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The effect of surface tension on trapped modes
in water-wave problems

BY ROBERT HARTER, I. DAVID ABRAHAMS* AND MICHAEL J. SIMON

School of Mathematics, The University of Manchester, Oxford Road,
Manchester M13 9PL, UK

In this paper the effect of surface tension is considered on two two-dimensional water-
wave problems involving pairs of immersed bodies. Both models, having fluid of infinite
depth, support localized oscillations, or trapped modes, when capillary effects are
excluded. The first pair of bodies is surface-piercing whereas the second pair is fully
submerged. In the former case it is shown that the qualitative nature of the streamline
shape is unaffected by the addition of surface tension in the free surface condition, no
matter how large this parameter becomes. The main objective of this paper, however, is
to study the submerged body problem. For this case it is found, by contrast, that there
exists a critical value of the surface tension above which it is no longer possible to
produce a completely submerged pair of bodies which support trapped modes. This
critical value varies as a function of the separation of the two bodies. It can be inferred
from this that surface tension does not always play a qualitatively irrelevant role in the
linear water-wave problem.

Keywords: water waves; trapped modes; surface tension; submerged body;
localized oscillations

1. Introduction

For over half a century, there has been considerable interest in answering the
question of under what conditions the two-dimensional linear water-wave
problem (with a prescribed inhomogeneous boundary condition) admits a unique
mathematical solution. As is usual, a uniqueness proof aims to show that the
difference problem in which the boundary conditions are homogeneous (i.e. the
problem for the difference between two solutions of the previous problem) has
only a trivial solution. Although a general uniqueness proof is now known to be
unobtainable, there have been many partial results proving the uniqueness of
certain configurations or classes of systems. For example, Ursell (1950) has
proved uniqueness in the case of a submerged horizontal cylinder lying in
infinitely deep fluid, immersed to any depth, for all frequencies. More recently,
Simon & Ursell (1984) have provided a uniqueness proof for any two-dimensional
system of submerged obstacles that are contained by lines, emanating from some
point on the free surface, that make 458 angles with the horizontal. Until
recently, it was generally believed that the uniqueness proof for all configurations
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would be possible to construct; however, this view was dispelled by McIver
(1996), who provided the first example of non-uniqueness. In that paper, the
so-called ‘inverse method’ was used to construct a difference velocity potential
that satisfies the linear water-wave problem. This potential arises from a pair of
sources placed symmetrically on the free surface, and the sources are chosen to be
separated by a half wavelength so that the potential does not radiate waves to
infinity. Furthermore, there are symmetric pairs of streamlines that separate the
sources from the fluid, any of which can be interpreted as the boundaries of
surface-piercing bodies. The potential represents a non-trivial solution of the
linearized water-wave problem. Since the problem is linear, any scalar multiple of
this solution is also a solution, thus proving non-uniqueness. This was the
first example of a ‘trapped-mode’ solution in two-dimensional free surface
water-wave problems, so-called because the energy of the motion is confined
around the bodies.

More recently, a greater emphasis has been placed on finding other explicit
examples of trapped modes. The first example of trapped modes involving a
submerged obstacle was provided by Evans & Porter (1998). However, this
configuration also included surface-piercing bodies. The first example of a
trapped mode involving only submerged bodies was given by McIver (2000),
who used the same inverse procedure previously outlined. This time, rather
than using a pair of sources, a symmetric combination of submerged dipoles
was placed in the flow, with strengths chosen to guarantee wave cancellation
at infinity. Examples of three-dimensional structures that support trapped
modes are also known. A common feature of these bodies is that they isolate
a portion of the free surface. The three-dimensional analogue of McIver’s
(1996) solution was found by McIver & McIver (1997). In that paper it is
shown that a family of surface-piercing tori support localized oscillations.
More recently, McIver & Porter (2002) have provided numerical evidence to
suggest that a submerged torus can support trapped modes, and McIver &
Newman (2003) have found examples of non-axisymmetric structures that
admit non-unique solutions.

None of the results documented above accounts for the effect of surface tension.
Indeed, to the authors’ knowledge, no previous investigation has been made on
the existence of trapped modes in an unbounded fluid layer in the presence of
surface tension. For simplicity, the focus of this paper will be on the two-
dimensional surface-piercing and submerged examples examined by McIver. The
results will be recreated with surface tension added to see what effect, if any, this
will have. The aim of this is to enhance understanding of whether it is physically
realistic to exclude surface tension from the linear water-wave problem. For both
of these problems, a two-dimensional Cartesian coordinate system (x, y) is
adopted, with the y-axis pointing vertically downwards. The fluid is inviscid and
its depth is considered infinite. In the section to follow, for trapped-mode
solutions, a time-harmonic velocity potential of the form Reffðx; yÞKiutg is
sought, where u is the angular frequency; KZu2/g is the wavenumber for free
surface waves in the absence of surface tension; r is the fluid density; and g is the
acceleration due to gravity. For a trapped mode to exist, the difference velocity
potential f(x, y) must satisfy the homogeneous boundary value problem

V2fZ 0 in the fluid; ð1:1Þ
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vf

vy
CKfK

T

rg

v3f

vx2 vy
Z 0 on the free surface; ð1:2Þ

vf

vn
Z 0 on fixed; rigid boundaries and ð1:3Þ

jVfj/0 as x2 Cy2/N ðyR0Þ: ð1:4Þ

The flow is considered to be incompressible and irrotational, which results in
equation (1.1). Equation (1.2) is the linearized free surface condition including
surface tension T (Billingham & King 2000). Equation (1.3) states that there is no
flow through stationary impenetrable boundaries, and condition (1.4) stipulates
that no waves are radiated to infinity.

Equations (1.1) and (1.2) allow propagating wave solutions of the form
expðGik0xK k0yÞ, where the wavenumber k0 is the positive real root of

Tk30
rg

Ck0KK Z 0: ð1:5Þ

It is convenient to non-dimensionalize the system (1.1)–(1.5) using 1/k0 as the
length-scale, thereby yielding a modified free surface condition

vf

vy
Cð1CsÞfKs

v3f

vx2 vy
Z 0; ð1:6Þ

where sZTk20=rgZðK=k0ÞK1 is a measure of the surface tension for fixed u, r
and g. Equations (1.1), (1.2) and (1.4) are left unchanged by this transformation
of k0ðx; yÞ/ðx; yÞ.

The outline of the paper is as follows: in §2 the work by McIver (1996) on
surface-piercing bodies is extended to include surface tension, and it is shown
that the topological nature of the streamlines is unchanged. For simplicity,
satisfaction of a contact-line condition is ignored in this section; the work is
presented primarily for ease of exposition of the solution procedure. However, as
will be shown in a forthcoming article by Harter et al. (in preparation), the
results are still valid (away from the contact points) for small values of surface
tension s. In §3 the submerged bodies presented in McIver (2000) are considered,
and corresponding results are given for ss0. It is noted that the initially highly
accurate numerical results break down in a particular s-region, and in §4
asymptotic expansions are used to confirm that this is because there is a critical
value of s above which these trapped modes can no longer be constructed. In §5
we investigate how the solution behaves when other parameters are allowed to
vary, with some concluding remarks in §6.

2. Trapped modes around surface-piercing bodies

To derive a potential equivalent to that given by McIver (1996), the method of
Thorne (1953) is followed closely with the straightforward addition of surface
tension. A two-dimensional velocity potential due to a source (i.e. a logarithmic
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singularity) positioned at (0, f ), where fR0, is sought in the form

Fðx; y; t; sÞZ 1

2
ln

r

r 0
Cf1ðx; yÞ

� �
cos utCf2ðx; y; tÞ; ð2:1Þ

where r2Zx2CðyKf Þ2 and r 02Zx2CðyC f Þ2. The harmonic functions f1 and
f2 are such that both ðð1=2Þlnðr=r 0ÞCf1Þ and f2 satisfy equation (1.6), and f2 is
chosen so that F represents an outgoing wave-train at infinity. It turns out that

Fðx; y; t; sÞZ 1

2
ln

r

r 0
C6

N

0

1Csm2

1CsKmKsm3
eKmðyCf Þcos mx dm

� �
cos ut

Kp
1Cs

3sC1
eKðyCf Þcos x sin ut: ð2:2Þ

Here, the integral has a singularity at mZ1, and so is to be interpreted as a
Cauchy principal-value. In particular, when fZ0, a time-harmonic source
potential of the form Re{f(x, y; s)eKiut} can be considered, where

fðx; y; sÞZf1 Cf2 Z
N

0

1Csm2

sm3 CmK1Ks
eKmycos mx dm; ð2:3Þ

in which the integral sign here and henceforth indicates deformation of the
contour below the pole. Note that the principal-value component of this
expression is f1 and the semicircular loop around the singularity at mZ1
yields f2. Expression (2.3) can be split into three via partial fractions as

fðx; y; sÞZ 1

3sC1

N

0

sC1

mK1
C

AC

mKmC

C
AK

mKmK

� �
eKmycos mx dm; ð2:4Þ

where

mGZK
1

2
G

iv

2
and AGZ sG

i

v
with v Z

ffiffiffiffiffiffiffiffiffiffiffiffi
3C

4

s

r
:

Clearly, each of the three resulting integrals has an integrand of the form
a expðKmyÞ cos mx=ðmKm0Þ, where for the first the constants a and m0 are real
but for the latter two they are complex. The integrals can be evaluated easily
using the identities

6
N

0

eimz

mKm0

dm Z eim 0z

E1ðim0zÞKpi ðm02R
C;Rez!0Þ;

E1ðim0zÞCpi ðm02R
C;RezO0Þ;

E1ðim0zÞ ðm0;R
CÞ:

8>><
>>: ð2:5Þ

Note that the principal-value sign is only required for the case m 02R
C, and that

E1 is the exponential integral, defined by

E1ðzÞZ
ðN
z

eKt

t
dt; jarg zj!p;

which has a branch cut along the negative real axis. Finally, it is straightforward
to show by contour integration that, as jxj/N,

fðx; y; sÞwip
sC1

3sC1
eKyCijxj:
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Now that the form of the source potential f and its wave radiation are known,
McIver’s streamline plots can be recreated, and equivalent figures produced when
capillary effects are included.

It is worth reiterating at this stage that the inclusion of surface tension in the
free surface condition alone is insufficient, as there must be a condition at the line
of contact between the free surface and any surface-piercing body. Unfortunately,
the contact-line problem is not well understood by the academic community,
especially for oscillatory motion, and no agreement has been reached on exactly
what condition should be applied there (for several studies on this point, the reader
is referred to articles by Evans (1968), Hocking (1987) and Rhodes-Robinson
(1991)). For the above reasons, the present study will not include an extra
condition to be satisfied at the contact line; implicitly, this results in satisfaction of
the condition of continuity of surface elevation and slope at the contact point
(between fluid in the physical and image regions). The current authors have
recently completed work which takes the present surface-piercing model and
includes one possible contact-line condition (Harter et al. in preparation), which is
the case where the free surface is ‘pinned’ to the surface-piercing bodies.

In the present paper the work of McIver (1996) is considered first because it
allows us to show how surface tension can be included in the source potential and
stream function, and how these expressions can be dealt with analytically and
evaluated exactly. Although the solution here for general s may not be entirely
realistic, it is also reasonable to suppose that for weak surface tension the
contact-line condition may have little effect, as is borne out by the authors’
previously mentioned forthcoming article (Harter et al. in preparation). The
main emphasis here is on an extension of the work of McIver (2000) for which the
bodies are submerged and therefore there is no contact line involved.

McIver (1996) considers two equal sources at (Ga, 0) which produce the non-
dimensionalized velocity potential

f0ðx; yÞZfðxCa; y; 0ÞCfðxKa; y; 0Þ; ð2:6Þ

here, the subscript zero denotes the absence of surface tension (where s and hence
AG vanish). Clearly, as jxj/N,

f0ðx; yÞwpi eijxCajKy Cpi eijxKajKy Z 2pi eijxjKycos a

and so the choice aZp/2 ensures that no waves are radiated to infinity. This
therefore satisfies (1.1), (1.4) and (1.6) (with sZ0). The corresponding stream
function is given by

j0ðx; yÞZ
N

0

eKky

kK1
sin kðxCaÞdkC

N

0

eKky

kK1
sin kðxKaÞ dk ð2:7Þ

and typical streamlines of this flow are shown in figure 1 for aZp/2. It can be
seen that there are pairs of streamlines, emanating from the sources, which are
inclined above the free surface and so separate these singular points from the
fluid. These streamlines can be interpreted as the boundaries of two surface-
piercing bodies that support trapped modes.

When ss0 a wave-free potential can be constructed in an identical way,
namely by placing equal sources at (Gp/2, 0) to give (ignoring a multiplicative
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constant) a stream function

jsðx;yÞZ
N

0

sC1

mK1
C

AC

mKmC

C
AK

mKmK

� �
eKmy sinmðxCp

2
ÞCsinmðxKp

2
Þ

� �
dm

Z2
N

0

sC1

mK1
C

AC

mKmC

C
AK

mKmK

� �
eKmysinðmxÞcosðmp=2Þdm;

ð2:8Þ
here, the pole at mZ1 has been cancelled out, and the constants mG and AG are
as in (2.4). This expression for js(x,y) can again be evaluated via (2.5). The
streamline patterns for a few values of s are shown in figure 2.

It can be seen that the inclusion of surface tension does not change the
streamline patterns greatly, and this has been verified for large values of s. In
fact, it is known (Lighthill 1978, p. 225) that surface tension is the ‘dominant’
effect in water waves of wavelength smaller than approximately 4 mm,
corresponding to k0T1600 mK1, and so sZTk20=rgT18:6 (for water, in which
Tz0.074 N mK1 and rz1000 kg mK3, along with gz9.81 m sK2). Whatever the
effects of surface tension are, it may be expected that they would be seen for s at
approximately 20. However, none of the graphs in figure 2 shows a dramatically
different nature—there are still two surface-piercing bodies that enclose the
source points.

3. Trapped modes around submerged bodies

For the submerged case, McIver (2000) constructs a velocity potential, consisting
of pairs of vertical and horizontal dipoles, which satisfies (1.1), (1.4) and (1.6)
(with sZ0). The dipoles are positioned symmetrically at (Gp/4, h), where h is
allowed to vary. It is observed that, for each hO0, the flow has four saddle-point
stagnation points that lie in the fluid—two in xO0 and two in x!0. Considering
the region xO0, it is argued that there exists a positive value of h, say h 0, that will
ensure that the stream function takes the same value, say j0, at the two stagnation
points when the dipoles are positioned at (p/4, h 0). This means that a streamline
connects the two stagnation points and, it is shown, forms a closed loop. The
argument involves finding positive numbers h1!h 0 and h 2Oh 0 such that

–4 –2 0 2 4
4

2

3

1

0

–1

–2

Figure 1. Recreation of the streamlines originally produced by McIver (1996).
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j1Kj2!0 for hZh1 and j1Kj2O0 for hZh 2 (where j1 and j2 are the respective
stream function values at the stagnation points). Since j is a continuously varying
function of h, there must be a value of h between h1 and h 2 where j1Kj2Z0.
An equivalent argument shows that the dipoles in x!0 need to be positioned at
(Kp/4, h 0). The constant h0 is found numerically to be approximately equal to
0.0547846. When the dipoles are positioned at (Gp/4, h 0), they are enclosed by a
pair of streamlines. These streamlines may therefore be interpreted as a pair of
submerged bodies. To prove that they are submerged, a plot of j along the free
surface shows that j(x, 0)Zj0 for two values of x. These values correspond to the
other branch of the saddle not being interpreted as a body contour (figure 3).

It can also be shown that the stagnation points lie in the fluid by invoking the
argument principle. Let w(z)ZfCij be the complex potential and G be a
positively orientated closed curve. If it is assumed that w 0(z) is meromorphic
inside G, and analytic and non-zero on G, then

1

2pi#G

w 00ðzÞ
w 0ðzÞ dz Z

Xm
iZ1

ziK
Xn
jZ1

pj ;

where zi and pj are the multiplicities of the m zeros and the orders of the n poles
that lie inside G, respectively. By choosing G to be the x and y axes with a quarter
circle of radius R, the existence of stagnation points in the first quadrant can be
verified by noting that there are two values of R for which a small increase in R
leads to a jump of C1 in the value of the integral. The number and magnitude of
these jumps arise due to the fact that w0(z) has two simple zeros in this region.

–10 0 10–20 20
12

8

4

0

–4

–8

–12

–16

–20 –10 0 10 20

8

4

0

12

–10 –5 0 5 10

4

0

–4

–8
(a) (b)

(d )
(c)

6

2

–2

–6

–10 –5 0 5 10

4

0

–4

–8

6

2

–2

–6

Figure 2. The effect of surface tension on McIver’s streamlines when (a) sZ0.4, (b) sZ1 and
(c) sZ20. (d ) For this last value of surface tension, typical streamlines that can be interpreted as
surface-piercing bodies are shown.
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It may be queried that, for submerged obstacles lying so close to the free
surface (figure 3), viscous as well as surface tension effects would be important. If
this were the case then localized oscillations would soon be dissipated. However,
coordinates are scaled on the wavenumber k0 (1.5), and so for long surface waves
(low frequency) the submergence depth need not be small but could be of order
unity or larger. It thus seems reasonable that viscous effects can be neglected
when generalizing McIver’s (2000) study and attention is now turned to the case
when surface tension only is included; expressions for the potentials for
horizontal and vertical dipoles, positioned at (x, h), are now required. The
reader may verify by direct substitution into (1.1) and (1.6) that these are given
respectively by

ð1CsÞfhðx; y; x; hÞZ
xKx

ðxKxÞ2 CðyKhÞ2
C

xKx

ðxKxÞ2 CðyChÞ2

C2ð1CsÞ
N

0

eKmðyChÞsinmðxKxÞ
sm3CmK1Ks

dm ð3:1Þ

and

ð1CsÞfvðx; y; x;hÞZ
yKh

ðxKxÞ2 CðyKhÞ2
K

yCh

ðxKxÞ2CðyChÞ2

K2ð1CsÞ
N

0

eKmðyChÞcosmðxKxÞ
sm3 CmK1Ks

dm: ð3:2Þ

These velocity potentials may be derived by Thorne’s (1953) method or by direct
differentiation of (2.2) in the case f s0. The corresponding stream functions are

ð1CsÞjhðx; y; x;hÞZK
yKh

ðxKxÞ2CðyKhÞ2
K

yCh

ðxKxÞ2CðyChÞ2

K2 ð1CsÞ
N

0

eKmðyChÞcosmðxKxÞ
sm3CmK1Ks

dm ð3:3Þ

0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.5

0.4

0.3

0.2

0.1

0

–0.1

0.5 1.0 1.5 2.0 2.5 3.0
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4

6

8

(b)

(a)

0

( 
 ,

0)
Figure 3. (a) The submerged body in xO0 that supports trapped modes and (b) a plot of the stream

function values on the free surface, both presented in McIver (2000).
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and

ð1CsÞjvðx; y; x; hÞZ
xKx

ðxKxÞ2 CðyKhÞ2
K

xKx

ðxKxÞ2 CðyChÞ2

K2ð1CsÞ
N

0

eKmðyChÞsinmðxKxÞ
sm3CmK1Ks

dm: ð3:4Þ

It can be shown that as jxKxj/N,

fh

fv

( )
/

2p

3sC1
eKðyChÞ sgnðxKxÞeijxKxj

Ki eijxKxj

( )
:

Thus, it follows that the combination

fðx; y; a; hÞZ sin affvðx; y; a; hÞCfvðx; y;Ka; hÞg
Kcos affhðx; y; a; hÞKfhðx; y;Ka; hÞg ð3:5Þ

does not radiate waves to infinity. This potential represents a horizontal and
vertical dipole combination positioned at (a, h), together with an identical
pairing at (Ka, h). The stream function for this oscillatory flow is given by

jðx; y; a; hÞZ sin afjvðx; y; a; hÞCjvðx; y;Ka; hÞg
Kcos afjhðx; y; a; hÞKjhðx; y;Ka; hÞg: ð3:6Þ

McIver’s result is obtained by setting sZ0 in the above. It should also be noted
that both a and h are arbitrary. McIver chose aZp/4 because the submerged
bodies that support trapped modes are most deeply submerged when a is near
this value. Later the case where a is allowed to vary will be considered.

It is convenient to work with the complex potential w(z)ZfCij, which is
given by

wðzÞZ K2z 0e
Kia

ð1CsÞðz2Kz 20Þ
K

2�z 0e
ia

ð1CsÞðz2K�z 2
0Þ
K2ieKia6

N

0

eimðzCz 0Þ

sm3CmK1Ks
dm

C2ieia6
N

0

eimðzK�z 0Þ

sm3CmK1Ks
dm; ð3:7Þ

where zZxCiy, z0ZaCih and �z 0 is the complex conjugate of z 0. The two
integrals in this expression can, as in §2, be decomposed via the use of partial
fractions

1

sm3 CmK1Ks
Z

1

3sC1

1

mK1
C

BC

mKmC

C
BK

mKmK

� �
;

where

BGZK
1

2
G

3i

2v
with mGZK

1

2
G

iv

2
and v Z

ffiffiffiffiffiffiffiffiffiffiffiffi
3C

4

s

r
as before

 !
:

Thus, the complex potential in (3.7) requires the evaluation of integrals of the
form given in (2.5). As before, either m0Z1 or 2m0ZK1Giv. Define

gðzÞZ6
N

0

eimz

mK1
dm Z eizðE1ðizÞGpiÞ; GReðzÞO0:

3139Surface tension effects on trapped modes

Proc. R. Soc. A (2007)



From the definition ofE1(z) and integrals of the form (2.5), it is clear that the complex
potential when evaluated will have branch cuts where argðimGðzCz0ÞÞZp and
argðimGðzK�z0ÞÞZp, i.e. the two branch points lie in y!0 outside the fluid
domain. It is therefore convenient to define alternative branches pG(z) of the
integral (2.5) such that the branch cut of each function lies vertically upwards.
Specifically, this is achieved by writing

pCðzÞZ eimCz
E1ðimCzÞC2pi K

p

2
!argðzÞ!KargðKimCÞ

 !
;

E1ðimCzÞ ðotherwiseÞ;

8><
>:

pKðzÞZ eimKz
E1ðimKzÞK2pi K

p

2
!argðK�zÞ!argðimKÞ

 !
;

E1ðimKzÞ ðotherwiseÞ:

8><
>:

It follows that the non-dimensionalized complex potential can be rewritten as

wðzÞZK
2z0e

Kia

ð1CsÞ z2Kz20
� 	K 2ieKia

3sC1
ðgðzCz0ÞCBCpCðzCz0ÞCBKpKðzCz0ÞÞ

K
2�z0e

ia

ð1CsÞ z2K�z20
� 	C 2ieia

3sC1
ðgðzK�z0ÞCBCpCðzK�z0ÞCBKpKðzK�z0ÞÞ:

ð3:8Þ
This form of the complex potential can be input into a mathematical software
package, such as MATHEMATICA, and the streamlines found by plotting the
contours of its imaginary part. Of course, if sZ0 then there are no complex zeros
of sm3CmK1Ks, and it is not necessary to introduce the functions pG(z). In this
case, the complex potential reduces to

w0ðzÞZ
K2z 0e

Kia

z2Kz20
� 	K 2�z0e

ia

z2K�z20
� 	K2ieKiagðzCz 0ÞC2ieiagðzK�z0Þ: ð3:9Þ

Several results of this analysis are shown in figures 4–6 (for the remainder of
this section, the case aZp/4 will be considered). Figure 4 clearly shows that, as
the value of s is increased, the two stagnation points converge upon either side of
xZp/4 and move closer to the free surface. Figure 5 shows that the dipole
submergence also becomes very small. The streamline plots for two values of s
are shown in figure 6. It should be recalled that an equivalent body, lying in x!0,
is also required for trapped modes to exist. Comparison with the streamline plot
when sZ0 (figure 3) shows that the branch of the saddle that crosses the free
surface is gradually decreasing in size; indeed, when sZ1.1 it cannot be seen on
the contour plot, although magnified plots verify its continued existence. This
again suggests that the stagnation points are moving closer together. It should
also be noted that both the width and height of the submerged bodies increase
with s. However, the bodies are very close to the free surface (when sZ1, for
example, both stagnation points are within 10K9 of the x -axis) and so they might
be considered to be hardly submerged at all. Of course, the results given in
McIver (2000) when sZ0 were already very close to the free surface, but the
inclusion of surface tension pushes them even closer.
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Another point concerning the numerical results is that, as s is increased, the
accuracy of the computed values of the stagnation points gradually decreases. This
can be verified by checking the values of vf=vx and vf=vy at these points. However,
this does not become amajor problem until s exceeds a value of approximately 1.27,
at which point the (previously small) values of vf=vx and vf=vy start to increase
rapidly. Indeed, by around sZ1.275 the results can no longer be taken to be
accurate. This is not due to a problem with the numerical method being employed
(Newton’s method), rather it suggests that the nature of the solution changes close
to this value of surface tension s, and this will be confirmed in §4.

Finally, it should be noted that it is not possible to invoke the argument
principle and to consider a free surface plot for all values of s (and later for all
values of a), in order to verify that the bodies are submerged. However,
numerous checks have been made by the authors for particular values of s and a
to convince themselves of the validity of the results.
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Figure 4. The (a) x and (b) y location of the stagnation points as a function of s (aZp/4).
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Figure 5. Dipole submergence that ensures j1Zj2, as a function of s.
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4. Asymptotic analysis

Given that it becomes more difficult to find h0 as s gets large, it shall be supposed
that there is a critical value of s, say s0, above which there are no submerged bodies
that support trappedmodes which are constructed in this way. The existence of this
limiting value shall be proved via the use of asymptotic expansions.

Suppose that the dipoles are positioned at GaCi3, where j3j/1, so that
z0ZaCi3. Under the assumption that 3Zh0, the value of s for which j1Zj2 is
sought. Put sZs0K3s1Zs0K3ðaCb ln 3Cg3Cd3 ln 3C/Þ, where a, b, g and d
are constants to be determined. (The reason for assuming this particular form for s
will become apparent.) Finally, put zZaC3u, so that the stagnation points (in xO0)
are located at as yet unknown locations, say uZuG, where GRe(uG)O0 since the

stagnation points lie on opposite sides of xZa. These forms can be substituted into
w(z) given by (3.7), which for convenience is scaled by a factor (1Cs), to yield

wðzÞZK
2z 0e

Kia

z2Kz20
K

2�z0e
ia

z2K�z 20
K2ieKiað1CsÞ6

N

0

eimðzCz 0Þ

sm3 CmK1Ks
dm

C2ieiað1CsÞ6
N

0

eimðzK�z0Þ

sm3 CmK1Ks
dm : ð4:1Þ

We shall write w(z)Zw1(z)Cw2(z), where w1(z) constitutes the ‘dipole terms’,
given by the first two terms on the right-hand side of (4.1), with the remainder
making up the ‘integral terms’. The stagnation points are therefore given by

dw1

du
C

dw2

du
Z 0: ð4:2Þ

Expanding w1 in powers of 3 yields

w1ðuÞZ
K2ðu cos aCsin aÞ

3ð1Cu2Þ C
cos a

a
K

3ðu cos aCsin aÞ
2a2

C
32ððu2K1Þcos aC2u sin aÞ

4a3
COð33Þ;
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Figure 6. Submerged bodies in xO0 that support trapped modes, for the cases (a) sZ0.5,
h0Z0.0145873 and (b) sZ1.1, h0Z0.0013002.
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so that

dw1

du
Z

2ðu2K1Þcos aC4u sin a

3ð1Cu2Þ2
K

3 cos a

2a2
C

32ðu cos aCsin aÞ
2a3

COð33Þ: ð4:3Þ

The asymptotic derivation of w2 and its derivative may be found in appendix A.
With these done, the positions of the stagnation points can now be computed up to

and including order 32. To leading order, (4.3) and (A 6) in (4.2) give

u2 C2u tan aK1Z 00 uGZKtan aGsec a:

It can be seen from (A 1) that the leading order term of dw2=du is 3c0(s0), where

c0ðs0ÞZK2ð1Cs0ÞeKia

ðN
0

mðe2iaKe2imaÞ
s0m

3CmK1K s0
dm: ð4:4Þ

Hence, at the next order, the stagnation points are given by

2ðu2K1Þcos aC4u sin a Z
cos a

2a2
K c0ðs0Þ

� �
32ð1Cu2Þ2:

Writing uGZKtan aGsec aC32qG, expressions for qC and qK are found to be,
after some manipulation,

qGZGsec2a
cos a

2a2
K c0ðs0Þ

� �
ðsec aHtan aÞ2:

It can be seen that Im(qG) has the same sign asHIm(c0), and so, if Im(c0)s0, the
stagnation points lie on opposite sides of the free surface, and the body that supports
trapped modes ceases to be submerged. It follows that, to retain the possibility of a
submerged body,

Imðc 0ðs0ÞÞZ 0: ð4:5Þ
For a given value of a, this condition can be used to find the critical value s0. With
aZp/4, s0z1.276997 is obtained. This explains the difficulties encountered when
trying to obtain numerical results for aZp/4, sO1.27.

The next-order terms in the expansion must now be considered to find the
depth of the stagnation points below the free surface and also to find a condition
on 3 that ensures j1Zj2. The stagnation points are determined by

2ðu2K1Þcos aC4u sin a

3ð1Cu2Þ2
K

3 cos a

2a2
C

32ðu cos aCsin aÞ
2a3

K2eKia3ð1Cs0Þðn2ðaÞC i3ðuC iÞn3ðaÞÞK232ðaCb ln 3ÞeKian5ðaÞ

K2eKia3
1Cs0
s0

ðN
0

m eim3ðuCiÞeaðmÞ
ðmC1Þ3

dm Z 0; ð4:6Þ

where ni iZ2; 3; 5ð Þ and eaðmÞ are defined in appendix A, and the asymptotic
expansion of the integral term is given in (A 7). Put uGZKtan aGsec aC
32qGCvG3

3 ln 3C33rG, where vG and rG are to be determined; condition (4.6)
determines these in terms of coefficients a and b in the expansion of s. Then, uG
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can be substituted into the condition j1Zj2, that is,

ImðwðuCÞKwðuKÞÞZ 0: ð4:7Þ

Note that the terms involving g and d in (A 4) are constants, and so they cancel
in equation (4.7), which will take the form of an equation involving 32 and 32 ln 3
terms. As 3 is arbitrary, the coefficients of these terms must separately be
equated to zero, and these two equations can be solved to find a and b. For the
case aZp/4, it is found, omitting the details of the calculations, that azK3.24
and bzK23.2.

As the stagnation points must lie beneath the free surface, the conditions to be
satisfied are, since Im(qG)Z0,

ImðvC ln 3CrCÞO0 and ImðvK ln 3CrKÞO0: ð4:8Þ

Now that a and b are known, constraints on 3 can be formulated. It transpires
that the necessary conditions (4.8) can be reduced to the inequality 3!1.15,
which is clearly valid due to the assumption that j3j/1. Thus, for a given dipole
submergence 3, the approximate value of s that ensures j1Zj2 for aZp/4 is, up
to and including O(3), sZ1.276997C3(3.24C23.2 ln 3), provided 3 is small. This
last equation agrees well with the numerical results found when 3 is less than
approximately 5!10K4, which corresponds to the range 1.19!s!s0. For these
values of 3, the error in the approximation is at most 0.37%.

5. Analysis for varying a

Consider c0(s0), given by (4.4), and recall that it was required to be purely real in
order for submerged bodies to exist. The quantity c0 shall now be considered to
be a function of both a and s0.

Given a particular dipole separation a, the condition on c0(a,s0) allows the
critical value of the surface tension (above which submerged obstacles cannot be
found) to be determined. This is shown in figure 7, which indicates that a critical
surface tension value can be found provided a is not too large. This value
increases with the separation of the bodies, and it appears that s0 diverges to
infinity when a approaches a value close to 0.9. This case shall now be considered
more closely.

First, the path of integration of the integral in (4.4) is rotated (without
crossing any singularities) to lie up the imaginary axis. With the substitution
mZiv, the integral therefore becomes

c0ða; s0ÞZ 2ð1Cs0Þ
ðN
0

vðeiaKeKiaK2avÞ
Kis0v

3 C ivK1K s0
dv:

In the limit s0/N, this becomes

c0ða; s0ÞZK2

ðN
0

vðeiaKeKiaK2avÞ
1C iv3

dv;

R. Harter et al.3144

Proc. R. Soc. A (2007)



and so the condition Im(c0(a, s0))Z0 yields

cos a

ðN
0

v4

1Cv6
ð1KeK2avÞdv Z sin a

ðN
0

v

1Cv6
ð1CeK2avÞdv:

This is satisfied when az0.901924. Therefore, beyond this value of a there is no
critical value for the surface tension, i.e. the submerged bodies which support
trapped modes are possible for all values of s.

Examining expression (4.4) from a different perspective, it can be supposed
that, for every critical value s0, there is a minimum dipole separation, say
amin, below which there are no submerged obstacles that support trapped
modes. Of course, amin is related to the minimum allowable body separation.
For a given s0, amin is given by figure 7. It might be expected that there is also
a maximum dipole separation amax. Figure 8 shows how the dipole
submergence h 0 varies as a function of a, for a few values of s. It can be
seen that h 0/0 as a/amin, where amin is considered to be a function of s. For
the large value sZ100, amin has almost converged to its limiting value as s/
N. The figure is strongly suggestive of a constant value for amax, for all s
values, that is approximately equal to p/2. This indicates why McIver could
not construct submerged bodies for values of a between p/2 and p. Other
points to note about the graph are that the general trend is of decreasing h0 for
increasing s, although for small s there is an initial increase of h0 for values of a
centred around 0.9. In addition, as s increases, the region of validity of a for
submerged trapped modes narrows.

Finally, as a matter of interest, numerical experimentation shows that the
global maximum value of h0 that supports submerged trapped modes is
0.0597177 and is attained when sZ0.013, aZ0.7652. When there is no surface
tension present, the maximum obtainable dipole depth is 0.0547949, which
occurs when aZ0.7756.
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Figure 7. Graph showing how the critical surface tension value varies with a.
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6. Conclusion

It is shown in this paper that trapped modes supported by immersed rigid bodies
can be constructed when surface tension is included in the linearized (inviscid
incompressible irrotational) water-wave problem. Moreover, its exclusion from
the problem is not always justifiable, as its inclusion in a particular submerged
body example changes the qualitative (i.e. topological) nature of the streamline
pattern. This is not just a hypothetical result—the breakdown of the existence of
localized solutions about these submerged bodies occurs at physically realistic
wavelengths, provided that the parameter a is chosen appropriately. For
example, when aZ0.1, s0z0.00055, which in water corresponds to a wavelength
of 0.74 m.

The breakdown of the result may have been foreseeable, as the structures
originally produced in McIver (2000) are particularly unstable, in the sense that
there is only one pair of streamlines that can be interpreted as the boundaries of
bodies. This is in contrast to the numerous choices for the streamlines that were
available in McIver (1996), where the inclusion of surface tension makes no
difference to the final outcome. Nevertheless, it might be advisable to consider
surface tension in any future works, as its inclusion could bring about unexpected
results. For example, current investigations are ongoing as to its effect on wave
trapping on the submerged bodies discussed by Porter (2002a,b).

One interesting line of further work concerns the extension of known
uniqueness proofs to include surface tension. Of particular interest are those
proofs that rely on certain geometric criteria being met, such as those given by
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Figure 8. Plot of dipole submergence against dipole separation, for a few values of s. The values of s
shown are 0 (dash-dotted line), 0.04 (dotted line), 1.277 (dashed line) and 100 (solid line).
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Simon & Ursell (1984). The introduction of capillarity may alter these
conditions, possibly extending or reducing cases of uniqueness; this is currently
being investigated by the authors.

Appendix A

The integral part of (4.1) is written as

w2ðuÞZK2ieKiað1CsÞ6
N

0

eimð2aC3ðuCiÞÞ

dðmÞ dmC2ieiað1CsÞ6
N

0

eim3ðuCiÞ

dðmÞ dm

Z 2ieKiað1CsÞ
ðN
0

eim3ðuCiÞeaðmÞ
dðmÞ dm;

where eaðmÞZe2iaKe2ima and dðmÞZsm3CmK1Ks; we shall also write d 0ðmÞZ
s0m

3CmK1K s0, so that sZs0K3s1 yields dðmÞZd 0ðmÞK3s1ðm3K1Þ. Thus

K
i

2
eiaw2 Z ð1Cs0K3s1Þ

ðN
0

eim3ðuCiÞeaðmÞ
d0ðmÞK3s1ðm3K1Þ dm;

which after some work yields the expansion

K
i

2
eiaw2 Z ð1Cs0Þ

ðN
0

eim3ðuCiÞeaðmÞ
d0ðmÞ dm

C3s1

ðN
0

mðm2K1Þeim3ðuCiÞeaðmÞ
d 2
0ðmÞ

dm

C32s21

ðN
0

mðm2K1Þðm3K1Þeim3ðuCiÞeaðmÞ
d 3
0ðmÞ

dmC/ : ðA 1Þ

The last two integrals in this expression can be expanded to give all terms up to and
including O(32), using the standard series expansion of ex. However, it can be seen
that, when the exponential in the first integrand is expanded in this way up toO(32),
the integral fails to converge (which is why ln 3 terms are needed in the asymptotic
expansion of s). This problem can be dealt with by splitting the integral asðN

0

eim3ðuCiÞeaðmÞ
d0ðmÞ dm Z

ðN
0
eim3ðuCiÞeaðmÞ 1

d0ðmÞK
1

s0ðmC1Þ3
� �

dm

C

ðN
0

eim3ðuCiÞeaðmÞ
s0ðmC1Þ3

dm:

Again, the expansion of ex allows the first integral on the right to be expanded (up
to O(32)), and the second may be evaluated to the required order using the
following relation

2

ðN
0

eKmz

ðmC1Þ3
dm Z 1KzCz2ezE1ðzÞZ f ðzÞ; say; ðA 2Þ
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valid for ReðzÞR0, with

f ðzÞw1KzKz2ðlnðzÞCCÞ ðz/0Þ; ðA 3Þ
where C denotes the Euler–Mascheroni constant. Recalling from §4 that s1ZaC
b ln 3Cg3Cd3 ln 3C/ leads to an expression for w2 of the form

K
i

2
eiaw2wð1Cs0Þ n1C i3ðuC iÞn2K

1

2
32ðuC iÞ2n3


 �

C
1Cs0
s0

ðN
0

eim3ðuCiÞeaðmÞ
ðmC1Þ3

dmC3ðaCb ln 3Cg3Cd3 ln 3Þn4

C i32ðaCb ln 3ÞðuC iÞn5C32ðaCb ln 3Þ2n6; ðA 4Þ

where ni (iZ1,., 6), constants which depend on the spacing a, are given by

ni Z

ðN
0
miK1eaðmÞ 1

d0ðmÞK
1

s0ðmC1Þ3

0
@

1
Adm; iZ1;2;3;

ni Z

ðN
0

miK3ðm2K1ÞeaðmÞ
d 2
0ðmÞ

dm; iZ4;5;

n6 Z

ðN
0

mðm2K1Þðm3K1ÞeaðmÞ
d 3
0ðmÞ

dm:

The integral remaining in (A 4) is evaluated up to the correct order using (A 2)
and (A 3) to give

2

ðN
0

eim3ðuCiÞeaðmÞ
ðmC1Þ3

dmZe2iaf ð3Ki3uÞKf ð3K2iaKi3uÞ

we2ia½1K3ð1KiuÞK32ð1KiuÞ2½ln 3C lnð1KiuÞCg��

K f ðK2iaÞC3ð1KiuÞf 0ðK2iaÞC1

2
32ð1KiuÞ2f 00ðK2iaÞ


 �
: ðA 5Þ

The derivative of the complex potential w2 can now be written down as

K
i

2
eia

dw2

du
Z ið1Cs0Þ½3n2K32ð1KiuÞn3�

Ci3
1Cs0
s0

ðN
0

m eim3ðuCiÞeaðmÞ
ðmC1Þ3

dmCi32ðaCb ln 3Þn5COð33Þ; ðA6Þ

whose integral term may be determined up to O(32), via differentiation of (A 5), as

i3

2

ð1Cs0Þ
s0

½e2 iaCf 0ðK2iaÞ

C23e2 iað1KiuÞ½ln 3Clnð1KiuÞC1=2Cg�C3ð1KiuÞf 00ðK2iaÞ�: ðA7Þ
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