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The effect of surface tension on trapped modes
in water-wave problems

Yy ROBERT HARTER, I. DAVID ABRAHAMS®* AND MICHAEL J. SIMON
By R Ha , I. Da ABRrRAHAMS®* AND MICHAEL J. S

School of Mathematics, The University of Manchester, Ozford Road,
Manchester M13 9PL, UK

In this paper the effect of surface tension is considered on two two-dimensional water-
wave problems involving pairs of immersed bodies. Both models, having fluid of infinite
depth, support localized oscillations, or trapped modes, when capillary effects are
excluded. The first pair of bodies is surface-piercing whereas the second pair is fully
submerged. In the former case it is shown that the qualitative nature of the streamline
shape is unaffected by the addition of surface tension in the free surface condition, no
matter how large this parameter becomes. The main objective of this paper, however, is
to study the submerged body problem. For this case it is found, by contrast, that there
exists a critical value of the surface tension above which it is no longer possible to
produce a completely submerged pair of bodies which support trapped modes. This
critical value varies as a function of the separation of the two bodies. It can be inferred
from this that surface tension does not always play a qualitatively irrelevant role in the
linear water-wave problem.

Keywords: water waves; trapped modes; surface tension; submerged body;
localized oscillations

1. Introduction

For over half a century, there has been considerable interest in answering the
question of under what conditions the two-dimensional linear water-wave
problem (with a prescribed inhomogeneous boundary condition) admits a unique
mathematical solution. As is usual, a uniqueness proof aims to show that the
difference problem in which the boundary conditions are homogeneous (i.e. the
problem for the difference between two solutions of the previous problem) has
only a trivial solution. Although a general uniqueness proof is now known to be
unobtainable, there have been many partial results proving the uniqueness of
certain configurations or classes of systems. For example, Ursell (1950) has
proved uniqueness in the case of a submerged horizontal cylinder lying in
infinitely deep fluid, immersed to any depth, for all frequencies. More recently,
Simon & Ursell (1984) have provided a uniqueness proof for any two-dimensional
system of submerged obstacles that are contained by lines, emanating from some
point on the free surface, that make 45° angles with the horizontal. Until
recently, it was generally believed that the uniqueness proof for all configurations
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would be possible to construct; however, this view was dispelled by Mclver
(1996), who provided the first example of non-uniqueness. In that paper, the
so-called ‘inverse method’ was used to construct a difference velocity potential
that satisfies the linear water-wave problem. This potential arises from a pair of
sources placed symmetrically on the free surface, and the sources are chosen to be
separated by a half wavelength so that the potential does not radiate waves to
infinity. Furthermore, there are symmetric pairs of streamlines that separate the
sources from the fluid, any of which can be interpreted as the boundaries of
surface-piercing bodies. The potential represents a non-trivial solution of the
linearized water-wave problem. Since the problem is linear, any scalar multiple of
this solution is also a solution, thus proving non-uniqueness. This was the
first example of a ‘trapped-mode’ solution in two-dimensional free surface
water-wave problems, so-called because the energy of the motion is confined
around the bodies.

More recently, a greater emphasis has been placed on finding other explicit
examples of trapped modes. The first example of trapped modes involving a
submerged obstacle was provided by Evans & Porter (1998). However, this
configuration also included surface-piercing bodies. The first example of a
trapped mode involving only submerged bodies was given by Mclver (2000),
who used the same inverse procedure previously outlined. This time, rather
than using a pair of sources, a symmetric combination of submerged dipoles
was placed in the flow, with strengths chosen to guarantee wave cancellation
at infinity. Examples of three-dimensional structures that support trapped
modes are also known. A common feature of these bodies is that they isolate
a portion of the free surface. The three-dimensional analogue of Mclver’s
(1996) solution was found by Mclver & Meclver (1997). In that paper it is
shown that a family of surface-piercing tori support localized oscillations.
More recently, Mclver & Porter (2002) have provided numerical evidence to
suggest that a submerged torus can support trapped modes, and Mclver &
Newman (2003) have found examples of non-axisymmetric structures that
admit non-unique solutions.

None of the results documented above accounts for the effect of surface tension.
Indeed, to the authors’ knowledge, no previous investigation has been made on
the existence of trapped modes in an unbounded fluid layer in the presence of
surface tension. For simplicity, the focus of this paper will be on the two-
dimensional surface-piercing and submerged examples examined by Mclver. The
results will be recreated with surface tension added to see what effect, if any, this
will have. The aim of this is to enhance understanding of whether it is physically
realistic to exclude surface tension from the linear water-wave problem. For both
of these problems, a two-dimensional Cartesian coordinate system (z, y) is
adopted, with the y-axis pointing vertically downwards. The fluid is inviscid and
its depth is considered infinite. In the section to follow, for trapped-mode
solutions, a time-harmonic velocity potential of the form Re{o(z, y) '} is
sought, where w is the angular frequency; K=w / g is the wavenumber for free
surface waves in the absence of surface tension; p is the fluid density; and g is the
acceleration due to gravity. For a trapped mode to exist, the difference velocity
potential ¢(z, y) must satisfy the homogeneous boundary value problem

V2¢ =0 in the fluid, (1.1)
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F FYRET =0 on the free surface, (1.2)
d¢ . - .
i 0 on fixed, rigid boundaries and (1.3)
n
IVo| >0 asaz® +y*— o (y=0). (1.4)

The flow is considered to be incompressible and irrotational, which results in
equation (1.1). Equation (1.2) is the linearized free surface condition including
surface tension T (Billingham & King 2000). Equation (1.3) states that there is no
flow through stationary impenetrable boundaries, and condition (1.4) stipulates
that no waves are radiated to infinity.

Equations (1.1) and (1.2) allow propagating wave solutions of the form
exp(tikgz — koy), where the wavenumber k is the positive real root of

Tk}
— Y+ k—K=0. (1.5)
pg

It is convenient to non-dimensionalize the system (1.1)—(1.5) using 1/k as the
length-scale, thereby yielding a modified free surface condition

d¢ B¢
L 411 — =
+(1+s)¢p Sax2ay 0,

dy
where s= Tk2/pg= (K /ky) — 1 is a measure of the surface tension for fixed w, p
and ¢. Equations (1.1), (1.2) and (1.4) are left unchanged by this transformation
of kO(Ia y) - (J?, y)

The outline of the paper is as follows: in §2 the work by Mclver (1996) on
surface-piercing bodies is extended to include surface tension, and it is shown
that the topological nature of the streamlines is unchanged. For simplicity,
satisfaction of a contact-line condition is ignored in this section; the work is
presented primarily for ease of exposition of the solution procedure. However, as
will be shown in a forthcoming article by Harter et al. (in preparation), the
results are still valid (away from the contact points) for small values of surface
tension s. In §3 the submerged bodies presented in McIver (2000) are considered,
and corresponding results are given for s#0. It is noted that the initially highly
accurate numerical results break down in a particular sregion, and in §4
asymptotic expansions are used to confirm that this is because there is a critical
value of s above which these trapped modes can no longer be constructed. In §5
we investigate how the solution behaves when other parameters are allowed to
vary, with some concluding remarks in §6.

(1.6)

2. Trapped modes around surface-piercing bodies
To derive a potential equivalent to that given by Mclver (1996), the method of
Thorne (1953) is followed closely with the straightforward addition of surface

tension. A two-dimensional velocity potential due to a source (i.e. a logarithmic

Proc. R. Soc. A (2007)



3134 R. Harter et al.

singularity) positioned at (0, f), where f>0, is sought in the form

#(o, 1.55) = (35w ) Joosor + ulo et (2)

where 7* = 2%+ (y—f)* and r'>= 2>+ (y+ f)>. The harmonic functions ¢; and
¢» are such that both ((1/2)In(r/r") + ¢1) and ¢, satisfy equation (1.6), and ¢, is
chosen so that @ represents an outgoing wave-train at infinity. It turns out that
1 2 1+ sm?

&(z, y, t;5) = <§ln1/ + )[ om

3 e "™ cos ma dm) cos wt

T 0o 1l+s—m—sm
1+ — .
—1r387+51e W cos x sin wt. (2.2)

Here, the integral has a singularity at m=1, and so is to be interpreted as a
Cauchy principal-value. In particular, when f=0, a time-harmonic source
potential of the form Re{¢(z, y; s)e” "} can be considered, where

—my

[§]

o0 1+ 2
¢<x,y;s>=¢1+¢2=f o

3 cos mx dm, (2.3)
0o sm>+m—1—s

in which the integral sign { here and henceforth indicates deformation of the
contour below the pole. Note that the principal-value component of this
expression is ¢; and the semicircular loop around the singularity at m=1
yields ¢o. Expression (2.3) can be split into three via partial fractions as

d(z, y; ) ! ‘f {S+1 + A+ + A }e_mycos mzdm,  (2.4)

=35+1 olm—1 m—-my m—m_

1,1 i / 4
mi=——i£ and AJ_F=5il with v=14/3+—.
272 v s

Clearly, each of the three resulting integrals has an integrand of the form
a exp(—my) cos mz/(m— mg), where for the first the constants « and m are real
but for the latter two they are complex. The integrals can be evaluated easily
using the identities

where

. E(imgz) =7 (my €RT,Rez<0),
o 1mz
)( % dm=ém* E;(imgz) + 7 (my €RT,Rez>0), (2.5)

0 m— my
E,(imz) (mo & R+)-

Note that the principal-value sign is only required for the case myER™, and that
FE; is the exponential integral, defined by

o —t

e
E(z) = J Tdt, larg z| <,

z
which has a branch cut along the negative real axis. Finally, it is straightforward
to show by contour integration that, as |z| — o,

s+1
3s+1

e "y Tilal

P(z, y; s) ~im

Proc. R. Soc. A (2007)



Surface tension effects on trapped modes 3135

Now that the form of the source potential ¢ and its wave radiation are known,
Meclver’s streamline plots can be recreated, and equivalent figures produced when
capillary effects are included.

It is worth reiterating at this stage that the inclusion of surface tension in the
free surface condition alone is insufficient, as there must be a condition at the line
of contact between the free surface and any surface-piercing body. Unfortunately,
the contact-line problem is not well understood by the academic community,
especially for oscillatory motion, and no agreement has been reached on exactly
what condition should be applied there (for several studies on this point, the reader
is referred to articles by Evans (1968), Hocking (1987) and Rhodes-Robinson
(1991)). For the above reasons, the present study will not include an extra
condition to be satisfied at the contact line; implicitly, this results in satisfaction of
the condition of continuity of surface elevation and slope at the contact point
(between fluid in the physical and image regions). The current authors have
recently completed work which takes the present surface-piercing model and
includes one possible contact-line condition (Harter et al. in preparation), which is
the case where the free surface is ‘pinned’ to the surface-piercing bodies.

In the present paper the work of Mclver (1996) is considered first because it
allows us to show how surface tension can be included in the source potential and
stream function, and how these expressions can be dealt with analytically and
evaluated exactly. Although the solution here for general s may not be entirely
realistic, it is also reasonable to suppose that for weak surface tension the
contact-line condition may have little effect, as is borne out by the authors’
previously mentioned forthcoming article (Harter et al. in preparation). The
main emphasis here is on an extension of the work of Mclver (2000) for which the
bodies are submerged and therefore there is no contact line involved.

Mclver (1996) considers two equal sources at (% a, 0) which produce the non-
dimensionalized velocity potential

do(z, y) = ¢(z + a, 4;0) + p(z—a, y;0); (2.6)

here, the subscript zero denotes the absence of surface tension (where s and hence
A4 vanish). Clearly, as |2|— o,

do(z,y) ~mi el i o = o7 e ¥eos o

and so the choice a=m/2 ensures that no waves are radiated to infinity. This
therefore satisfies (1.1), (1.4) and (1.6) (with s=0). The corresponding stream
function is given by

© e—ky © e—k’y
Yoz, y) = \} sin k(z + a)dk —f—\} sin k(z—a) dk (2.7)
0o k—1 0 k—1

and typical streamlines of this flow are shown in figure 1 for a=m/2. It can be
seen that there are pairs of streamlines, emanating from the sources, which are
inclined above the free surface and so separate these singular points from the
fluid. These streamlines can be interpreted as the boundaries of two surface-
piercing bodies that support trapped modes.

When s#0 a wave-free potential can be constructed in an identical way,
namely by placing equal sources at (+7/2,0) to give (ignoring a multiplicative
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x

Figure 1. Recreation of the streamlines originally produced by Mclver (1996).

constant) a stream function

xps(m,y):\} {S+1+ A+ + A }e_my<sinm(:v+;r)+sinm(x—72r))dm
0

m—1 m—m, m—m_

* 1 A A _
= 2‘} { 5t + 4 }e "sin(maz)cos(ma/2)dm;
o lm—1 m—my m—m_

(2.8)

here, the pole at m=1 has been cancelled out, and the constants my and A4 are
as in (2.4). This expression for y,(z,y) can again be evaluated via (2.5). The
streamline patterns for a few values of s are shown in figure 2.

It can be seen that the inclusion of surface tension does not change the
streamline patterns greatly, and this has been verified for large values of s. In
fact, it is known (Lighthill 1978, p. 225) that surface tension is the ‘dominant’
effect in water waves of wavelength smaller than approximately 4 mm,
corresponding to k> 1600 m ™', and so s= Tk3/pg> 18.6 (for water, in which
T=0.074 Nm~ ' and p=1000 kg m—®, along with g=9.81 m s~ ?). Whatever the
effects of surface tension are, it may be expected that they would be seen for s at
approximately 20. However, none of the graphs in figure 2 shows a dramatically
different nature—there are still two surface-piercing bodies that enclose the
source points.

3. Trapped modes around submerged bodies

For the submerged case, Mclver (2000) constructs a velocity potential, consisting
of pairs of vertical and horizontal dipoles, which satisfies (1.1), (1.4) and (1.6)
(with s=0). The dipoles are positioned symmetrically at (£w/4, h), where h is
allowed to vary. It is observed that, for each h>0, the flow has four saddle-point
stagnation points that lie in the fluid—two in >0 and two in £<0. Considering
the region x>0, it is argued that there exists a positive value of h, say h(, that will
ensure that the stream function takes the same value, say ¥, at the two stagnation
points when the dipoles are positioned at (m/4, hg). This means that a streamline
connects the two stagnation points and, it is shown, forms a closed loop. The
argument involves finding positive numbers h; <hg and ho>hg such that

Proc. R. Soc. A (2007)
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Figure 2. The effect of surface tension on Mclver’s streamlines when (a) s=0.4, (b) s=1 and
(¢) s=20. (d) For this last value of surface tension, typical streamlines that can be interpreted as
surface-piercing bodies are shown.

Y1 — Y5 <0 for h=hy and ¥ — Y5 >0 for h=h, (where y; and ¥, are the respective
stream function values at the stagnation points). Since ¥ is a continuously varying
function of h, there must be a value of h between h; and h, where ¥, —y5=0.
An equivalent argument shows that the dipoles in <0 need to be positioned at
(—m/4, hg). The constant hg is found numerically to be approximately equal to
0.0547846. When the dipoles are positioned at (£ /4, hg), they are enclosed by a
pair of streamlines. These streamlines may therefore be interpreted as a pair of
submerged bodies. To prove that they are submerged, a plot of ¥ along the free
surface shows that y(z, 0) =y for two values of z. These values correspond to the
other branch of the saddle not being interpreted as a body contour (figure 3).

It can also be shown that the stagnation points lie in the fluid by invoking the
argument principle. Let w(z)=¢+iy be the complex potential and I' be a
positively orientated closed curve. If it is assumed that w'(z) is meromorphic
inside I', and analytic and non-zero on I', then

dz = o ,
o Fr wl(z) Z ; % ; by,

where z; and p; are the multiplicities of the m zeros and the orders of the n poles
that lie inside I', respectively. By choosing I' to be the z and y axes with a quarter
circle of radius R, the existence of stagnation points in the first quadrant can be
verified by noting that there are two values of R for which a small increase in R
leads to a jump of +1 in the value of the integral. The number and magnitude of
these jumps arise due to the fact that w'(2) has two simple zeros in this region.

Proc. R. Soc. A (2007)
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Figure 3. (a) The submerged body in 2>0 that supports trapped modes and (b) a plot of the stream
function values on the free surface, both presented in McIver (2000).

It may be queried that, for submerged obstacles lying so close to the free
surface (figure 3), viscous as well as surface tension effects would be important. If
this were the case then localized oscillations would soon be dissipated. However,
coordinates are scaled on the wavenumber kg (1.5), and so for long surface waves
(low frequency) the submergence depth need not be small but could be of order
unity or larger. It thus seems reasonable that viscous effects can be neglected
when generalizing Mclver’s (2000) study and attention is now turned to the case
when surface tension only is included; expressions for the potentials for
horizontal and vertical dipoles, positioned at (&, 7), are now required. The
reader may verify by direct substitution into (1.1) and (1.6) that these are given
respectively by

(1 + 8)pn(z, 9,5,m) = i i

] e A Py s

® e MU sinm(z —£)
+2(1 +S)‘£) B m—1—s dm (3.1)
and
y—n y+m
1 + v\ Y9 & = -
* efm(“")cosm(x—&)
—2(1 + s)‘ﬁ) O S — R dm. (3.2)

These velocity potentials may be derived by Thorne’s (1953) method or by direct
differentiation of (2.2) in the case f # 0. The corresponding stream functions are

y—n y+m
1+ y Ys 6 = -
o e_””(y“’)cosm(:p—&')
21+ s)\}o B m—1—s dm (3.3)
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and
r—¢& r—§
1 + v ) ) ) = -
® ™ sinm(z —§€)
—2(1+ s)‘f0 Bt m—1—s dm. (3.4)

It can be shown that as |[x—§|— o,

d)h N 27 —(y+n) Sgn(:x _E)eﬂz_ﬂ
—€ .
o, 3s+1 —i elle=él

Thus, it follows that the combination
¢<‘Z’7 y? a? h) = Sin a/{qs’U(x? y? a’? h) + ¢’U(x7 y7_a7 h)}
—COos a’{(bh(l‘v Y, a, h) - ¢h(xa Y,—a, h’)} (35)
does not radiate waves to infinity. This potential represents a horizontal and

vertical dipole combination positioned at (a, h), together with an identical
pairing at (—a, h). The stream function for this oscillatory flow is given by

¢((L’, Y, a, h) = sin a{lh(% Y, a, h) + %(33; Y,—a, h)}
—cos a{y,(z, y, a, h) — ¥, (z, y,—a, h)}. (3.6)
Meclver’s result is obtained by setting s=0 in the above. It should also be noted
that both a and h are arbitrary. Mclver chose a=m/4 because the submerged
bodies that support trapped modes are most deeply submerged when a is near
this value. Later the case where a is allowed to vary will be considered.

It is convenient to work with the complex potential w(z)=¢+iy, which is
given by

) P 27,6l [ im(z+zg)
w(z) = 2062 N 2062 =) _216—1(1)( 3e dm
(1+s)(z"—25) (1 +s)(*—%) 0o sm>+m—1—s
S d 3.7
+ 2ie™ , .
1 )(0 sm>+m—1—s " (3.7)

where z=x+iy, zp=a+ih and Z; is the complex conjugate of z,. The two
integrals in this expression can, as in §2, be decomposed via the use of partial
fractions

1 1 1 B, B
3 = + + ,
sm°+m—1—s 3s+1\m—1 m—my m—m_

1, 3i I 4
B+=——+2—1 (with m+=—§i% and v=14/3+— asbefore).
T - S

Thus, the complex potential in (3.7) requires the evaluation of integrals of the
form given in (2.5). As before, either my=1 or 2my= —1=+iv. Define

g9(z) = J( © 0 dm = e”(E,(iz) £ @), +Re(z)>0.

0 m-—
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From the definition of F(z) and integrals of the form (2.5), it is clear that the complex
potential when evaluated will have branch cuts where arg(imy(z+ z5)) = 7 and
arg(im4(z—2zy)) =, i.e. the two branch points lie in y<0 outside the fluid
domain. It is therefore convenient to define alternative branches p4 (z) of the
integral (2.5) such that the branch cut of each function lies vertically upwards.
Specifically, this is achieved by writing

T
. E (i +2m |[—=< < —arg(—i
pa(2) = e 1(imy 2) i ( 5 arg(z) arg( 1m+)>,

E\(im4 2) (otherwise),

im_z Ey (im_z) —2mi - z < arg(_z) < al"g(im_) s
p—(z) =" 2

Ei(im_2) (otherwise).

It follows that the non-dimensionalized complex potential can be rewritten as

ia —ia

2zpe” 2ie
w(z) =— e 5)(z2 —zg) B (9(z+ 2zy) + Bipy(z + 2z9) + B_p_(z + 2p))
27,el" 2iel?

A+ 9)(F—7)  Bs+1 (9(z—7%) + B1p+(2—7) + B_p_(2— %))

(3.8)

This form of the complex potential can be input into a mathematical software
package, such as MATHEMATICA, and the streamlines found by plotting the
contours of its imaginary part. Of course, if s=0 then there are no complex zeros
of sm®+m—1—s, and it is not necessary to introduce the functions p (2). In this
case, the complex potential reduces to
—la = 1a
wy(z) = 22206 5 2;06_2 —2ie g(z + zg) + 2ieg(z— Zp). (3.9)
(Z2-4) (#—%)

Several results of this analysis are shown in figures 4-6 (for the remainder of
this section, the case a=m/4 will be considered). Figure 4 clearly shows that, as
the value of s is increased, the two stagnation points converge upon either side of
z=m/4 and move closer to the free surface. Figure 5 shows that the dipole
submergence also becomes very small. The streamline plots for two values of s
are shown in figure 6. It should be recalled that an equivalent body, lying in <0,
is also required for trapped modes to exist. Comparison with the streamline plot
when s=0 (figure 3) shows that the branch of the saddle that crosses the free
surface is gradually decreasing in size; indeed, when s=1.1 it cannot be seen on
the contour plot, although magnified plots verify its continued existence. This
again suggests that the stagnation points are moving closer together. It should
also be noted that both the width and height of the submerged bodies increase
with s. However, the bodies are very close to the free surface (when s=1, for
example, both stagnation points are within 10 ~? of the z-axis) and so they might
be considered to be hardly submerged at all. Of course, the results given in
Mclver (2000) when s=0 were already very close to the free surface, but the
inclusion of surface tension pushes them even closer.

Proc. R. Soc. A (2007)
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Figure 4. The (a) = and (b) y location of the stagnation points as a function of s (a=m/4).
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S

Figure 5. Dipole submergence that ensures y; =1v5», as a function of s.

Another point concerning the numerical results is that, as s is increased, the
accuracy of the computed values of the stagnation points gradually decreases. This
can be verified by checking the values of d¢/dz and d¢/dy at these points. However,
this does not become a major problem until s exceeds a value of approximately 1.27,
at which point the (previously small) values of d¢p/dz and d¢/dy start to increase
rapidly. Indeed, by around s=1.275 the results can no longer be taken to be
accurate. This is not due to a problem with the numerical method being employed
(Newton’s method), rather it suggests that the nature of the solution changes close
to this value of surface tension s, and this will be confirmed in §4.

Finally, it should be noted that it is not possible to invoke the argument
principle and to consider a free surface plot for all values of s (and later for all
values of a), in order to verify that the bodies are submerged. However,
numerous checks have been made by the authors for particular values of s and a
to convince themselves of the validity of the results.
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Figure 6. Submerged bodies in >0 that support trapped modes, for the cases (a) s=0.5,
hy=0.0145873 and (b) s=1.1, hy=0.0013002.

4. Asymptotic analysis

Given that it becomes more difficult to find hj as s gets large, it shall be supposed
that there is a critical value of s, say sy, above which there are no submerged bodies
that support trapped modes which are constructed in this way. The existence of this
limiting value shall be proved via the use of asymptotic expansions.

Suppose that the dipoles are positioned at +a+ie, where |¢|<K<1, so that
zo=a+ie. Under the assumption that e=hg, the value of s for which y;=y5 is
sought. Put s= sy —es; = sy —e(a+ B Ine+ ye+ delne+---), where o, B, v and 6
are constants to be determined. (The reason for assuming this particular form for s
will become apparent.) Finally, put z= a+ eu, so that the stagnation points (in 2> 0)
are located at as yet unknown locations, say u=wu 4, where +Re(u ) >0 since the
stagnation points lie on opposite sides of = a. These forms can be substituted into
w(2) given by (3.7), which for convenience is scaled by a factor (1+s), to yield

22067'1(1 2zoeia o )(00 eim(z+zu)
=— — —2ie (1 + - d
w(z) 22—2(2) 22—2(2) e ( S) 0 sm3+m—1—s m
i © eim(zféo) 1
+2ie'*(1 +s))(0 o S R L (4.1)

We shall write w(z)=w(z)+ un(z), where w;(z) constitutes the ‘dipole terms’,
given by the first two terms on the right-hand side of (4.1), with the remainder
making up the ‘integral terms’. The stagnation points are therefore given by

dw1 d'lUQ
—+—=0. 4.2
du du (42)
Expanding w; in powers of ¢ yields
—2(ucos a+sina) cosa ¢&(ucosa+sin a)
wl(u) = 2 + - 2
e(1 + u?) a 2a
20002 .
-1 +2
e ((u )cos a + 2u sin a) + 0(Y),

4a?

+
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so that
duw; _ 2(u* —1)cos a —|—24u sina ¢ 0032 L & (u cos a3+ sin a) + 0. (4.3)
du 5(1 + u2) 2a 2a

The asymptotic derivation of w, and its derivative may be found in appendix A.
With these done, the positions of the stagnation points can now be computed up to

and including order ¢*. To leading order, (4.3) and (A 6) in (4.2) give
w? +2utan a — 1 = 0= uy = —tan a=sec a.

It can be seen from (A 1) that the leading order term of dw,/du is ecy(sy), where

0 m(eQia _e2ima)

dm. (4.4)

o) = =201+ sp)e ™ || —E—

Hence, at the next order, the stagnation points are given by

2(u* —1)cos a + 4u sin a = (C;)Z;L — CO(SO)>€2(1 + u?)?.

Writing w4 =—tan atsec a+ qui, expressions for ¢, and g_ are found to be,
after some manipulation,

cos a
2a?
It can be seen that Im(q¢4 ) has the same sign as FIm(c¢y), and so, if Im(¢q) #0, the
stagnation points lie on opposite sides of the free surface, and the body that supports

trapped modes ceases to be submerged. It follows that, to retain the possibility of a
submerged body,

— co(so))(sec aFtan a)’.

4+ = isecZa(

Im(cy(sp)) = 0. (4.5)

For a given value of a, this condition can be used to find the critical value s5. With
a=7/4, s5=1.276997 is obtained. This explains the difficulties encountered when
trying to obtain numerical results for a=m/4, s>1.27.

The next-order terms in the expansion must now be considered to find the
depth of the stagnation points below the free surface and also to find a condition
on ¢ that ensures ¥, =1v,. The stagnation points are determined by

2(u* — 1)cos a + 4usin a _ecosa ¢*(u cos a + sin a)
e(1 + u?)? 2a’ 243

20 e(1 + ) (naa) + ie(u + 1)ng (@) =26 (& + B In e)e " n5(a)

1 o ime(u+i)
e T % J me a(m) dm =0, (4.6)

s Jo  (m+1)>?

where n;(i=2,3,5) and e,(m) are defined in appendix A, and the asymptotic
expansion of the integral term is given in (A 7). Put uy=—tan atsec a+
e?qy + vy’ In e+ *ry, where vy and r4 are to be determined; condition (4.6)
determines these in terms of coefficients a« and @ in the expansion of s. Then, u 1
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can be substituted into the condition ¥ =15, that is,
Im(w(uy)—w(u_)) =0. (4.7)

Note that the terms involving y and ¢ in (A 4) are constants, and so they cancel
in equation (4.7), which will take the form of an equation involving e* and & In &
terms. As e is arbitrary, the coefficients of these terms must separately be
equated to zero, and these two equations can be solved to find a and . For the
case a=m/4, it is found, omitting the details of the calculations, that a= —3.24
and f= —23.2.

As the stagnation points must lie beneath the free surface, the conditions to be
satisfied are, since Im(q4)=0,

Im(vyIne+ry)>0 and Im(v_Ine+r)>0. (4.8)

Now that a and @ are known, constraints on ¢ can be formulated. It transpires
that the necessary conditions (4.8) can be reduced to the inequality e<1.15,
which is clearly valid due to the assumption that |e| << 1. Thus, for a given dipole
submergence ¢, the approximate value of s that ensures ¢, =y, for a=m/4 is, up
to and including O(e), s=1.276997 +&(3.24+23.2 In ¢), provided ¢ is small. This
last equation agrees well with the numerical results found when ¢ is less than
approximately 5X 10~ % which corresponds to the range 1.19<s<s,. For these
values of ¢, the error in the approximation is at most 0.37%.

5. Analysis for varying a

Consider cy(sp), given by (4.4), and recall that it was required to be purely real in
order for submerged bodies to exist. The quantity ¢, shall now be considered to
be a function of both a and s.

Given a particular dipole separation a, the condition on c¢q(a,sy) allows the
critical value of the surface tension (above which submerged obstacles cannot be
found) to be determined. This is shown in figure 7, which indicates that a critical
surface tension value can be found provided a is not too large. This value
increases with the separation of the bodies, and it appears that s, diverges to
infinity when a approaches a value close to 0.9. This case shall now be considered
more closely.

First, the path of integration of the integral in (4.4) is rotated (without
crossing any singularities) to lie up the imaginary axis. With the substitution
m=1iv, the integral therefore becomes

o ,U(eia_e—ia—2av)

co(a, sp) = 2(1 + 50)[ do.

0 —isgvd Fiv—1— s
In the limit sy— oo, this becomes

o ia —ia—2a'u)

v(e' —e
co(a,sp) Z_QL 1 +i0°

dv,
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Figure 7. Graph showing how the critical surface tension value varies with a.

and so the condition Im(¢y(a, sp)) =0 yields

0

——— (1 + e ?)dw.

© 4
v —2av :
cos aJ —(1—e )dv—smaj 5

o 1+ o 1+w

This is satisfied when a=0.901924. Therefore, beyond this value of a there is no
critical value for the surface tension, i.e. the submerged bodies which support
trapped modes are possible for all values of s.

Examining expression (4.4) from a different perspective, it can be supposed
that, for every critical value sy, there is a minimum dipole separation, say
Gmin, below which there are no submerged obstacles that support trapped
modes. Of course, a,,;, is related to the minimum allowable body separation.
For a given sj, @i, is given by figure 7. It might be expected that there is also
a maximum dipole separation a,... Figure 8 shows how the dipole
submergence h, varies as a function of a, for a few values of s. It can be
seen that hg—0 as a— a,,i,, Where a,,;, is considered to be a function of s. For
the large value s=100, a.,;, has almost converged to its limiting value as s—
. The figure is strongly suggestive of a constant value for a,., for all s
values, that is approximately equal to /2. This indicates why Mclver could
not construct submerged bodies for values of a between w/2 and m. Other
points to note about the graph are that the general trend is of decreasing hq for
increasing s, although for small s there is an initial increase of hq for values of a
centred around 0.9. In addition, as s increases, the region of validity of a for
submerged trapped modes narrows.

Finally, as a matter of interest, numerical experimentation shows that the
global maximum value of hqy that supports submerged trapped modes is
0.0597177 and is attained when $s=0.013, a=0.7652. When there is no surface
tension present, the maximum obtainable dipole depth is 0.0547949, which
occurs when a=0.7756.
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Figure 8. Plot of dipole submergence against dipole separation, for a few values of s. The values of s
shown are 0 (dash-dotted line), 0.04 (dotted line), 1.277 (dashed line) and 100 (solid line).

6. Conclusion

It is shown in this paper that trapped modes supported by immersed rigid bodies
can be constructed when surface tension is included in the linearized (inviscid
incompressible irrotational) water-wave problem. Moreover, its exclusion from
the problem is not always justifiable, as its inclusion in a particular submerged
body example changes the qualitative (i.e. topological) nature of the streamline
pattern. This is not just a hypothetical result—the breakdown of the existence of
localized solutions about these submerged bodies occurs at physically realistic
wavelengths, provided that the parameter a is chosen appropriately. For
example, when a=0.1, so=0.00055, which in water corresponds to a wavelength
of 0.74 m.

The breakdown of the result may have been foreseeable, as the structures
originally produced in Mclver (2000) are particularly unstable, in the sense that
there is only one pair of streamlines that can be interpreted as the boundaries of
bodies. This is in contrast to the numerous choices for the streamlines that were
available in Mclver (1996), where the inclusion of surface tension makes no
difference to the final outcome. Nevertheless, it might be advisable to consider
surface tension in any future works, as its inclusion could bring about unexpected
results. For example, current investigations are ongoing as to its effect on wave
trapping on the submerged bodies discussed by Porter (2002a,b).

One interesting line of further work concerns the extension of known
uniqueness proofs to include surface tension. Of particular interest are those
proofs that rely on certain geometric criteria being met, such as those given by
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Simon & Ursell (1984). The introduction of capillarity may alter these

conditions, possibly extending or reducing cases of uniqueness; this is currently
being investigated by the authors.

Appendix A

The integral part of (4.1) is written as

) 0 eim(2a+s(u+i)) ) o ime(u+ti)
U)Q(U,) = —2ieﬂ(”(1 + 8) J[O de + Qiem(l + S) )(0 de
) o Lime(uti) ( )
[§] e,\m
=2ie (1 +s)| ———~dm,

where ¢,(m) = ** —e*"* and d(m) = sm® + m — 1 —s; we shall also write dy(m)=
som® +m — 1 — s, so that s=s,—es; yields d(m)= dy(m)—es;(m> —1). Thus

% ime(u+i)
[ am

1 .
——e"wy, = (1 4+ 55—e8

2 0 do(m)—es(m®—1)
which after some work yields the expansion
s o ime(u+i) ( )
i e e.(m
——e"wy, = (1 +5 —=2dm
2 2 ( 0) JO do(m)
£ 2 _ 1 ime(u+i)
+ e J m{m )ze ea(m) dm
0 dj(m)
0 2 _ 1 3 _ 1 ime(u+i)
+828%J m(m )(m 3 Je () dm+---. (A1)
0 dy(m)

The last two integrals in this expression can be expanded to give all terms up to and
including O(e?), using the standard series expansion of e”. However, it can be seen
that, when the exponential in the first integrand is expanded in this way up to O(e?),
the integral fails to converge (which is why In e terms are needed in the asymptotic
expansion of s). This problem can be dealt with by splitting the integral as

o ime(u+i) o ) 1 1
J e 6a(m) dm = J elme(u-H) ea(m)< _ 3>dm
0 do(m) 0 do(m)  sy(m +1)

0 eime(u+i)e (m)
J e el g,

0 s(m+1)>°

Again, the expansion of e” allows the first integral on the right to be expanded (up
to O(¢?)), and the second may be evaluated to the required order using the
following relation

2[0 (anl)Sdm =1—z+7eE(2) = f(2), say, (A2)
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valid for Re(z) > 0, with
f(z) ~1=2=2"(In(2) + C) (2—0), (A 3)

where C' denotes the Euler-Mascheroni constant. Recalling from §4 that s; = o+
Blne+ ye+ deln e+ ---leads to an expression for w, of the form

. 1
—%emu@ ~(1+s) [nl +ie(u +1i)ny — 582(u +i)%n

1 © 1me(u+1)
+ T % J 6(m)dm-l-s(oz—l-ﬁlne-i-ye-l-éelne)

s Jo (m+1)
+ie?(a+ BIne)(u+i)ng + & (a + B1ne)’ng, (Ad)
where n; (i=1, ..., 6), constants which depend on the spacing a, are given by
® o 1 1
n=| m e, (m — dm, 1=1,2,3,
Z JO o) do(m)  sy(m+1)°

© 1—3 2 1
n; =J i (m2 Jea(m) dm, i=4,5,
0 dg(m)

_ (" m(m® = 1)(m® — e, (m)
ng = Jo d%(m) dm

The integral remaining in (A 4) is evaluated up to the correct order using (A 2)
and (A 3) to give

o ime(u+i) .
J M) Gy = (e —iew) — (e — Zia—iew)
o (m+1)

~e2i“[1—£(1—iu)—€2( —lU) [ln€+h’l( —IU)+’YH

1
— {f(—Qia) + e(1—iu)f' (—2ia) + 532(1 —iu)?f"(—2ia)|. (A5)
The derivative of the complex potential wy can now be written down as
i j,dw .
—3e d—uQ =i(1+ s9)[ens — &2 (1 —iu)ny)
1 % ime(u+i)
+ie +SOJ me &alm )dm+1e (a+B1ne)ns + O(e*), (A6)
S Jo (m + 1)
whose integral term may be determined up to O(e?), via differentiation of (A 5), as
ie (1+ ;
g( 8080) [eZIG +fl(_21a)
+ 2ee* (1 —iu)[Ine + In(1 —iu) + 1/2 4+ v] + (1 —iu)f"(—2ia)]. (A7)
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