrices
whose rank is the equal to the number of their non-zero diagonal entries.
The equivalence of (i), (ii) and (iii) in the upper triangular case is a conse-
quence of this, together with the observation that sets of rows (or columns)
with non-zero diagonal entries in an upper triangular matrix are necessarily
linearly independent. Now if x ∈ UT (n, k) and y ∈ T (n, k) are such that
xyx = x and yxy = y then we must have y ∈ UT (n, k). Thus, a unitriangu-
lar matrix is regular in UT (n, k) exactly if it is regular in T (n, k), and (i),
(ii) and (iii) are also equivalent in the unitriangular case.
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Since subidentities are idempotent and hence regular, and regularity is
a property of J -classes, it is immediate that (iv) implies (i). Finally, if x
satisfies (ii) and (iii), it is easy to see that one can use row operations to
make zero all entries in rows with diagonal zeros, column operations to make
zero all entries in columns with diagonal zeros, row operations to make all
the non-zero diagonal entries 1, and then column operations to remove the
remaining non-diagonal entries, so that, by Proposition 3, x is J -related
to a subidentity in T (n, k). Moreover, if x is unitriangular, then this can
be accomplished with unitriangular operations so that x is J -related to a
subidentity in UT (n, k). Hence, (iv) holds. �

We now introduce some terminology and associated lemmas which will
be helpful in analysing the structure of certain quotients of upper triangular
matrix semigroups.

Let x ∈ UT (n, k) or x ∈ T (n, k). The diagonal shape of x is the set

Shape(x) = {i ∈ Z | 1 ≤ i ≤ n, sii 6= 0}.

Thus, two matrices have the same diagonal shape if they have zeros in
exactly the same positions on the main diagonal. Note that diagonal shape
is preserved by invertible row and column operations, and that for upper
triangular matrices s and t we always have Shape(st) = Shape(s)∩Shape(t).

Corollary 5. Regular elements of T (n, k) or UT (n, k) are J -related if and
only if they have the same diagonal shape.

Proof. It follows easily from Proposition 3 together with our observations
above concerning diagonal shape that J -related elements must have the
same diagonal shape. Conversely, if x and y are regular and have the same
diagonal shape, then by Proposition 4 they must be J -related to the unique
subidentity with that diagonal shape, and hence to each other. �

Proposition 6. Let x, s ∈ T (n, k) or x, s ∈ UT (n, k) with x regular. Then
the following are equivalent:

(i) Shape(x) ⊆ Shape(s);
(ii) x ≤J s
(iii) xs J x;
(iv) xs R x;
(v) sx J x;
(vi) sx L x;
(vii) xsx J x.

In particular, each regular J -class of T (n, k) or UT (n, k) is a subsemigroup.

Proof. We show first that (i) implies (iv). If (i) holds, then by our observa-
tions above, xs can be obtained from x by applying [unitriangular] column
operations to x. By Proposition 4, every column of x is a linear combination
of columns with non-zero diagonal entries. But since Shape(x) ⊆ Shape(s),
it follows that every column of x will be a combination of columns of xs
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with non-zero diagonal entries. Hence, xst = x for some t, which suffices to
show that xs R x and (iv) holds.

Now if x and s are regular and J -related, then by Corollary 5, it follows
that Shape(x) = Shape(s), so that xs J x. Hence, the regular J classes
of T (n, k) and UT (n, k) form subsemigroups. The equivalence of (ii), (iii),
(iv), (v), (vi) and (vii) is well-known to hold in any finite semigroup whose
regular J -classes are subsemigroups (see, for example, [3] and [2]), so it will
suffice to show that (iii) implies (i). But if (iii) holds then by Proposition 3,
Shape(x) = Shape(xs) = Shape(x) ∩ Shape(s) so we must have Shape(x) ⊆
Shape(s), and (i) holds. �

By an n-interval, we mean a subset

α ⊆ {1, . . . , n}

with the property that for any i ≤ j ≤ k ∈ {1, . . . , n} with i, k ∈ α we have
also j ∈ α.

Now let x be an n × n matrix over a field k and α an n-interval. The
restriction x|α of x to α is the matrix (xij)i,j∈α with rows and columns
indexed by α. We say that matrices x and y agree on α if xij = yij for all
i, j ∈ α. We say that x and y are scalar multiples on α if there exists a
non-zero field element λ ∈ k such that xij = λyij for all i, j ∈ α, that is,
such that x and λy agree on α. Notice that, if x, y ∈ UT (n, k) are such that
xii 6= 0 for some i ∈ α then x and y are scalar multiples on α exactly if they
agree on α.

Row and column operations can be applied to submatrices in a natural
way. If α is an n-interval, we say that two n × n matrices x and y are:

(i) [unitriangular] row-related within α if each of x|α and y|α can be
obtained from the other by applying successive [unitriangular] row
operations;

(ii) [unitriangular] column-related within α if each of x|α and y|α can
be obtained from the other by applying successive [unitriangular]
column operations; and

(iii) [unitriangular] related within α if each of x|α and y|α can be obtained
form the other by applying successive [unitriangular] row and/or
column operations.

Notice that two matrices which are scalar multiples on α are both row-related
and column-related within α.

For any n-interval α, any x, y ∈ T (n, k) and any i, j ∈ α we have

(xy)ij =
∑

i≤p≤j

xipypj

where the fact that α is an n-interval ensures that each p ∈ α. Thus, we
have

(x|α)(y|α) = (xy)|α,
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that is, restriction to a given interval is a semigroup homomorphism. The
following simple consequences of this observation are now clear.

Lemma 7. Suppose s, t ∈ T (n, k) agree [respectively, are scalar multiples
on] an n-interval α. Then for any x ∈ T (n, k), we have that xs and xt agree
[are scalar multiples] on α and sx and tx agree [are scalar multiples] on α.

Lemma 8. Let α be an n-interval. If p, q ∈ T (n, k) are related by a sequence
of row operations [column operations, row and column operations] then p|α
and q|α are related by a sequence of row operations [column operations, row
and column operations]. Likewise for unitriangular operations.

Next, we prove a technical lemma which characterizes Green’s relations
L , R and J in certain quotients associated with intervals.

Lemma 9. Let n be an integer, and

f : P({1, . . . , n}) → P({1, . . . , n})

a function which takes shapes to n-intervals. Define a relation ρ on T (n, k)
[or on UT (n, k)] by x ρ y if and only if x and y have the same shape X
and agree on the interval f(X). Suppose the relation ρ is a congruence on
T (n, k) [or on UT (n, k)]. Let [x] denote the ρ-equivalence class of a matrix
x. Then for any s, t we have

(i) [s] L [t] if and only if s and t have the same diagonal shape and are
[unitriangular] row-related within f(Shape(s));

(ii) [s] R [t] if and only if s and t have the same diagonal shape and are
[unitriangular] column-related within f(Shape(t)); and

(iii) [s] J [t] if and only if s and t have the same diagonal shape and are
[unitriangular] related within f(Shape(s)).

Proof. We prove the result for L . The result for R is dual, and that for J
is a consequence of the other two.

Suppose first that s and t have the same diagonal shape and are [unitri-
angular] row-related within f(Shape(s)) = f(Shape(t)). Let p and q be the
matrices which agree with s and t respectively on f(Shape(s)) and are zero
everywhere else. Then p and q are easily seen to be related by [unitrian-
gular] row operations, so by Proposition 3, we have p L q. It follows that
[s] = [p] L [q] = [t], as required.

Conversely, suppose that [s] L [t]. Then by [3, Chapter 7, Fact 2.1(d)],
there exist p, q ∈ T (n, k) [p, q ∈ UT (n, k)] such that [p] = [s], [q] = [t]
and p L q. Now p and q are related by a sequence of [unitriangular] row
operations, and it follows by Lemma 8 that p and q are [unitriangular] row-
related within f(Shape(s)). But p and q must agree with s and t respec-
tively within f(Shape(s)), so it follows that s and t are row-related within
f(Shape(s)). �

Lemma 10. Let ρ be a congruence as in the statement of Lemma 9. Let
x, s ∈ T (n, k) or x, s ∈ UT (n, k) with [x] regular. Then the following are
equivalent:
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(i) Shape(x) ⊆ Shape(s);
(ii) [x] ≤J [s];
(iii) [xs] J [x];
(iv) [xs] R [x];
(v) [sx] J [x];
(vi) [sx] L [x];
(vii) [xsx] J [x].

Proof. We have already observed that the equivalence of (ii), (iii), (iv), (v),
(vi) and (vii) holds in any finite semigroup whose regular J -classes are
subsemigroups, so it will suffice to show that (i) implies (iii), and that (iii)
implies (i). Suppose (i) holds. Then by [3, Chapter 7, Fact 2.1(e)] we may
choose y ∈ T (n, k) (or y ∈ UT (n, k)) such that y is regular and [x] = [y]. In
particular,

Shape(y) = Shape(x) ⊆ Shape(s),

so by Proposition 6 we have ys J y, from which it follows that

[xs] = [x][s] = [y][s] = [ys] J [y] = [x],

so that (iii) holds.
Conversely, if (iii) holds then using Lemma 9 we have

Shape(x) ∩ Shape(s) = Shape(xs) = Shape(x),

from which it follows that Shape(x) ⊆ Shape(s) and (i) holds. �

3. Calculating Complexity

Let S be a finite semigroup. We define a relation ≡ on S by s ≡ t if
and only if for all regular elements x and y in the same J -class, we have
xsy J x ⇐⇒ xty J x, and if xsy, xty J x then xsy = xty. Throughout
this paper, we will denote the equivalence class of an element x under this
relation by [x].

We define another relation ∼ on S by s ∼ t if and only if for every regular
element x we have xs R x ⇐⇒ xt R x, and if xs, xt R x then xs L xt.
Throughout this paper, we will denote the equivalence class of an element
x under this relation by 〈x〉.

The relations ≡ and ∼ are easily verified to be congruences on any semi-
groups whose regular J -classes are subsemigroups. The following restate-
ment of a result of Rhodes and Tilson [8] provides the connection with
complexity.

Theorem 11 ([8]). Let S be a finite semigroup in which each regular J -
class is a subsemigroup. Then S/≡ has the same complexity as S, and
(S/≡)/∼ has complexity one less than that of S (or 0 if S has complexity
0).

Since one can test a semigroup for aperiodicity, since the congruences ≡
and ∼ on a given finite semigroup are computable, and since the property
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Figure 1. The first and second inner squares of an upper
triangular matrix. The symbol + denotes a non-zero entry,
while omitted entries may take any value.

of the regular J -classes being subsemigroups is preserved under homomor-
phism, it follows that one can calculate the complexity of a semigroup S
satisfying this property by repeatedly calculating (S/≡)/ ∼ until one ob-
tains an aperiodic semigroup.

In the rest of this section, we consider these relations as applied to semi-
groups of upper triangular matrices. We define

T 1(n, k) = T (n, k)/≡ = {[x] | x ∈ T (n, k)}; and

T 2(n, k) = T 1(n, k)/∼ = {〈[x]〉 | x ∈ T (n, k)};

and similarly

UT 1(n, k) = UT (n, k)/≡ = {[x] | x ∈ UT (n, k)}; and

UT 2(n, k) = UT 1(n, k)/∼ = {〈[x]〉 | x ∈ UT (n, k)}.

Our objective is to obtain concrete characterizations of these semigroups.
Given a matrix s ∈ T (n, k) or s ∈ UT (n, k), we associate to it two particular
n-intervals, called respectively the first and second inner squares of s:

Square1(s) = {i ∈ Z | p ≤ i ≤ q for some p, q ∈ Shape(s)}

Square2(s) = {i ∈ Z | p ≤ i < q for some p, q ∈ Shape(s)}.

See Figure 1 for an illustration. Notice that these squares are a function
only of the diagonal shape of a matrix, so that two matrices with the same
diagonal shape have the same first and second inner squares.

We now consider the relation ≡ on the semigroups T (n, k) and UT (n, k).

Proposition 12. For any s, t ∈ T (n, k) or s, t ∈ UT (n, k) we have s ≡ t
if and only if s and t have the same diagonal shape and agree on their first
inner square.
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Proof. Suppose first that s ≡ t. Suppose for a contradiction that s and
t have different diagonal shapes, say s has a diagonal zero where t does
not. Let x be the subidentity with the same diagonal shape as t. Now by
Proposition 6, we have xtx J x but xsx is not J -related to x. Hence, s
and t must have the same diagonal shape.

Now suppose that s and t do not agree on their first inner square. Then
certainly the first inner square is non-empty, so the shape is non-empty. Let
p, q ∈ Shape(s) be respectively the least and greatest elements of Shape(s).
Let i ∈ Square1(s) be minimal such that sij 6= tij for some j ∈ Square1(s).

Let j ∈ Square1(s) be maximal such that sij 6= tij. Notice that, from the
definition of the first inner square, we have p ≤ i ≤ j ≤ q

Now let x be the matrix with 1s in positions (p, p), (p, i) and (q, q) and
0s elsewhere. Let y be the matrix with 1s in positions (p, p), (j, q) and
(q, q) and 0s elsewhere. By Proposition 4, x and y are both regular. By
Propositions 4 and 6, x, y, xsy and xty are all J -related. Now if p 6= i and
j 6= q, then a simple calculation shows that

(xsy)pq = spj + spq + sij + siq

and
(xty)pq = tpj + tpq + tij + tiq.

Now by the minimality assumption on i and maximality assumption on j,
we have spj = tpj, spq = tpq and siq = tiq, so that (xsy)pq 6= (xty)pq, and
hence xsy 6= xty. Similar arguments apply in the cases where p = i and/or
j = q, so that we always have xsy 6= xty, as required.

Conversely, suppose s and t have the same diagonal shape and agree on
their first inner square, and let x and y be regular with x J y. Then by
Proposition 4, x and y are both J -related to the same subidentity e, so
x = aeb, y = ced for some a, b, c, d. Now if

Shape(x) = Shape(y) * Shape(s) = Shape(t)

then by Proposition 6, both xsy and xty will not be J -related to x and y.
Otherwise, the shape of x and y is contained within that of s and t, so

the first inner square of x and y is contained within that of s and t. Now
e has 0s everywhere outside the first inner square of x and y, and hence
everywhere outside the first inner square of s and t. By Lemma 7, bsc and
btc agree on the first inner square of s and t. It follows that ebsce = ebtce
so that xsy = aebxced = aebtced = xty as required. �

A consequence is that the relation ≡ on T (n, k) and UT (n, k) satisfies the
conditions of Lemma 9 and Lemma 10. This gives us a characterization of
Green’s relations L , R and J in the semigroups T 1(n, k) and UT 1(n, k).

We now consider the congruence ∼ on UT 1(n, k) and T 1(n, k).

Proposition 13. For any s, t ∈ UT (n, k) or s, t ∈ T (n, k), we have [s] ∼ [t]
if and only if s and t have the same diagonal shape and are scalar multiples
on their second inner square.



10 COMPLEXITY OF SEMIGROUPS OF TRIANGULAR MATRICES

Proof. Suppose first that [s] ∼ [t]. Suppose for a contradiction that s and
t have different diagonal shape, say s has a diagonal zero where t does not.
Let x be the subidentity with the same shape as t. Now using Lemma 10 it
is easy to see that [xt] R [x] but [xs] and [x] are not R-related. Hence, s
and t must have the same diagonal shape.

Now suppose for another contradiction that s and t are not scalar mul-
tiples on their second inner square. Then the second inner square of s and
t is non-empty, from which it follows that the shape of s and t has more
than one element. Let p, q ∈ Shape(s) be respectively the least and greatest
elements of Shape(s), noting that p 6= q.

We define a matrix y differently in two cases.

(i) We consider first the case in which row p of s is not a scalar multiple
of row p of t on the second inner square. In this case, we define y to
be the matrix with 1s in positions (p, p) and (q, q) and 0s elsewhere.

(ii) Suppose now that row p of s is a scalar multiple of row p of t, say
row p of s is λ times row p of t, on the second inner square. Then we
can choose a row i with p < i < q such that row i of s is not λ times
row i of t on the second inner square. In this cases, we let y be the
matrix with 1s in positions (p, p), (q, q) and (p, i) and 0s elsewhere.

Now by Proposition 4, y is regular and so, since images of regular elements
are regular, [y] is regular. Now y, ys and yt have non-zero entries only in
rows p and q, and also have the same first inner square as s and t. Also,
Shape(y) ⊆ Shape(s), so by Lemma 10, we have [y][s] R [y] R [y][t].

We seek now to show that [ys] is not L -related to [yt]. To understand
the following argument, the reader may find it helpful to refer to Figure 2.
In fact, row p of ys is the sum of rows p and i in s (or just row p in case
(i)), while row p of yt is the sum of rows p and i in t (or just row p in case
(i)). It is readily seen, in both cases, that row p of ys is not a multiple of
row p of yt. Moreover, the only changes which can be effected to row p of
ys within the second inner square by row operations are multiplications by
scalars. It follows that they cannot be made into multiples of each other by
row operations. Thus, one cannot get from the first inner square of ys to
that of yt and back again by row operations, so by Lemma 9 [y][s] = [ys] is
not L -related to [yt] = [y][t]. This contradicts the assumption that [s] ∼ [t].

Conversely, suppose that s and t have the same diagonal shape and are
scalar multiples on their second inner square. Let [x] be regular. Then by
Lemma 10,

[xs] R [x] ⇐⇒ Shape(x) ⊆ Shape(s) = Shape(t) ⇐⇒ [xt] R [x].

Now assume further that Shape(x) ⊆ Shape(s). By Lemma 7, xs and xt
are scalar multiples on the second inner square of s and t. We consider first
the case in which x has a zero in the bottom right position of the first inner
square of s. In this case, the first inner squares of xs and xt are contained
within the second inner square of s and t, so xs and xt are scalar multiples
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Figure 2. The form of the matrix ys showing the first and
second inner squares of s.

on their first inner square. In the unitriangular case, since the first inner
square is either empty or contains a non-zero diagonal entry, this means that
xs and xt agree on their first inner square, so that [xs] = [xt]. In the general
triangular case, scalar multiplication can be done by row operations, so it
follows that [xs] L [xt].

Now consider the case in which x does not have a zero in the bottom
right position of the first inner square of s. Then there exists a non-zero
field element λ such that the first inner squares of λxs and xt differ only
in the rightmost column, and the bottom row has a non-zero entry in this
column, so one can get from the first inner square of λxs that of xt by
adding multiples of the bottom row to other rows. It follows by Lemma 9
that [x][s] = [xs] L [xt] = [x][t], and so [s] ∼ [t] as required. �

4. Proofs of the Main Theorems

In this section, we apply the results of the previous section to the proof
of Theorems 1 and 2.

Proposition 14. For any finite field k and n ≥ 2, the semigroup UT 2(n, k)
has the same complexity as UT (n − 1, k).

Proof. We shall show that UT 2(n, k) has a subsemigroup with the same
complexity as UT (n − 1, k), and divides the direct product of UT (n − 1, k)
with the 2-element semilattice.
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x11 x12 . . . x1,n−1

x22 . . . x2,n−1

. . .
...

xn−1,n−1











, ε
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x11 x12 . . . x1,n−1 0
x22 . . . x2,n−1 0

. . .
...

...
xn−1,n−1 0

ε















Figure 3. The action of the function g : UT (n − 1, k) × L → UT (n, k).

Let L = {0, 1} be the two-element semilattice, viewed as a subset of the
field k. We define a function g : UT (n − 1, k) × L → UT (n, k) by

g(x, ε)ij =











xij if 1 ≤ i, j < n

ε if i = j = n

0 otherwise.

See Figure 3 for an illustration. We claim that this induces a surjective ho-
momorphism g′ : UT (n−1, k)×L → UT 2(n, k) given by g′(x, ε) = 〈[g(x, ε)]〉.

The function g is a standard faithful representation of the direct product
of matrix groups, and in particular is a homomorphism. It follows immedi-
ately that g′ is a homomorphism.

Next, we show that g′ is surjective. Given 〈[x]〉 ∈ UT 2(n, k), we define
y ∈ UT (n − 1, k) by yij = xij for 1 ≤ i, j < n. Now it is easily verified that
g(y, xnn) has the same diagonal shape as x and agrees with x on the second
inner square, so that by Proposition 13, g ′(y, xnn) = 〈[x]〉 as required.

We have shown that UT 2(n, k) is a homomorphic image of the direct prod-
uct of UT (n − 1, k) with an aperiodic semigroup. It follows that UT 2(n, k)
has complexity no greater than that of UT (n − 1, k).

Next, we claim that the restriction of the map g ′ to the set UT (n−1, k)×
{1} is aperiodic, that is, injective on every subgroup.

To show this, let (x, 1) and (y, 1) be distinct elements of the same sub-
group of UT (n−1, k)×{1}. Then x and y are distinct elements of the same
subgroup of UT (n − 1, k). Now since the congruence ≡ is aperiodic [8], it
follows that [x] 6= [y], so by Proposition 12, x and y do not agree on the
first inner square. But the first inner square of x and y must be contained
within the second inner square of g(x, 1) and g(y, 1), so that g(x, 1) and
g(y, 1) differ in the second inner square. Hence, by Proposition 13, g ′(x, 1)
is distinct from g′(y, 1).

Since aperiodic maps preserve complexity (see, for example, [4]), it follows
that UT 2(n, k) has a subsemigroup of the same complexity as UT (n− 1, k),
and hence has complexity no less than that of UT (n− 1, k). This completes
the proof. �

We are now ready to prove Theorem 1.
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Theorem 1. The semigroup UT (n, k) of all n×n upper unitriangular ma-
trices over a finite field k has complexity n − 1.

Proof. First, we observe that UT (1, k) is always the two-element semilattice,
and so has complexity 0. On the other hand, UT (2, k) is easily seen to have
group of units isomorphic to the (necessarily non-trivial) additive group of
k, and hence has complexity at least 1.

To complete the proof, we use induction on the size n of the matrices.
Assume that n ≥ 2 and that UT (m, k) has complexity m− 1 for all m < n.
Then by Proposition 14, UT 2(n, k) has complexity n − 2. Also, UT (n, k)
contains a subsemigroup isomorphic to UT (2, k), and hence has strictly
positive complexity. Now by Theorem 11, UT (n, k) has complexity n− 1 as
required. �

Our next objective is to determine the Krohn-Rhodes complexity of the
semigroup of all upper triangular square matrices of a given size over a
finite field, by proving Theorem 2. We begin by proving a weak analogue of
Proposition 14 which holds in the more general upper triangular case.

Proposition 15. For any finite field k and n ≥ 2, the complexity of the
semigroup T 2(n, k) does not exceed that of the projective triangular matrix
semigroup PT (n − 1, k).

Proof. We shall show that T 2(n, k) divides the direct product of PT (n−1, k)
with the 2-element semilattice.

As in the proof of Proposition 14, let L = {0, 1} be the two element
semilattice, viewed as a subset of the field k. We define a function g :
T (n − 1, k) × L → T (n, k) much as before, by

g(x, ε)ij =











xij if 1 ≤ i, j < n

ε if i = j = n

0 otherwise.

We claim that now this induces a surjective homomorphism g ′ : PT (n −
1, k) × L → T 2(n, k) given by g′(x, ε) = 〈[g(x, ε)]〉.

First, we show that g′ is well-defined. Suppose x, y ∈ T (n− 1, k) are such
x = y in PT (n − 1, k). Then x = λy for some non-zero field element λ. Let
ε ∈ L. Then for any i, j < n we have

g(x, ε)ij = xij = λyij = λg(y, ε)ij

and furthermore
g(x, ε)nn = ε = g(y, ε)nn.

Clearly, then, g(x, ε) and g(y, ε) have the same diagonal shape. Moreover,
since their second inner square cannot contain n, they are scalar multiples
on the second inner square. Thus, by Proposition 13, we have 〈[g(x, ε)]〉 =
〈[g(y, ε)]〉 as required.

It follows by the same argument as in Proposition 14 that g is a homomor-
phism, and again by general principles that g ′ is a homomorphism. The same
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proof used in Proposition 15 suffices to show that g ′ is surjective. Hence,
T 2(n, k) is a homomorphic image of the direct product of PT (n− 1, k) with
an aperiodic semigroup. It follows that T 2(n, k) has complexity no greater
than that of PT (n − 1, k), as required. �

We are now ready to prove Theorem 2.

Theorem 2. The semigroup T (n, k) of all n × n upper triangular matrices
over a finite field k has complexity 1 if n = 1 and k has more than two
elements, or complexity n − 1 otherwise.

Proof. Clearly, T (1, k) is isomorphic to the multiplicative group of the field k
with an adjoined zero. Hence, T (1, k) has complexity 0 if k has two elements
(and hence trivial multiplicative group), and 1 otherwise.

Next, we consider the complexity of T (2, k). Certainly T (2, k) contains
UT (2, k) as a subsemigroup, so by Theorem 1, T (2, k) has complexity at
least 1. Hence, by Theorem 11, T (2, k) has complexity exactly 1 more than
that of T 2(2, k). It follows easily from Proposition 13 that for any matrix
x ∈ T 2(2, k) we have 〈[x]〉 = 〈[e]〉 where e is the unique subidentity with the
same diagonal shape as x. Thus, every element of T 2(2, k) is idempotent,
and so T 2(2, k) has no non-trivial subgroups. We conclude that T 2(2, k) has
complexity 0, and so T (2, k) has complexity 1.

Now let n ≥ 3 and assume for induction that T (m, k) has complexity
m − 1 for 2 ≤ m < n. By Proposition 15, the complexity of T 2(n, k) is no
more than that of PT (n − 1, k). But the complexity of T 2(n, k) is one less
than that of T (n, k), so it follows that the complexity of T (n, k) exceeds that
of PT (n−1, k) by at most one. Now PT (n−1, k) is a quotient of T (n−1, k),
which by the inductive hypothesis has complexity n−2. Thus, PT (n−1, k)
has complexity at most n − 2, while T (n, k) has complexity at most n − 1.
But T (n, k) contains UT (n, k) as a subsemigroup, so by Theorem 1, T (n, k)
must have complexity at least n − 1. Hence, T (n, k) has complexity n − 1,
as required. �

Theorem 2 and Proposition 15 together describe the complexity of the
projective triangular semigroups.

Corollary 16. For any positive integer n and finite field k, the projective
triangular semigroup PT (n, k) has complexity n − 1.

5. Complexity of Triangularizable Semigroups

Recall that a semigroup S is triangularizable over a field k if S embeds
in T (n, k) for some n. An immediate consequence of Theorem 2 is that the
complexity of a finite semigroup S places a lower bound on the dimension
of any faithful triangular representation of S over a finite field.

Corollary 17. Let S be a finite semigroup of Krohn-Rhodes complexity
c > 1. Then S does not embed into T (n, k) for any finite field k and n < c+1.
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It seems natural to ask whether there is a converse to this result, that
is, whether the minimum dimension of a faithful triangular representation
of a triangularizable semigroup is always exactly one more than the Krohn-
Rhodes complexity. In fact, the answer to this question is negative. To
see this, let k be any finite field and consider the four subidentity matrices
in the semigroup T (2, k). These form a semilattice which necessarily has
complexity 0. However, they cannot embed into T (1, k) (or indeed any
T (1, f)), which we saw in the proof Theorem 2 is a zero-group, and hence
has only two idempotents.

However, one might still ask the following rather general question.

Question 18. Let S be a subsemigroup of T (n, k) for some integer n and
finite field k. Is there a straightforward characterization of the complexity
of S?
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