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Generalized symmetric powers and a generalization of
the Kolmogorov–Gel’fand–Buchstaber–Rees theory

Th. Th. Voronov [F. F. Voronov] and H. M. Khudaverdian

In 1939 Gel’fand and Kolmogorov showed [1] that for a compact Hausdorff topolog-
ical space X, the homomorphisms of the algebra C(X) of continuous functions to the
field of real numbers are in a one-to-one correspondence with the points of X. Here the
algebra C(X) is considered without a topology. This result is less known than its ana-
logue that gave birth to the theory of normed rings. The Gel’fand–Kolmogorov theorem
may be viewed as a description of the image of the canonical embedding of X in the
infinite-dimensional linear space V = A∗, where A = C(X), by the system of quadratic
equations f(1) = 1 and f(a)2 − f(a2) = 0 indexed by elements of A. This aspect was re-
cently emphasized by Buchstaber and Rees (see [2] and references therein). They showed
that there is a natural embedding in V not only of X itself but also of all its symmet-
ric powers Symn X. To this end, the algebra homomorphisms should be replaced by the
so-called n-homomorphisms, and the quadratic equations describing the image of the em-
bedding by certain algebraic equations of higher degree. This theory was motivated by
their earlier study of an analogue of Hopf algebras for multivalued groups. Another source
is Frobenius’ higher group characters.

In this note we give a generalization of the Buchstaber–Rees theory. For a space X we
construct a functorial object Symp|q X, p, q > 0, and for a commutative algebraA with unit
we construct a corresponding algebra Sp|qA. We call them ‘generalized symmetric pow-
ers’. There is a canonical map from Symp|q X to V = A∗. To describe its image, we intro-
duce certain algebraic equations, thereby extending the assertions of Gel’fand–Kolmogorov
and Buchstaber–Rees. This corresponds to a description of the algebra homomorphisms
Sp|qA→ B in terms of the new notion of a p|q-homomorphism. Our work was motivated
by results on linear operators on superspaces [3], where our main tool, the ‘characteristic
function’ of a linear map of algebras, comes from. The methods that we propose yield, in
particular, a simple direct proof of the main theorem of Buchstaber and Rees.

Let A and B be commutative associative algebras with unit and consider an arbitrary
linear map f : A→ B. Its characteristic function is defined to be R(f , a, z) = ef log(1+az),
where a ∈ A and z is a formal parameter. Example: if f is an algebra homomorphism, then
R(f , a, z) = 1 + f(a)z. Algebraic properties of the map f are reflected in the properties of
R(f , a, z) viewed as a function of the variable z. The case when R(f , a, z) is a polynomial
of degree n corresponds to the Buchstaber–Rees theory.

A linear map f is called a p|q-homomorphism if R(f , a, z) is a rational function repre-
sentable as a ratio of polynomials of degrees p and q. Properties of p|q-homomorphisms
follow from general properties of R(f , a, z). For an arbitrary map f , R(f , a, z) has the
power series expansion R(f , a, z) = 1+ψ1(f , a)z+ψ2(f , a)z

2+· · · at zero, where ψk(f , a) =

Pk(s1, . . . , sk). Here sk = sk(f , a) = f(ak) and the Pk are the classical Newton polyno-
mials expressing the elementary symmetric functions in terms of sums of powers. The
exponential property R(f + g, a, z) = R(f , a, z)R(g, a, z) holds. Let R(f , a, z) be defined
as a function of z regarded, say, as a complex variable. Let us consider its behaviour at
infinity. By a formal transformation we can obtain R(f , a, z) = zf(1)ef log aef log(1+a−1z−1)
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(cf. [3]). In particular, for a = 1 we haveR(f , 1, z) = (1+z)f(1). Assume thatR(f , a, z) does
not have an essential singularity. Then f(1) = χ ∈ Z, and the integer χ is the order of
the pole at infinity. We arrive at the expansion R(f , a, z) =

P
k6χ ψ

∗
k(f , a)zk near infinity,

where ψ∗k(f , a) := ef log aψχ−k(f , a−1). We denote the leading term of the expansion by
ef log a =: ber(f , a) and call it the f -Berezinian of a ∈ A. Note that a 7→ ber(f , a) is in
general a partially defined map A→ B. One can see immediately that the f -Berezinian is
multiplicative: ber(f , a1a2) = ber(f , a1) ber(f , a2). In the rational case ber(f , a) is a ratio
of polynomials in the elements f(ak).

Here are examples to be kept in mind. If f(a) = tr ρ(a) for a matrix representation
ρ : A → Mat(n,B), then R(f , a, z) = det(1 + ρ(a)z) and ber(f , a) = det ρ(a). For a
representation by p|q × p|q matrices, we obtain R(f , a, z) = Ber(1 + ρ(a)z). In this case
f(a) = str ρ(a) is the supertrace, and ber(f , a) = Ber ρ(a) is the usual Berezinian.

The Frobenius recursion relations (see [2]) are satisfied by multilinear symmetric func-
tions Φk(f , a1, . . . , ak) of elements ai ∈ A with Φk(f , a, . . . , a) = k!ψk(f , a). In the case of
a matrix representation, sk(f , a) = tr ρ(a)k, ψk(f , a) = trΛkρ(a), and Φk(f , a1, . . . , ak) =

k! tr(ρ(a1) ∧ · · · ∧ ρ(ak)).
Going back to the case when R(f , a, z) is a polynomial in z, we can recover the

Buchstaber–Rees theory as follows. The degree of R(f , a, z) in z equals f(1) = χ, and
hence χ = n > 0. Therefore, ψk(f , a) = 0 for all k > n+ 1 and all a ∈ A. This is equiva-
lent to the equations f(1) = n ∈ N and Φn+1(f , a1, . . . , an+1) = 0 for all ai, which is exactly
the definition of an n-homomorphism according to Buchstaber and Rees [2]. In this case
ber(f , a) = ψn(f , a) (in particular, it is a polynomial function of a), therefore the func-
tion ψn(f , a) turns out to be multiplicative in a, and its polarization Φn(f , a1, . . . , an)/n!

defines an algebra homomorphism SnA → B. This gives a one-to-one correspondence
between the n-homomorphisms A→ B and the algebra homomorphisms SnA→ B.

We define the p|q-th symmetric power Symp|q X of a topological space X as the iden-
tification space of the Cartesian product Xp+q with respect to the action of the group
Sp × Sq and the relations

(x1, . . . , xp−1, y, xp+1, . . . , xp+q−1, y) ∼ (x1, . . . , xp−1, z, xp+1, . . . , xp+q−1, z).

An algebraic analogue of the space Symp|q X for a commutative associative algebra A

with unit is defined to be the subalgebra Sp|qA = µ−1(Sp−1A ⊗ Sq−1A) of the algebra
SpA⊗ SqA, where µ : SpA⊗ SqA→ Sp−1A⊗ Sq−1A⊗A is the multiplication of the last
arguments. Example: for A = C[x], the algebra Sp|qA will be the algebra of all polynomial
invariants of p|q × p|q matrices (this is a non-trivial statement). There is a relation
between the algebra homomorphisms Sp|qA → B and the p|q-homomorphisms A → B.
To each homomorphism Sp|qA→ B the relation assigns canonically a p|q-homomorphism
A→ B. (We have managed to establish the converse result in special cases.) For example,
an element [x1, . . . , xp+q] ∈ Symp|q X defines a p|q-homomorphism on the algebra A =

C(X) : a 7→ a(x1) + · · ·+ a(xp)− · · · − a(xp+q). In general, an integral linear combination
of algebra homomorphisms of the form

P
nαfα, where nα ∈ Z, is a p|q-homomorphism

with p =
P

nα>0 nα, q = −
P

nα<0 nα, and χ =
P
nα.

The condition that f : A→ B is a p|q-homomorphism can be expressed by the equations
f(1) = p− q and |ψk(f , a), . . . , ψk+q(f , a)|q+1 = 0 for k > p− q+1 (a Hankel determinant;
see [3]). This system of polynomial equations for the ‘coordinates’ of the linear map f

should describe, in particular, the image of Symp|q X.
Our results may have an application to topological ramified coverings (cf. [4]). We

thank V. M. Buchstaber for a fruitful discussion.
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