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Abstract Exotic option contracts typically specify a contingency upon an underlying asset price monitored at a
discrete set of times. Yet, techniques used to price such options routinely assume continuous monitoring leading
to often substantial price discrepancies. A brief review of relevant option-pricing methods is presented. The pric-
ing problem is transformed into one of Wiener–Hopf type using a z-transform in time and a Fourier transform in
the logarithm of asset prices. The Wiener–Hopf technique is used to obtain probabilistic identities for the related
random walks killed by an absorbing boundary. An accurate and efficient approximation is obtained using Padé
approximants and an approximate inverse z-transform based on the trapezoidal rule. For simplicity, European bar-
rier options in a Gaussian Black–Scholes framework are used to exemplify the technique (for which exact analytic
expressions are obtained). Extensions to different option contracts and options driven by other Lévy processes are
discussed.

Keywords Discrete monitoring · Fourier transform · Option pricing · Padé approximants · Wiener–Hopf
technique · z-transform

1 Introduction

1.1 Conceptual background

A derivative is an asset whose value is contractually established by the unknown future behaviour of some under-
lying assets. This work concentrates on pricing derivatives called European barrier options where the underlying
asset is monitored discretely. A brief background to option pricing and necessary definitions are given below.
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374 R. Green et al.

A European call option (priced Ct at time t) on an asset (whose price at time t is denoted St ) gives the holder the
right, without obligation, to buy the asset for the strike price K at expiry time T . Clearly,1 it has payoff (ST − K)+.
A European put (priced Pt ) gives the holder the right, without obligation, to sell the asset at expiry T for strike price
K and has payoff (K − ST )+.

So called ‘exotic’ contracts, barrier options are like their corresponding ‘vanilla’ counterparts above, but are
‘knocked-out’ (become worthless when) or ‘knocked-in’ (worthless unless) a specified barrier is crossed before
expiry. For example, a down-and-out option with barrier level D is rendered worthless if ST = inf0�t�T {St } < D.

1.2 Mathematical background to option pricing

1.2.1 Asset models

A bank deposit B0 is assumed to be risk-free and to accrue interest at rate r so that Bt is available for withdrawal
at time t with certainty. Seen another way, the risk-free rate of return r is payment for their borrowing capital,
compensation for the time value of money. Risk-free investments are modelled by

dBt = rBtdt, Bt = B0ert . (1)

Other investments such as equity stocks St do not guarantee a return since, for example, trading prices and
dividend payments depend on investor sentiment and market conditions. The classical model for risky-assets prices
(with drift µ and volatility σ ) is exponential Brownian motion

dSt = µStdt + σStdWt, St = S0eXt , (2)

where

dXt =
(

µ − σ 2

2

)
dt + σdWt, X0 = 0. (3)

It is composed of a deterministic term accounting for expected growth and a random term covering possible var-
iation. Here the random term Wt is a Wiener process,2 which has stationary, independent, normally distributed
increments with mean zero and variance �t .

Once underwritten options can subsequently be traded and obtain a market price. When different assets depend
on the same source of risk they must be priced consistently, otherwise it may be possible to construct a portfolio
which entirely eliminates the risk while guaranteeing a return greater than the risk-free rate. This would give rise
to what is known as an arbitrage opportunity (or ‘free lunch’) and market demand would affect price movements.

Consider a portfolio (value �t ) consisting of a stock St , a European put Pt and a short (i.e., the investor has sold
or written) call −Ct with the same strike K and expiry T . At expiry (t = T ) the portfolio has value

�T = ST + (K − ST )+ − (ST − K)+ = K, (4)

as does a bank deposit of Bt = Ke−r(T −t). Clearly, there must be put–call parity

Pt + St = Ct + Bt , (5)

otherwise, without any investment, either borrowing Bt and buying the portfolio �t (when �t < Bt ) or selling the
portfolio �t and lending Bt (when �t > Bt ) results in a guaranteed profit |�t − Bt |.

Similarly, the combination of an up/down in option with an up/down out option clearly replicates the payoff of
the corresponding vanilla contract and must be priced accordingly.

1 With notation (x)+ = x if x � 0, otherwise, (x)+ = 0.
2 A Brownian motion or Wiener process Wt (t � 0) is a continuous trajectory with W0 = 0 whose increments Wt − Ws (t � s) are
normally distributed with mean 0 and variance t − s, and increments for non-overlapping time intervals are independent.
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Pricing financial claims contingent upon an underlying asset monitored at discrete times 375

Table 1 Specifics of common option contracts

Contract Payoff Domain Boundary conditions

Long forward ST − K [0,∞)

European call (ST − K)+ [0,∞) 0 as St → 0, St as St → ∞
European put (K − ST )+ [0,∞) Ke−r(T −t) as St → 0, 0 as St → ∞
Down and out call (ST − K)+ [D,∞) 0 if St � D, St as St → ∞
Down and in call 0 [D,∞) Call if St � D, 0 as St → ∞
Double barrier (ST − K)+ [D,U ] 0 if St � D or St � U

1.2.2 PDE approach

The ideas upon which modern option pricing is based were introduced by Black and Scholes [1]. Modelling an
asset price as an exponential Brownian motion (2), they showed that a portfolio obtained by writing an option and
buying a quantity (dynamically predetermined by the movement of the call price with respect to the underlying) in
the underlying asset,

Vt (t, St ) = −Ct(t, St ) + ∂Ct

∂St

St , (6)

could be constructed which eliminated randomness. The instantaneous (before rebalancing) gain in the portfolio
value is

dVt = −dCt + ∂Ct

∂St

dSt , (7)

which by Itô’s Lemma3 (‘dW 2
t = dt’) gives

dCt = −
((

∂Ct

∂t
+ µSt

∂Ct

∂St

+ σ 2S2
t

∂2Ct

∂S2
t

)
dt + σSt

∂Ct

∂St

dWt

)
, (8)

dVt = −
(

∂Ct

∂t
+ 1

2
σ 2S2

t

∂2Ct

∂S2
t

)
dt. (9)

Then, by arbitrage arguments, the growth in this portfolio’s value has to be the risk-free rate r ,

dVt = r

(
−Ct + ∂Ct

∂St

St

)
dt, (10)

from which the famous Black–Scholes PDE is obtained as
∂Ct

∂t
+ rSt

∂Ct

∂St

+ 1

2
σ 2S2

t

∂2Ct

∂S2
t

= rCt . (11)

By recourse to a log-transform, Eq. (11) reduces to a (backward) heat equation. Option prices under continuous
monitoring are obtained by solving (11) subject to the appropriate boundary and terminal conditions as specified
by the payoff function. The specifics for some common option contracts (with strike K , lower barrier level D and
upper barrier level U ) and the corresponding boundary conditions are compared in Table 1.

Introduce the notation

φ(x) = 1√
2π

e− x2
2 (12)

3 The expression ‘dW 2
t = dt’ is shorthand for the fact that for any partition 0 = t

(n)
0 < t

(n)
1 < · · · < t

(n)
n of [0, t] with maxj |t (n)

j+1−t
(n)
j | →

0 as n → ∞, limn→∞
∑n−1

j=0 |W
t
(n)
j+1

− W
t
(n)
j

|2 = t in a mean square sense. If Xt = at dt + bt dWt (at , bt ∈ R) and f (x) ∈ C2(R),

then Taylor expansion yields f (Xt ) = f (X0) + ∫ t

0 f ′(Xs)asds + ∫ t

0 f ′(Xs)bsdWs + 1
2

∫ t

0 f ′′(Xs)b
2
s ds or in SDE notation df (Xt ) =

f ′(Xt )dXt + 1
2 f ′′(Xt )b

2
t dt . For example, if Yt = eXt (f (x) = ex ), then dYt = (at + 1

2 b2
t )Yt dt + btYt dWt .
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376 R. Green et al.

for the density of the standard normal distribution and

�(x) =
∫ x

−∞
φ(η)dη (13)

for its cumulative value. Then, for the European call option, Eq. 11 has a solution in terms of �(x):

Ct (St ) = St� (d1) − Ke−r(T −t)� (d2) , (14)

where d1 = log(St /K)+
(
r+ 1

2 σ 2
)
(T −t)

σ
√

T −t
and d2 = d1 − σ

√
T − t . For the case of the (continuously monitored) down-

and-out European barrier (level D) option, Eq. 11 can be solved by the method of images to give

CDO
t (St ) = C̃t (St ) −

(
D

St

) 2r

σ2 −1

C̃t

(
D2

St

)
, (15)

where C̃t (St ) is the European call price with payoff (ST − max {D,K})+. The second term solves (11), equates
with C̃t (St ) on the boundary St = D and vanishes on the terminal boundary (t = T ) for ST > max {D,K}.
1.2.3 Feynman–Kac formula

Crucially, in deriving (11) all terms dependent on the drift of the underlying asset are eliminated. Indeed, the drift
coefficient µSt has been replaced by rSt . In probabilistic terms this corresponds to pricing options using a prob-
ability measure Q (equivalent to statistical measure P) that makes the discounted underlying asset process e−rt St

a martingale (or ‘fair game’ not being expected to win or loose), i.e., E
[

e−rT ST

∣∣Ft

] = e−rt St , for all t and T

(t < T ), where filtration Ft represents the history of the process. Using the new probability measure, the expected
return on all financial contracts are equal to the return on the risk-free bank account. In other words, assets are priced
using a discounted expectation in a world where investors are indifferent to risk considerations. For this reason the
new measure is called the ‘risk-neutral probability measure’. Formulation of the fundamentals on the martingale
theory of asset pricing are developed in [2–4].

Practically the change from the statistical probability measure P to the risk-neutral probability measure Q means
instead of using the statistical process

dSt = µStdt + σStdWt, (16)

where Wt is a P-Brownian motion, the risk-neutral process

dSt = rStdt + σStdW̃t (17)

is used where W̃t = Wt + (µ−r)
σ

t is a Q-Brownian motion (the existence of a suitable Q is guaranteed by the
Cameron–Martin–Girsanov Theorem), so as the discounted price S̃t = e−rt St becomes a martingale, i.e., it is
driftless dS̃t = σ S̃tdW̃t .

The Feynman–Kac Theorem ensures the equivalence between pricing (under no arbitrage) using expectation and
solving the Black–Scholes PDE. The Feynman–Kac formula for the price of an European call is

Ct = EQ

[
e−r(T −t) (ST − K)+

∣∣∣Ft

]
, (18)

and under Q,

ST = St exp

[(
r − σ 2

2

)
(T − t) + σ

√
T − tZ

]
, (19)

where Z ∼ N (0, 1). The solution (14) to the Black–Scholes PDE (11) is obtained as

Ct = e−r(T −t)

∫ ∞

−∞

(
Ste

(
r− σ2

2

)
(T −t)+σ

√
T −tξ − K

)+
φ(ξ)dξ (20)

= St

∫ ∞

−d2

φ(ξ − σ
√

T − t)dξ − Ke−r(T −t)

∫ ∞

−d2

φ(ξ)dξ (21)

= St

(
1 − �

(
−d2 − σ

√
T − t

))
− Ke−r(T −t) (1 − �(−d2)) (22)

= St� (d1) − Ke−r(T −t)� (d2) . (23)
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Pricing financial claims contingent upon an underlying asset monitored at discrete times 377

1.2.4 Formula in Fourier space

In this work, the derivation of a pricing formula for (discretely monitored) barrier options is conducted in Fourier
space. It is useful to have European call and put prices in the same form. These are now presented.

Denote by ϕ(x) the probability density of RT = log (ST /St ) and w(x) an option payoff function in terms of RT .
Then, employing Parseval’s identity, the value of the option is

Vt = e−r(T −t)

2π

∫ ∞+iν

−∞+iν
ŵ(−z)ϕ̂(z)dz, (24)

where ŵ(z) is the Fourier transform of the payoff and ϕ̂(z) is the Fourier transform of the distribution.4 The integra-
tion path ν = Im z must lie where both ŵ(z) and ϕ̂(z) are well defined. For the (Gaussian) Black–Scholes model,
ϕ̂(z) is entire and so allows ν = Im z ∈ (−∞,∞). For a call,

ŵ(z) =
∫ ∞

−∞
St

(
ex − ek

)+
eizxdx = −St

e(1+iz)k

z(z − i)
, Im z ∈ (1,∞) (25)

and similarly, for a put,

ŵ(z) =
∫ ∞

−∞
St

(
ex − ek

)+
eizxdx = −St

e(1+iz)k

z(z − i)
, Im z ∈ (−∞, 0), (26)

where k = log (K/St ).
The value of the call is

Ct = −Ste−r(T −t)

2π

∫ ∞+iv

−∞+iv
e(1−iz)k ϕ̂(z)

z(z + i)
dz, v > 1. (27)

Normalisation requires ϕ̂(0) = 1 and the martingale property requires ϕ̂(−i) = er(T −t), so the residue of the inte-

grand at its simple poles z = 0 and z = −i are −Ker(T −t)

2π i and St

2π i , respectively. Moving the contour to v = Im z < 0
picks up the residues to give Ct = Pt + St − Ke−r(T −t), where Pt is the value of the put, i.e., put–call parity is
recovered.

On using partial fractions, the call price can be cast in ‘Black–Scholes form’,

Ct = Ke−r(T −t)

2π i

∫ ∞+iv

−∞+iv
e−ikzϕ̂(−z)

(
1

z − i
− 1

z

)
dz (28)

= St I1 − Ke−r(T −t)I2. (29)

The integrals I1 and I2 can be interpreted as the option delta I1 = � = ∂C
∂S

(since ∂I1
∂k

= eke−r(T −t) ∂I2
∂k

) and the
probability that the option expires in the money I2 = Q (XT > −k) = Q (ST > K).

Even for non-Gaussian models, efficient price calculations are achieved by implementing Fast Fourier Transform,
since characteristic functions are generally available in a relatively simple form.

1.3 Discrete monitoring

Most traded options do not depend on the entire underlying price path; instead, for practical purposes, contracts
specify a discrete set of times at which the underlying price is monitored. Yet, most techniques for pricing discrete
options assume continuous monitoring. This allows tractable solutions, but unfortunately the price discrepancies can
be large. For knock-out options, continuous time prices are lower than the actual prices, since calculation spuriously
disregarded contributions from possible price paths which meander over the barrier between monitoring dates. The
price correction amounts to recursive integration with depth equal to the number of monitoring dates. Consequently,

4 The Fourier transform of the probability density ϕ(x) is the characteristic function ϕ̂(z) = EQ

[
eizRT

∣∣Ft

]
.
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378 R. Green et al.

for even relatively few dates, numerical evaluation becomes very inefficient. To overcome the mis-pricing, a wide
variety of numerical techniques have been proposed in the literature, including recent noteworthy additions [5–15].
This work is a revision of an article by two of the authors [16] in which an exact analytic expression for the down-out
option price was obtained as the solution to the Black–Scholes PDE.

1.4 Discretely monitored down-and-out barrier options

Suppose claims are contingent upon St = S0eRt (0 � t � T ) monitored discretely. The log price process Rt (0 �
t � T ) is effectively a random walk with normally distributed increments N

[(
r − σ 2

2

)
�t, σ 2�t

]
(under some

specified risk-neutral probability measure Q) for risk-free rate r , volatility σ and intermonitoring time �t . The
transition probability density is

k(x) = 1√
2πσ 2�t

exp

⎡
⎢⎣−

(
x −

(
r − σ 2

2

)
�t
)2

2σ 2�t

⎤
⎥⎦ . (30)

The payoff of a discrete down-and-out barrier (level D) European call option with strike K and monitoring times
T = {0,�t, . . . , N�t = T } may be expressed5 as

v
(
RN,RN

) = S0

(
eRN − ek

)+
χ[d,∞)

(
RN

)
, (31)

where RN = mint∈T Rt , k = log K/S0 and d = log D/S0.
The option price at time t = 0 is calculated as the discounted expected payoff under the risk-neutral measure Q

given by

CD = e−rT EQ

[
v
(
RN,RN

)]
(32)

= e−rT

∫ ∞

−∞

∫ ∞

0
v(ξ, ζ )Q

(
RN ∈ dξ, RN ∈ dζ

)
(33)

= e−rT

∫ ∞

−∞
w(d)(ξ)℘

(d)

N(ξ)dξ (34)

where ℘
(d)

N(ξ) = Q
(
RN ∈ dξ, RN−1 � d

)
/dξ is the probability density of the random walk Rn at time N starting

at R0 = 0 and absorbed at boundary d < 0. The amended payoff is

w(d) (RN) = S0

(
eRN − ek

)+
χ[d,∞) (RN) . (35)

This effectively reduces the pricing problem to evaluating the probabilities ℘
(d)

N(ξ).

1.5 Structure of paper

In the next section the Wiener–Hopf technique is used to obtain analytic expressions for the probability distributions
of random walks where paths crossing specified barriers are discarded. Section 3 makes use of these to obtain an
exact analytic expression for the price of options as the expected payoff in Fourier space. In Sect. 4 efficient numer-
ical evaluation of prices is achieved by employing Padé approximants. Some concluding remarks and discussions
are given in Sect. 5.

5 With notation χA(x) = 1 if x ∈ A, otherwise, χA(x) = 0, where A ⊆ R.
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Pricing financial claims contingent upon an underlying asset monitored at discrete times 379

2 Probability distributions of killed random walks

Consider a random walk Rn = Rn−1 +Xn, R0 = 0, where Xn are given independent identically distributed random
variables with law k(x). This traces out a path where the transition probability functional that Rn+1 = y while
Rn = x is k(y − x).

2.1 Lower barrier

Denote by ℘ (d)
n (x) the probability density that Rn = x is realised by a path that does not cross a barrier d < 0,

℘ (d)
n (x)dx = P

({Rn ∈ [x, x + dx)} ∩ {Rn−1 � d
})

, (36)

where Rn = min0�j�n

{
Rj

}
, then by assumption Xn have identical independent distributions,

℘ (d)
n (y) =

∫ ∞

d

℘
(d)

n−1(x)k(y − x)dx, ℘
(d)

0 (x) = δ(x). (37)

This Dirac delta function δ(x) represents a point unit mass at the origin. On taking the z-transform (generating
function) of ℘ (d)

n (x),

f (x, q) = Z℘ (d)
n (x) ≡

∞∑
n=0

qn℘ (d)
n (x), q ∈ C, (38)

it is found that

f (y, q) − δ(y) = q

∫ ∞

d

f (x, q)k(y − x)dx. (39)

The z-transform exists within a disk D which, by Abel’s theorem for power series with non-negative coefficients,
has radius � 1.

On using a change of variables (ξ = x − d, ν = y − d) and defining g(ξ) = f (ξ + d, q) Eq. 39 becomes

g(ν) − δ(ν + d) = q

∫ ∞

0
g(ξ)k(ν − ξ)dξ. (40)

This is recognisable as a scalar Wiener–Hopf integral equation with kernel k(ν); its solution proceeds along the
usual lines. A characteristic function may be defined by

K(z) = Fk(x) ≡
∫ ∞

−∞
eizξ k(ξ)dξ. (41)

Then using the usual half-range transforms

G−(z) ≡
∫ 0

−∞
eizξ g(ξ)dξ, G+(z) ≡

∫ ∞

0
eizξ g(ξ)dξ, (42)

an application of the convolution theorem gives

G+(z)L(z) = e−izd − G−(z), (43)

where

L(z) = 1 − qK(z). (44)

On the assumption e−ν∓ξ g(ξ) → 0 (ν− < 0 < ν+) as ξ → ±∞, this equation is valid in a strip S around the
origin in which L(z) is analytic and non-zero. On introducing the product factorisations L(z) = L−(z)L+(z) of
L(z) = 1 − qK(z) (into functions which are analytic, zero-free and converge to 1 as |z| → ∞ below/above this
strip, respectively) and the sum factorisation P(z) = P−(z) + P+(z) of

P(z) = e−idz/L−(z) (45)
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(into functions which are analytic and converge to 0 as |z| → ∞ below/above this strip), Eq. 43 may be expressed
as

G+(z)L+(z) − P+(z) = P−(z) − G−(z)/L−(z). (46)

This equates (within strip S) a function analytic in and above S to a function analytic in and below S, and so, by
analytic continuation, defines an entire function.

On the assumption g(ξ) = f (ξ + d) is bounded at ξ = ±0, G±(z) ∼ 1/z as |z| → ∞ (Im z ≷ 0), so by
Liouville’s theorem (46) equates to zero, giving

G+(z) = P+(z)

L+(z)
= e−idz

L(z)
− P−(z)L−(z)

L(z)
. (47)

Explicit integral expressions for these factorisations are

P±(z) = ± 1

2πi

∫ ∞

−∞
e−idζ

L−(ζ )(ζ − z)
dζ, Im ζ ≶ Im z (48)

and

L±(z) = exp

{
± 1

2π i

∫ ∞

−∞
log L(ζ )

ζ − z
dz

}
, Im ζ ≶ Im z. (49)

The probabilities ℘ (d)
n (x) are recovered as

℘ (d)
n (x) = Z−1

n g(x − d) (50)

=
{Z−1

n F−1eidzG+(z) for x > d,

Z−1
n F−1eidzG−(z) for x < d.

(51)

On substituting (47) in (51) and taking the inverse transform, it is found, for x > d, that

℘ (d)
n (x) = Z−1

n F−1
(

1

L(z)
− eidz P−(z)L−(z)

L(z)

)
(52)

= ℘n(x) − Z−1
n

2π

(∫ ∞

−∞
P−(z)L−(z)

L(z)
e−i(x−d)zdz

)
, (53)

where ℘n(x) is the probability density without barriers.

2.1.1 Inverse Fourier transform

The path of the inverse Fourier transform should lie within the analytic strip S. Integrals may be evaluated numer-
ically, but their convergence is slow. Although convergence is greatly improved by splitting the integrals into two
using 1/L(z) = qK(z)/L(z) + 1, calculations remain too slow for practical purposes.

2.1.2 Inverse z-transform

The inverse z-transform is the Taylor coefficient of qN , which is given by

Z−1
N f (q) = 1

2π i

∮
�

f (q)q−(N+1)dq, (54)

where � ∈ D is a contour enclosing q = 0. Choosing a circular (radius ρ < 1) integration contour, the inverse
z-transform (54) expressed in polar coordinates is

Z−1
N f (q) = 1

2πρN

∫ 2π

0
f (ρeiθ )e−iNθ dθ. (55)

This may be evaluated by numerical integration, but for large N this becomes extremely slow.
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Pricing financial claims contingent upon an underlying asset monitored at discrete times 381

Abate and Whitt [17] propose an alternative method based on approximating (55) using the trapezoidal rule with
step size π/N ,

Z−1
N f (q) ≈ 1

2πρN

⎧⎨
⎩f (ρ) + (−1)Nf (−ρ) + 2

N−1∑
j=1

(−1)jRe
[
f
(
ρejπ i/N

)]⎫⎬
⎭ . (56)

This has an error bound ρ2N/(1 − ρ2N), so practically, to have an accuracy of at least 10−α requires ρ = 10−α/2N .
It is important to adjust ρ in this way so calculation of ρN = 10−α/2 in the denominator of (56) does not introduce
error.

2.2 Upper barrier

The above analysis can be repeated in the case of an upper barrier. Denote by ℘ (u)
n (x) the probability density that

Rn = x is realised by a path that does not cross a barrier u > 0,

℘ (u)
n (x)dx = P

({Rn ∈ [x, x + dx)} ∩ {R̄n−1 � u
})

, (57)

where R̄n = sup0�j�n

{
Rj

}
, then

℘ (u)
n (x) = ℘n(x) − Z−1

n

2π

(∫ ∞

−∞
Q+(z)L+(z)

L(z)
e−i(x−u)zdz

)
(58)

where

Q+(z) = 1

2π i

∫ ∞

−∞
e−iuζ

L+(ζ )(ζ − z)
dζ,Im ζ < Im z. (59)

3 Exact expressions for barrier options

3.1 Discretely monitored down-and-out barrier options

On resuming the calculation of the down-and-out call option form (34), taking Fourier and z-transforms, employing
Parseval’s relation and recognising the random walk result (51) it is found that

CD = e−rT Z−1
N

2π

∫ ∞+iv

−∞+iv
Fw(d)(ξ)∗ZF℘

(d)

N(ξ)dξ (60)

= e−rT Z−1
N

2π

∫ ∞+iv

−∞+iv
ŵ(d)(−z)G+(z)eidzdz (61)

= e−rT Z−1
N

2π

∫ ∞+iv

−∞+iv
ŵ(d)(−z)

(
1

L(z)
− eidz P−(z)L−(z)

L(z)

)
dz (62)

= C̃D − e−rT Z−1
N

2π

∫ ∞+iv

−∞+iv
ŵ(d)(−z)

(
eidz P−(z)L−(z)

L(z)

)
dz, (63)

where C̃D is the vanilla option price with payoff w(d) (RN) (exactly analogous to the continuous time-option-pricing
formula).

The transformed payoff,

ŵ(d)(z) =
∫ ∞

d

S0

(
ex − ek

)+
eizxdx (64)

= −S0

[
e(1+iz) max(d,k)

1 + iz
− ek+iz max(d,k)

iz

]
, (65)

is valid for Im z > 1.
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The characteristic function (Fourier transform of (30)) K(z) for the log-price increments is

K(z) = exp
{

iz
(
r − σ 2�t/2

)
− z2σ 2�t/2

}
, (66)

valid for all z. An arbitrarily wide strip about the origin can be made free of the zeros of L(z) = 1 − qK(z) by
making |q| sufficiently small. In such circumstances the above integral is defined for any contour in the analytic
strip S with v = Im z < −1.

3.1.1 Exact sum solution by residue calculus

The second term in the integrand of (63) is analytic in the lower-half plane (Im z < −1) except at the zeros of L(z)

and vanishes as |z| → ∞. On deforming the integration contour downwards CD may be expressed as

CD = C̃D + ie−rT Z−1
N

∞∑
n=−∞

(
P−(γ −

n )L−(γ −
n )R

(
γ −
n

)
ŵ(d)
(−γ −

n

)
eidγ −

n

)
, (67)

where the summation is over all the residues arising from poles γ −
n of 1/L(z) in Im(z) < 0, R(γ −

n ). Similarly,

P−(z) =
∞∑

n=−∞

e−idγ +
n L+

(
γ +
n

)
R
(
γ +
n

)
γ +
n − z

. (68)

It remains for L±(γ ±
n ) to be approximated or evaluated by numerical integration.

When d  0 (i.e., D  S0), these sums converge rapidly due to the exponential terms. Yet, as d → 0 their
convergence becomes slow and, to maintain accuracy, many terms are required making the numerical evaluation
inefficient.

The solutions of L(γn) = 1 − qK(γn) = 0 are given by

γ ±
n = i

(
r − σ 2�t/2

)
σ 2�t

± 1

σ
√

�t

√
2 log q + 4nπ i −

(
r − σ 2�t/2

)2
σ 2�t

(n ∈ Z) . (69)

The residue R(γ ) at the simple pole γ of 1/L(z) is calculated as

R (γ ) = 1

γ σ 2�t − i
(
r − σ 2�t/2

) . (70)

3.2 Discretely monitored up-and-out barrier options

The value of a discrete up-and-out barrier (level U ) call option with strike K and monitoring times T = {0, �t, . . . ,

N�t = T } is

CU = C̃U − Z−1
N

2π

∫ ∞+iv

−∞+iv
ŵ(u)(−z)

(
eiuz Q+(z)L+(z)

L(z)

)
dz, (71)

where

ŵ(u)(z) = S0

[
e(1+iz)u

1 + iz
− ek+izu

iz

]
− S0

[
e(1+iz)k

1 + iz
− ek+izk

iz

]
(72)

is valid in Im z < 0, and u = log U/S0 > 0. The integration path must lie within the analytic strip with
v = Im z > 0. The price of the corresponding vanilla option with payoff ŵ(u)(z) is denoted C̃U .

For the down-and-out option, the barrier had no effect on the transformed amended payoff when below the strike.
Yet, the up-and-out barrier always has influence. This manifests itself in slow convergence even for options where
u � 0. Consequently, the product factorisation L±(z) is best accomplished via a fast approximate approach rather
than via the Cauchy integral representation given in (49). Thus, a Padé approximant approach is far more efficient
in evaluating (71).
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Fig. 1 Example of smallest exact zeros (�) and plot
of zeros (�) and poles (�) of an approximation to
L(z) = 1 −qK(z) with [24/36] Padé approximant to
K(z)

Fig. 2 Example behaviour of discrete up-out (· · ·)
and down-out (· − ·) barrier prices as monitoring
frequency increases

4 Approximate prices using Padé approximants

Option prices are calculated most efficiently by obtaining an [L/M] Padé rational approximation of K(z), which is
the quotient of a polynomial of degree L to one of degree M . Once calculated, the factorisation of L(z) = 1−qK(z)

into non-zero analytic functions in Im z ≷ 0 follows by inspection after polynomial factorisation. For details on
the approximation of Wiener–Hopf kernels by Padé approximants the reader is referred to the article by Abrahams
[18]. Evaluation of P−(z) and Q+(z), and in turn (63) and (71), comprise only the summation of a small number
of residues calculated algebraically.

On using a [24/36] Padé approximant for K(z), results are achieved to an accuracy of at least five decimal places.
This accuracy is relatively insensitive to the choice of Padé number, but this particular choice gives rapid decay
for large |z|. Computational time in Mathematica is an order of a few seconds for hundreds of monitorings and
increases at most linearly with monitoring frequency. For example options with S0 = K = 100, r = 0.1, σ = 0.3
and T = 0.2, Fig. 1 contrasts the zero-pole plot of the Padé approximant with the exact zeros of L(z) and Fig. 2
demonstrates the convergence of the down-out option with barrier level D = 99 and up-out option with barrier
level U = 125 to the continuously monitored prices as the monitoring frequency is increased. Asymptotic analysis
confirms the difference in continuous and discrete prices is proportional to

√
�t as frequency increases. Economi-

cally this means even with relatively frequent monitoring the difference between the real price and that calculated
assuming continuous monitoring can remain significant. The price calculated for the down-out option with a million
monitorings (approximately ever second of the working day) is 1.1794, which compares to the continuous price
1.1708.

5 Discussion and conclusion

A combined z-transform, Fourier transform and Wiener–Hopf-type argument has provided a novel technique to price
discrete barrier options. Accurate approximations are achieved by expressing the solution entirely in terms of Padé
approximants and approximating the inverse z-transform using a method based on the trapezoidal rule. A (Gaussian)
Black–Scholes example demonstrated that the mis-pricing incurred by a continuous monitoring approximation can
be substantial even for relatively frequent monitoring.

The extension of this work to a variety of other options has been completed. For example, double-barrier pricing
demands a modification of the Wiener–Hopf technique, observing a simple probabilistic relationship gives the
hindsight price and the analytic continuation of the barrier results presented here essentially give first touch prices.
In the frequent monitoring limit the formulae obtained yield asymptotic results related to the continuity correction
introduced by Broadie et al. [7].
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The extension of this work to a non-Gaussian framework (with underlying assets driven by different Lévy pro-
cesses which more accurately model market data) involves only the substitution of a different characteristic function.
For some processes accurate Padé approximation presents some technical difficulties. The characteristic functions
of many Lévy processes have complicated structures, including branch cuts, making them inconvenient to use and
calculations cumbersome. Here Padé approximants are used to simplify the characteristic function and subsequent
calculation. The feasibility of modelling with a rational characteristic function (instead of adopting processes
ad hoc) is an interesting line of present enquiry by the authors.
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