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Abstract. We generalize a series of topological Wiener–Wintner ergodic theorems due to
Walters to the context of group extensions of measure-preserving transformations where
the group is a non-abelian compact Lie group. Applications to random ergodic theorems
for a shift map are given.

1. Introduction
Let T : X → X be an ergodic transformation of a probability space (X, B, µ) and let
f : X → C be an L1 function. Let K = {z ∈ C | |z| = 1} denote the unit circle in C.
The classical Wiener–Wintner ergodic theorem is concerned with the almost sure (a.s.)
convergence of

1
n

n−1∑
j=0

z− j f (T j x) (1)

as n → ∞, where z ∈ K . When z = 1 this is Birkhoff’s ergodic theorem and (1) converges
almost surely to

∫
f dµ. By considering the direct product Tz : X × K → X × K given

by Tz(x, y)= (T (x), yz) one can easily deduce the almost sure convergence of (1) from
Birkhoff’s ergodic theorem. However, it is not clear that the set of full measure on which
convergence holds can be chosen to be independent of z; this is the content of the Wiener–
Wintner ergodic theorem.

Let U : L2(X, B, µ)→ L2(X, B, µ) be the unitary operator defined by U f = f ◦ T .
The convergence of (1) is dependent on whether z is an eigenvalue for U . For each z ∈ K
define Pz : L2(X, B, µ)→ L2(X, B, µ) by setting Pz f to be the projection of f onto the
eigenspace for U corresponding to the eigenvalue z (when z is an eigenvalue of U ), and
Pz f = 0 otherwise. Then the Wiener–Wintner ergodic theorem can be stated as follows.
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THEOREM 1.1. (Wiener–Wintner ergodic theorem [WW]) Let f ∈ L2(X, B, µ). Then
there exists a set X f with µ(X f )= 1 such that for all x ∈ X f and all z ∈ K ,

1
n

n−1∑
j=0

z− j f (T j x)→ Pz f (x) (2)

as n → ∞.

(The restriction that f ∈ L2(X, B, µ) can be weakened to f ∈ L1(X, B, µ) (see [WW]);
in this case, there exists a set X f of full measure for which the right-hand side of (2)
converges for all x ∈ X f and all z ∈ K .)

Topological analogues of Theorem 1.1 in the vein of Oxtoby’s ergodic theorem are
known [R, A]; here T is a uniquely ergodic continuous transformation of a compact metric
space, f is continuous, and uniform convergence (in both x and z) of (2) is required.

Generalizations of these results are proved in [Wa]. Here, the convergence of quantities
of the form

1
n

n−1∑
j=0

φ(x)φ(T x) · · · φ(T j−1x) f (T j x),

where T is a continuous transformation of a compact metric space X and φ : X → K is a
continuous function, is studied. The convergence depends on the ergodic properties of the
circle skew-product

Tφ : X × K → X × K : (x, y) 7→ (T x, yφ(x)).

As a particular case, the following is proved in [Wa].

THEOREM 1.2. (Walters’ topological Wiener–Wintner theorem) Suppose that Tφ : X ×

K → X × K is ergodic with respect to the invariant measure µ× λ where λ denotes
Lebesgue measure on K . Then there exists a set X (µ) with µ(X (µ))= 1 such that for
any continuous function f : X → C and any x ∈ X (µ)

lim
n→∞

1
n

n−1∑
j=0

φ(x)φ(T x) · · · φ(T j−1x) f (T j x)= 0.

In this paper we generalize the results of [Wa] to the case of an arbitrary compact Lie
group G. Recall that a compact Lie group has a faithful representation in O(d), the group
of real d × d orthogonal matrices, and so there is no loss in generality in assuming that
G < O(d) is a closed subgroup.

Let T be a continuous transformation of a compact metric space X , let φ : X → O(d)
and let f : X → Rd be continuous. We are then interested in the convergence of

1
n

n−1∑
j=0

φ(x)φ(T x) · · · φ(T j−1x) f (T j x)

as n → ∞.
Let

Fix(G)= {v ∈ Rd
| gv = v for all g ∈ G}
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denote the subspace of vectors in Rd that are fixed under all elements of G. Let
projFix(G) : Rd

→ Fix(G)⊂ Rd denote the orthogonal projection onto this subspace.
Define the skew-product

Tφ : X × G → X × G : (x, y) 7→ (T x, yφ(x)). (3)

It is easily seen that if λG denotes Haar measure on G then the measure µ× λG is invariant
under Tφ . The ergodic properties of this measure will form a key part of our analysis.
As a particular case, we prove the following result.

THEOREM 1.3. Suppose that T is a continuous transformation of a compact metric space
X and that µ is an ergodic Borel probability measure. Suppose that Tφ is ergodic with
respect to µ× λG . Then there exists a set X (µ) with µ(X (µ))= 1 such that for any
continuous function f : X → Rd and any x ∈ X (µ)

1
n

n−1∑
j=0

φ(x)φ(T x) · · · φ(T j−1x) f (T j x)→ projFix(G)

∫
f dµ

as n → ∞.

A compact Lie group G also has a faithful representation in U (d), the group of d × d
unitary matrices acting on Cd . All of our results can also be stated in this setting with only
notational alterations.

2. The measurable structure of skew-products
The ergodic decomposition for skew-products is well known [KN1, KN2]. Here we
summarize the facts that we shall need.

If Y is a compact metric space then we denote by M(Y ) the space of Borel probability
measures on Y equipped with the weak∗ topology. If T : Y → Y is a continuous
transformation, then M(Y, T )⊂ M(Y ) denotes the non-empty subset of T -invariant
measures and E(Y, T )⊂ M(Y, T ) denotes the non-empty subset of ergodic measures.

Let π : X × G → X : (x, y) 7→ x denote the natural projection. A measure ν on X × G
is said to project to a measure µ on X if ν(π−1(B))= µ(B) for all Borel subsets B of X .
We will sometimes say that ν is a lift of µ. Throughout we shall denote by λG the Haar
measure on G; if there is no risk of ambiguity then we shall simply write λ. The measure
µ× λ is sometimes called the Haar lift of µ.

There is a natural left G-action on X × G defined by lg(x, y)= (x, gy). This G-action
commutes with the skew-product Tφ defined in (3). Let 6d

= {z ∈ Cd
| ‖z‖ = 1}, where

‖ · ‖ denotes the inner-product norm on Cd . We denote by R(G) the (equivalence
classes of) continuous irreducible unitary representations of G. Let γ be a continuous
d-dimensional irreducible unitary representation of G. We say that a measurable function
W : X × G →6d is a γ -function if W (lg(x, y))= γ (g)W (x, y) for all (x, y) ∈ G and all
g ∈ G.

The following provides well-known criteria for the ergodicity of µ× λG .

PROPOSITION 2.1. [KN1, KN2] Let (X, B, µ) be a probability space, let T be a
measurable transformation of X and let µ be an ergodic measure. Let G be a
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compact Lie group. For a measurable function φ : X → G define the skew-product Tφ
as in (3). Then the following are equivalent:
(i) Tφ is ergodic with respect to µ× λG;
(ii) µ× λG is the only Tφ-invariant measure on X × G that projects to µ;
(iii) if Wγ is a measurable γ -function such that Wγ ◦ Tφ = Wγ µ× λG-a.e. (almost

everywhere) for some continuous d-dimensional irreducible unitary representation
γ of G, then d = 1, γ is the trivial representation, and Wγ is constant µ× λG-a.e.;

(iv) if w : X → Cd is a measurable function such that

w(T x)= γ (φ(x))w(x)µ-a.e. (4)

for some continuous d-dimensional irreducible unitary representation γ of G, then
d = 1, γ is the trivial representation, and w is constant a.e.

Remark. As γ is a unitary representation, if (4) holds then |w| is a T -invariant function.
By ergodicity, |w| is constant. Hence there is no loss in generality in assuming thatw takes
values in 6d .

In the case when the Haar lift of µ to G is not ergodic, the following result describes
the ergodic decomposition of µ× λG .

PROPOSITION 2.2. Suppose that Tφ is not ergodic with respect to µ× λG . Then there is
a proper Lie subgroup H of G and a measurable map s : X → G such that for each g ∈ G
the sets

Xg,s = {(x, gHs(x)) ∈ X × G | x ∈ X}

are Tφ-invariant. Furthermore, Tφ : Xg,s → Xg,s is ergodic with respect to the probability
measure µ̂g,s defined by

µ̂g,s = S∗(µ× l∗gλH ),

where S : X × G → X × G is defined by S(x, y)= (x, ys(x)). Moreover, µ̂g,s projects to
µ and is the unique Tφ-invariant probability measure on Xg,s with this property.

As this will be a key fact in our analysis, we indicate the proof and refer to [KN2] for
details.

Proof (sketch). Let ν ∈ E(X × G, Tφ) be ergodic and suppose that ν projects to µ. For
each irreducible representation class [γ ] ∈R(G) of dimension dγ suppose that there
are precisely lγ Tφ-invariant γ -functions W i

γ , 1 ≤ i ≤ lγ (possibly lγ = 0 for some γ ∈

R(G)). Since ν is ergodic we have that W i
γ = ai

γ ν-a.e., for 1 ≤ i ≤ lγ for some constant
vectors ai

γ .
Suppose that ν 6= µ× λ. Let

H = {g ∈ G | γ (g)ai
γ = ai

γ , 1 ≤ i ≤ lγ , [γ ] ∈R(G)},

E = {x ∈ X | W i
γ (x, y)= ai

γ , 1 ≤ i ≤ lγ , [γ ] ∈R(G)}.

Then H is a closed, hence Lie, subgroup of G and is a proper subgroup as we are assuming
that µ× λ is not ergodic. The set E is Tφ-invariant and satisfies ν(E)= 1; moreover, the
set E ′

= π(E)⊂ X satisfies µ(E ′)= 1.
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For x ∈ E ′ we choose s(x) in a measurable way such that (x, s(x)) ∈ E . As E is
Tφ-invariant, we have that (T (x), s(x)φ(x)) ∈ E and (T (x), s(T (x))) ∈ E . From the
definitions of H and E it is easy to see that if (x, y) ∈ E and g(x, y) ∈ E then g ∈ H .
Hence s(x)φ(x)s(T x)−1

∈ H .
Define φ′(x) : X → H by s(x)φ(x)s(T x)−1 if x ∈ E ′ and arbitrarily otherwise. Then

the map S(x, y)= (x, ys(x)) conjugates Tφ′ to Tφ . Moreover, for each g ∈ G, Tφ′ leaves
the sets lg(X × H)= X × gH invariant and one can check using [KN2] that Tφ′ is ergodic
on X × gH with respect to l∗g(µ× λH ) (and so by Proposition 2.1(ii) is the only ergodic
measure for Tφ′ on g(X × H) that projects to µ). Hence for each g ∈ G, Tφ leaves the sets

Xg,s = {(x, gHs(x)) | x ∈ X}

invariant and is ergodic with respect to the measure µ̂g,s as in the statement of the
proposition. 2

Remark. Choquet theory [Ph] and the above results allow us to describe the set of
Tφ-invariant probability measures that project to µ. If ν is a Tφ-invariant probability
measure then there exists a Borel probability measure α supported on G/H such that (with
a small abuse of notation)

ν =

∫
G/H

S∗(µ× l∗gλH ) dα(gH). (5)

Remark. The subgroup H can be characterized as

H =

⋂
γ∈R(G)

{Ann(γ ) | there exists a measurable Tφ-invariant γ -function} (6)

where Ann(γ )= {g ∈ G | γ (g)= e}.

Remark. In the case where T is an Anosov diffeomorphism or an Axiom A
diffeomorphism restricted to a locally maximal hyperbolic set and φ : X → G is Hölder,
then a topological decomposition of the skew-product is possible [B, PP2]. In particular,
one can take s(x) in Proposition 2.2 to be Hölder.

3. Integration and invariant measures for the skew-product
Here and throughout, if X and Y are metric spaces then we denote by C(X, Y ) the space
of continuous functions from X to Y .

Let G be a compact Lie group. Then G has a faithful representation in O(d) for some
d ≥ 1 and so there is no loss in assuming that G < O(d) is a closed subgroup.

Let f ∈ C(X, Rd) and define F : X × G → Rd by F(x, g)= g f (x). We are interested
in integrating this function with respect to a Tφ-invariant measure. Let

projFix(G)(·) : Rd
→ Fix(G)

denote the orthogonal projection from Rd onto the subspace Fix(G)= {v ∈ Rd
| gv = v

for all g ∈ G}.

PROPOSITION 3.1. With F defined as above we have∫
F dµ× λG = projFix(G)

∫
f dµ.
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Proof. We need to prove that ∫
G

g dλG(g)= projFix(G)(·). (7)

Recall that G is a subgroup of O(d), which in turn can be viewed as a subgroup of the
group U (d) of d × d unitary matrices. Thus we can see the inclusion ι : G → U (d), ι(g)=

[gi, j ]1≤i, j≤d , as a d-dimensional unitary representation of G. Thus we can decompose ι as
a sum of irreducible unitary representations ι1, . . . , ιk . Hence we can write

ι(g)= [gi, j ] =


ι1(g) 0 · · · 0

0 ι2(g) · · · 0
...

. . .

0 · · · 0 ιk(g)


in an appropriate basis. Thus each entry of

∫
G g dλG(g) is the integral of either 0 or (ι`)i, j

with respect to Haar measure on G. But
∫

G(ι`)i, j dλG = 0 unless ι` is equivalent to the
trivial representation, by the Peter–Weyl theorem. Therefore the only non-zero entries of
the matrix

∫
G g dλG are those that correspond to invariant one-dimensional subspaces,

i.e. to Fix(G). Thus∫
F(x, g) dµ× λG =

∫
G

g dλG

∫
X

f dµ= projFix(G)

∫
X

f dµ. 2

Remarks. (i) If Fix(G)= {0} then the integral in (7) is equal to 0 for all f ∈ C(X, Rd).
This is the case, for example, if G = SO(d).

(ii) An element of SO(3) can be represented as a rotation through some angle about an
axis in R3. If G is a subgroup of SO(3) that contains two elements with distinct axes then
Fix(G)= {0}.

Let T : X → X be a continuous transformation of a compact metric space and let
µ ∈ E(X, T ). Let X (µ) denote the set of generic points for T :

X (µ)=

{
x ∈ X

∣∣∣∣ 1
n

n−1∑
j=0

f (T j x)→

∫
f dµ as n → ∞ for all continuous f : X → R

}
.

By the compactness of X and Birkhoff’s ergodic theorem, we know that µ(X (µ))= 1.
The following is an adaptation of a result in [Wa] to our setting. Here and throughout δz

denotes the Dirac delta-measure supported on the point z.

PROPOSITION 3.2. Let T be a continuous transformation of a compact metric space X
and let µ ∈ E(X, T ).
(i) Let x ∈ X (µ) and g ∈ G. Then every weak∗ limit point of

1
n

n−1∑
j=0

δT j
φ (x,g)

in M(X × G) is a Tφ-invariant probability measure that projects to µ.
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(ii) Let φr : X → G be a sequence of continuous functions that converges uniformly to
φ, xr be a sequence of points in X, nr a strictly increasing sequence of integers, and
g ∈ G. Then any weak∗ limit point of

1
nr

nr −1∑
j=0

δT j
φr (xr ,g)

as r → ∞ is a Tφ-invariant probability measure.
(iii) If, in addition to the hypotheses in (ii), we assume that xr ∈ X (µ) then any weak∗

limit point of

1
nr

nr −1∑
j=0

δT j
φr (xr ,g)

projects to µ.

Proof. Statements (i) and (iii) follow easily from (ii). We prove (ii), adapting the argument
from [Wa]. Let ⇀ denote weak∗ convergence.

Suppose that

1
nrk

nrk −1∑
j=0

δ
j
Tφrk

(xrk , g) ⇀ ν

as k → ∞. Let H : X × O(d)→ Rd be a continuous map of the form H(x, g)=

(h1(x)`1(g), . . . , hn(x)`n(g)) where the `i : O(d)→ R are Lipschitz continuous. As
such functions are uniformly dense in the space of continuous functions X × O(d)→ R
(by the Stone–Weierstrass theorem), it suffices to prove that

∫
H ◦ Tφ dν =

∫
H dν.

Now ∫
H ◦ Tφ dν −

∫
H dν

=


∫

H1 ◦ Tφ dν −

∫
H1 dν

...∫
Hn ◦ Tφ dν −

∫
Hn dν



=



lim
k→∞

1
nrk

nrk −1∑
j=0

|H1(Tφ ◦ T j
φrk
(xrk , g))− H1(T

j
φrk
(xrk , g))|

...

lim
k→∞

1
nrk

nrk −1∑
j=0

|Hn(Tφ ◦ T j
φrk
(xrk , g))− Hn(T

j
φrk
(xrk , g))|


.
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The i th entry in this vector is equal to

lim
k→∞

1
nrk

nrk −1∑
j=0

|Hi (Tφ ◦ T j
φrk
(xrk , g))− Hi (T

j
φrk
(xrk , g))|

= lim
k→∞

(nrk −1∑
j=0

(Hi (Tφ ◦ T j
φrk
(xrk , g))− Hi (T

j
φrk
(xrk , g)))

+ Hi (T
nrk
φrk
(xrk , g))− Hi (xrk , g)

)

= lim
k→∞

(nrk −1∑
j=0

Hi (T j+1xrk )

[
`k

(
g

j−1∑
l=0

φrk (T
l xrk )φ(T

j xrk )

)

− `k

(
g

j−1∑
l=0

φrk (T
l xrk )φrk (T

j xrk )

)])
.

Hence
∫

H ◦ Tφ dν −
∫

H dν is bounded above in norm by

max
i

|`i |Lip ‖h‖∞ ‖φ − φrk ‖

(where | · |Lip denotes the Lipschitz constant), which converges to 0 as k → ∞. 2

4. Topological Wiener–Wintner theorems
We use the results of §§2 and 3 to deduce a series of Wiener–Wintner ergodic theorems, of
which Theorem 1.3 is a special case. These results generalize those in [Wa]. In particular,
the results in [Wa] follow from the special case of G = SO(2) acting on R2.

Throughout, G denotes a closed subgroup of O(d).

THEOREM 4.1. Let T : X → X be a continuous transformation of a compact metric X,
let µ ∈ E(X, T ) and let X (µ) denote the set of µ-generic points. Let φ ∈ C(X, G).
(i) Suppose that Tφ : X × G → X × G is ergodic with respect to µ× λG . Then for all

f ∈ C(X, Rd) and all x ∈ X (µ) we have

lim
n→∞

1
n

n−1∑
j=0

φ(x)φ(T x) · · · φ(T j−1x) f (T j x)= projFix(G)

∫
f dµ.

(ii) Suppose that Tφ : X × G → X × G is not ergodic with respect to µ× λG . Let
H be as in (6). Then there exists a measurable function s : X → G with
s(x)φ(x)s(T x)−1

∈ H such that for all f ∈ C(X, Rd) and all x ∈ X (µ) we have

lim
n→∞

1
n

n−1∑
j=0

φ(x)φ(T x) · · · φ(T j−1x) f (T j x)= s(x)−1 projFix(H)

∫
s f dµ.

Proof. We prove (i). Suppose that the claimed convergence fails. Then there exists
x ∈ X (µ), ε > 0 and an increasing sequence of integers nk such that∣∣∣∣ 1

nk

nk−1∑
j=0

φ(x)φ(T x) · · · φ(T j−1x) f (T j x)− projFix(G)

∫
f dµ

∣∣∣∣ ≥ ε. (8)
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Note that iterating (3) yields that

T n
φ (x, y)= (T n x, yφ(x)φ(T x) · · · φ(T n−1x)).

Define F : X × G → Rd by F(x, g)= g f (x). Then (8) can be rewritten as∣∣∣∣∫ F dνk − projFix(G)

∫
f dµ

∣∣∣∣ ≥ ε,

where F(x, g)= g f (x) and

νk =
1
nk

nk−1∑
j=0

δT j
φ (x,e)

. (9)

By Proposition 3.2(i) it follows that νk has a subsequence that weak∗ converges to a
Tφ-invariant measure ν that projects to µ. Assuming that µ× λG is ergodic, it follows
from Proposition 2.1(ii) that ν = µ× λ. By Proposition 3.1 we have that

∫
F dν =

projFix(G)
∫

f dµ, a contradiction.
The proof of (ii) is similar. If the claimed convergence fails, then there exists x ∈ X (µ),

ε > 0 and an increasing sequence of integers nk such that∣∣∣∣ 1
nk

nk−1∑
j=0

φ(x)φ(T x) · · · φ(T j−1x) f (T j x)− s(x)−1 projFix(H)

∫
s f dµ

∣∣∣∣ ≥ ε.

This can be rewritten as∣∣∣∣∫ F dνk − s(x)−1 projFix(H)

∫
s f dµ

∣∣∣∣ ≥ ε,

where F(x, g)= g f (x) and νk is as in (9).
As Tφ is not ergodic with respect to µ× λG , we can use Proposition 2.1 to find a closed

subgroup H and a measurable function s : X → G such that the sets Xg,s are invariant and
support a unique Tφ-invariant measure µ̂g,s that projects to µ.

Note that (x, e) ∈ Xg,s where g = s(x)−1. Hence νk is supported on Xg,s . By
compactness, νk has a convergent subsequence that weak∗ converges to a Tφ-invariant
measure supported on Xg,s . By Proposition 3.2(i) this weak∗ limit must be equal to µ̂g,s .
Now ∫

F dµ̂g,s =

∫
F d S∗(µ× l∗gλH )

=

∫
F(x, ghs(x)) dµ× λH

=

∫
ghs(x) f (x) dµ× λH

= g
∫

H
h dλH

∫
s f dµ

= s(x)−1 projFix(H)

∫
s f dµ,

a contradiction. 2
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COROLLARY 4.2. Let T be a continuous transformation of a compact metric space and
let µ ∈ E(X, T ). Let φ ∈ C(X, G). Then the following are equivalent:
(i) there does not exist a measurable function l : X →6d such that l(x)= φ(x)l(T x)

for µ-a.e. x;
(ii) for all continuous functions f : X → Rd and for all x ∈ X (µ),

lim
n→∞

1
n

n−1∑
j=0

φ(x) · · · φ(T j−1x) f (T j x)= 0. (10)

Proof. We prove that (i) implies (ii). By Theorem 4.1 we know that the limit in (10) exists
for all x ∈ X (µ); denote this limit by lφ, f (x). As X (µ) is Tφ-invariant, we have that

1
n

n−1∑
j=0

φ(T x) · · · φ(T j−1(T x)) f (T j (T x))→ lφ, f (T x).

Observing that

n−1∑
j=0

φ(T x) · · · φ(T j−1(T x)) f (T j (T x))=

n∑
j=0

φ(x) · · · φ(T j−1x) f (T j x)− f (x)

it follows that lφ, f (x)= φ(x)lφ, f (T x). As |lφ, f | = |lφ, f | ◦ T µ-a.e., it follows that |lφ, f |

is constant µ-a.e. If |lφ, f | 6= 0 µ-a.e. then by replacing f by f/|lφ, f | we obtain a
measurable function lφ, f : X →6d . Hence if (i) holds then the limit in (10) must be
zero for all x ∈ X (µ).

Conversely, suppose that there exists a measurable function l : X →6d such
that l(x)= φ(x)l(T x) for all x ∈ X (µ). Iterating this identity we see that
φ(T j x)−1

· · · φ(x)−1l(x)= l(T j x) for x ∈ X (µ). Then, letting 〈·, ·〉 denote the
Euclidean inner product in Rd , we have that for all continuous f : X → Rd and a.e. x〈

l(x),
1
n

n−1∑
j=0

φ(x) · · · φ(T j−1x) f (T j x)
〉

=
1
n

n−1∑
j=0

〈φ(T j x)−1
· · · φ(x)−1l(x), f (T j x)〉

=
1
n

n−1∑
j=0

〈l(T j x), f (T j x)〉

→

∫
〈l, f 〉 dµ

as n → ∞ by Birkhoff’s ergodic theorem. As f is arbitrary, it follows that l must be zero
µ-a.e. 2

We can use Proposition 3.2(iii) in place of Proposition 3.2(i) in the proof of Theorem 4.1
together with Corollary 4.2 to obtain the following result which gives a uniform limit over
a compact subset of functions φ ∈ C(X, G).
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PROPOSITION 4.3. Let T be a continuous transformation of a compact metric space
and let µ ∈ E(X, T ). Let K ⊂ C(X, G) be a uniformly compact subset of functions.
Suppose that for each φ ∈K there is no measurable function l : X →6d such that
l(x)= φ(x)l(T x) µ-a.e. Then for each f ∈ C(X, Rd)

lim
n→∞

1
n

n−1∑
j=0

φ(x) · · · φ(T j−1x) f (T j x)= 0

where the convergence is uniform in φ ∈K.

Proof. By Theorem 4.1 we know that for each φ ∈K

lim
n→∞

1
n

n−1∑
j=0

φ(x) · · · φ(T j−1x) f (T j x)

converges for x ∈ X (µ). By Corollary 4.2, the limit is 0. It remains to check that the
convergence is uniform. Suppose not. Then there exists x ∈ X (µ) and ε > 0 such that for
all k ≥ 1 there exists nk ≥ k and φk ∈K such that∣∣∣∣ 1

nk

nk−1∑
j=0

φk(x) · · · φk(T j−1x) f (T j x)
∣∣∣∣ ≥ ε.

Writing F(x, g)= g f (x) and

νk =
1
nk

nk−1∑
j=0

δT j
φk
(x,e),

the above can be rewritten as ∣∣∣∣∫ F dνk

∣∣∣∣ ≥ ε.

Choose a subsequence φki of the φk that converges uniformly to φ ∈ C(X, G). By
compactness and Proposition 3.2(iii), νki has a convergent subsequence that weak∗

converges to a Tφ-invariant probability measure ν that projects to µ.
If Tφ is ergodic with respect to µ× λG then ν = µ and

∫
F dµ× λG = 0,

a contradiction.
Suppose that Tφ is not ergodic with respect to µ× λG . Then by the remarks following

Proposition 2.2, there exists a closed subgroup H of G, a measurable function s : X → G
and a Borel probability measure α supported on G/H such that

ν =

∫
G/H

S∗(µ× l∗gλH ) dα

where S(x, y)= (x, ys(x)). Then∫
F dν =

∫
G/H

gH dα projFix(H)

∫
s f dµ.

We claim that
∫

s f dµ= 0. To see this, note that by Theorem 4.1

lim
n→∞

1
n

n−1∑
j=0

φ(x) · · · φ(T j−1x) f (T j x)= s(x)−1 projFix(H)

∫
s f dµ;
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hence by Corollary 4.2

s(x)−1 projFix(H)

∫
s f dµ= 0

for x ∈ X (µ). As s(x) is orthogonal, it follows that projFix(H)
∫

s f dµ= 0. Hence∫
F dν = 0, a contradiction. 2

Recall that a continuous transformation of a compact metric space is said to be uniquely
ergodic if there is a unique invariant probability measure. If we assume that T is uniquely
ergodic then we can obtain an analogue of Proposition 4.3 where the convergence holds
uniformly for all x ∈ X and φ in a compact subset of C(X, G).

COROLLARY 4.4. Let T : X → X be a uniquely ergodic continuous transformation of a
compact metric space with unique invariant probability measure µ. Let K ⊂ C(X, G)
be a uniformly compact collection of functions. Suppose that for each φ ∈K there is
no measurable function l : X →6d such that l(x)= φ(x)l(T x) µ-a.e. Then, for each
f ∈ C(X, Rd),

lim
n→∞

1
n

n−1∑
j=0

φ(x) · · · φ(T j−1) f (T j x)= 0,

where the convergence is uniform in (x, φ) ∈ X ×K.

Proof. By Oxtoby’s ergodic theorem [O], if T is uniquely ergodic then we can take
X (µ)= X . Hence by Theorem 4.1 and Corollary 4.2 we have that

lim
n→∞

1
n

n−1∑
j=0

φ(x) · · · φ(T j−1x) f (T j x)= 0.

Suppose that this convergence is not uniform in (x, φ) ∈ X ×K. Then there exists ε > 0
such that for all k ∈ N there exists nk ≥ k, xk ∈ X and φk ∈K such that∣∣∣∣ 1

nk

nk−1∑
j=0

φk(xk) · · · φk(T j−1xk) f (T j xk)

∣∣∣∣ ≥ ε.

Letting F(x, g)= g f (x), this can be rewritten as∣∣∣∣∫ F dνk

∣∣∣∣ ≥ ε

where

νk =
1
nk

nk−1∑
j=0

δT j
φk
(xk ,e)

.

Choose a subsequence φki such that φki → φ. Choose a subsequence of νki that weak∗

converges to ν. By Proposition 3.2, ν is a Tφ-invariant probability measure. As ν projects
to a T -invariant measure and T is uniquely ergodic, it follows that ν projects to µ. The
proof now proceeds as in the proof of Proposition 4.3. 2
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Finally, we give a measurable version of Theorem 4.1.

PROPOSITION 4.5. Suppose that (X, B, µ) is a Lebesgue probability space, T : X → X
is a measure-preserving transformation, and φ : X → G is a measurable function. Let
f ∈ L1(X; Rd). Then

1
n

n−1∑
j=0

φ(x) · · · φ(T j−1x) f (T j x)→ f̂ (x)µ-a.e.,

where f̂ ∈ L1(X, Rd) is such that f̂ (x)= φ(x) f̂ (T x) µ-a.e.

Proof. By [Fu], there exists a compact metric space X ′, a continuous transformation
T ′

: X ′
→ X ′, a measure µ′ on the completion B̄(X) of the Borel σ -algebra of X ′, and a

measure-preserving bimeasurable isomorphism V : (X, B, µ)→ (X ′, B̄(X), µ′) between
T and T ′. Moreover, φ ◦ V −1

: X ′
→ G is equal µ′-a.e. to a continuous function. Hence,

up to measurable isomorphism, there is no loss in assuming that T is a continuous
transformation of a compact metric space, µ is a probability measure on the completion of
the Borel σ -algebra, and φ is continuous.

First suppose that µ is ergodic. If f ∈ C(X, Rd) then it follows from Theorem 4.1 and
the remarks made in the proof of Corollary 4.2 that there exists X f ∈ B with µ(X f )= 1
such that

1
n

n−1∑
j=0

φ(x) · · · φ(T j−1x) f (T j x)→ f̂ (x) for x ∈ X f ,

where f̂ is a measurable function such that f̂ (x)= φ(x) f̂ (T x) a.e.
Suppose that f ∈ L1(X, Rd). Let ε > 0. Choose fk ∈ C(X, Rd) such that∫
| f − fk | dµ < 1/k. By Birkhoff’s ergodic theorem, there exists X(k) with µ(X(k))= 1

such that

1
n

n−1∑
j=0

| f − fk |(T j x) dµ→

∫
| f − fk | dµ <

1
k

for x ∈ X(k)

as n → ∞. Denoting (1/n)
∑n−1

j=0 φ(x) · · · φ(T j−1x) f (T j x) by Sn,φ f (x) we have that

|Sn,φ f (x)− Sm,φ f (x)| ≤ |Sn,φ f (x)− Sn,φ fk(x)| + |Sn,φ fk(x)− Sm,φ fk(x)|

+ |Sm,φ fk(x)− Sm,φ f (x)|.

Now

|Sn f (x)− Sn fk(x)| =

∣∣∣∣1
n

n−1∑
j=0

φ(x) · · · φ(T j−1x)( f (T j x)− fk(T j x))
∣∣∣∣

≤
1
n

n−1∑
j=0

| f − fk |(T j x)

as φ(·) is orthogonal.
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If n, m are sufficiently large, then |Sn,φ f (x)− Sn,φ fk(x)| ≤ ε by Theorem 4.1.
Let x ∈

⋂
∞

k=1 X fk ∩
⋂

∞

k=1 X(k), a set of full µ-measure. Choose k such that 1/k < ε.
Then if n, m are sufficiently large,

|Sn,φ f (x)− Sm,φ f (x)| ≤ ε,

so that Sn,φ(x) is Cauchy and therefore converges.
Now suppose that µ is not ergodic. Then the set{

x ∈ X
∣∣∣∣ lim

n→∞

1
n

n−1∑
j=0

φ(x) · · · φ(T j−1x) f (T j x) exists
}

∈ B̄(X)

has full measure for all measures in the ergodic decomposition of µ, and so has full
µ-measure.

Finally, observe that as φ(·) is orthogonal,

| f̂ (x)| ≤ lim
n→∞

1
n

n−1∑
j=0

‖φ(x) · · · φ(T j−1x)‖ | f (T j x)|

= lim
n→∞

1
n

n−1∑
j=0

| f (T j x)|,

which is an integrable function by Birkhoff’s ergodic theorem. 2

5. Applications to shifts
The results of §4 in the case where the base is a shift map can be used to deduce several
random ergodic theorems. These are related to results in [Wa], where such theorems are
proved in the case of commuting unitary operators acting on a Hilbert space; in the result
below the unitary operators do not need to commute, but the Hilbert space on which they
act is required to be finite-dimensional.

Let 6k = {(x j )
∞

j=0 | x j ∈ {1, . . . , k}} denote the full two-sided k-shift with shift map
σ :6k →6k defined by (σ (x)) j = x j+1.

For x, y ∈6k , x 6= y, we define n(x, y)= sup{n | x j = y j for | j | ≤ n}. Then for each
θ ∈ (0, 1) we define a metric dθ by setting dθ (x, y)= θn(x,y) if x 6= y and dθ (x, y)= 0
otherwise. We let Fθ (6k, R) denote the space of real-valued functions that are Lipschitz
continuous with respect to dθ ; by an abuse of notation if f ∈ Fθ (6k, R) for some θ ∈ (0, 1)
then we say that f is Hölder continuous. Let ψ ∈ Fθ (6k, R). Then there is a unique
measure µψ ∈ M(6k, σ ) such that

h(µψ )+

∫
ψ dµψ = sup

µ∈M(6k ,σ )

h(µ)+

∫
ψ dµ,

where h(·) denotes measure-theoretic entropy [PP1]. We call µψ the equilibrium state
corresponding to the potential ψ . Equilibrium states corresponding to Hölder continuous
potentials are ergodic.

We shall need the following result, which is surely known, but we were unable to locate
a reference.
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LEMMA 5.1. Let G be a compact group and let S be a closed semigroup of G. Then S is
a group.

Proof. We prove that if x ∈ S, x 6= e, then x−1
∈ S. Let Sx = cl{xn

| n ∈ N} denote the
closed semigroup generated by x . Note that Sx is abelian.

Consider the sequence xn
∈ S, n ≥ 0. By compactness, we may find a convergent

subsequence xnk such that xnk converges to a limit x∞
∈ Sx as nk → ∞. By taking a

further subsequence, we may assume that 2nk < nk+1. Let mk = nk+1 − nk − 1 ≥ nk .
Then xmk xxnk = xnk+1 . By taking further subsequences, if necessary, we can assume
that the sequence mk is increasing and that xmk converges to a limit y ∈ Sx . Hence
yxx∞

= x∞, so that x−1
= y ∈ S. 2

PROPOSITION 5.2. Let k ≥ d. Let σ :6k →6k be the full-shift on k symbols and let
µ ∈ E(6k, σ ) be an equilibrium state corresponding to a Hölder continuous potential.
Then there exists an open dense subset 1⊂ SO(d)k such that if (A1, . . . , Ak) ∈1,
f ∈ C(6k, Rd) and x ∈6k(µ) then

lim
n→∞

1
n

n−1∑
j=0

Ax0 · · · Ax j−1 f (σ j x)= 0.

Proof. By [Fi] there exists an open dense set 1⊂ SO(d)k such that each k-tuple A =

(A1, . . . , Ak) ∈1 topologically generates SO(d).

Choose such a k-tuple A and form the skew-product σA :6k × SO(d)→6k ×

SO(d) : (x, y) 7→ (σ (x), y Ax0). We claim that σA is ergodic with respect to µ× λSO(d).
By Proposition 2.1(iii) this is equivalent to showing that there are only trivial solutions to

w(σ(x))= γ (Ax0)w(x) µ-a.e., (11)

wherew :6k →6d is measurable and γ is a continuous irreducible unitary representation
of SO(d). By [PP2] the existence of measurable solutions to (11) is equivalent to
the existence of continuous solutions. By [P], continuous solutions to (11) depend on
just one coordinate of x which we may take to be x0. Hence (11) can be written as
w(x1)= γ (Ax0)w(x0). By Lemma 5.1 we see that w(i)= γ (g)wi for all g ∈ SO(d),
1 ≤ i ≤ k. Since γ is irreducible, it follows that γ is the trivial representation and w is
constant. Hence σA is ergodic.

Noting that Fix(SO(d))= Rd , the result follows from Theorem 4.1. 2

If we take f (x)= χE (x)v, where v ∈ Rd is a fixed vector and E is a finite union of
cylinders, in Theorem 4.1, we obtain the following corollary. This is related to a result
in [Wa] for commuting unitary operators acting on a Hilbert space; in our setting the
operators need not commute, but they must act on a finite-dimensional Hilbert space. Note
that if φ(x)= Ax0 then, by (6), H is the closed subgroup generated by {A1, . . . , Ak}.
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COROLLARY 5.3. Let σ and µ be as in Proposition 5.2. Let A = (A1, . . . , Ak) ∈

SO(d)k . Let E ⊂6k be a finite union of cylinders. Then for all x ∈6k(µ) and v ∈ Cd ,

lim
n→∞

1
n

n−1∑
j=0

χE (σ (x))Ax0 · · · Ax j−1v = µ(E) projFix(〈A〉) v,

where 〈A〉 denotes the closed subgroup generated by A1, . . . , Ak .

In [Wa], it is proved that

1
n

n−1∑
j=0

zx0 · · · zx j−1

(
f (σ j x)−

∫
f dµ

)
→ 0

uniformly in (z1, . . . , zk) ∈ K k , where f ∈ C(6k, C) and µ is an equilibrium state
corresponding to a Hölder continuous potential. The following result generalizes this from
K to SO(d).

PROPOSITION 5.4. Let k ≥ d. Let σ :6k →6k be the full-shift on k symbols and let
µ ∈ E(6k, σ ) be an equilibrium state corresponding to a Hölder continuous potential.
Let f ∈ C(6k, Rd). Then for all x ∈6k(µ) we have

lim
n→∞

1
n

n−1∑
j=0

Ax0 · · · Ax j−1

(
f (σ j x)−

∫
f dµ

)
= 0

uniformly for (A1, . . . , Ak) ∈ SO(d)k .

Proof. Let A = (A1, . . . , Ak) ∈ SO(d)k and form the skew-product σA as above.
It is sufficient to prove the result in the case when

∫
f dµ= 0. By Proposition 4.5 we

know that
1
n

n−1∑
j=0

Ax0 · · · Ax j−1 f (σ j x)→ f̂ (x), (12)

where f̂ is a measurable function such that

f̂ (x)= Ax0 f̂ (σ (x)) (13)

for x ∈6k(µ). We claim that f̂ = 0.
If σA is ergodic with respect to µ× λSO(d) then

f̂ (x)= projFix(SO(d))

∫
f dµ= 0.

Suppose that σA is not ergodic with respect to µ× λSO(d). Then Theorem 4.1 implies
that

f̂ (x)= s(x)−1 projFix(H)

∫
s f dµ (14)

for some closed subgroup H < SO(d) and measurable s :6k → SO(d). By [PP2], any
measurable solution f̂ to (13) has a continuous version; by [P], any continuous solution
to (13) depends on just one coordinate. Hence s(x) depends on one coordinate, which we
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may assume to be x0. (We remark that this also follows from a close inspection of the
construction of s in the proof of Proposition 2.2.)

It follows from (13) and (14) that

s(i)−1 projFix(H)

∫
s f dµ= Ai s( j)−1 projFix(H)

∫
s f dµ.

As f is arbitrary, this implies that s(i)−1
= Ai s( j)−1 on Fix(H) for all 1 ≤ i, j ≤ k.

Let l = dim Fix(H). By choosing a suitable basis, we can write Rd
= Fix(H)⊕

Fix(H)⊥. With respect to this basis, we can write

s(i)=

[
Si Ti

Ui Vi

]
, Ai =

[
I 0
0 Bi

]
,

where Si is an l × l matrix, I is the l × l identity matrix, Vi and Bi are (n − l)× (n − l)
matrices, and Ti is an l × (n − l) matrix. Then s(i)−1

= Ai s( j)−1 implies that Si = S j

and Ti Bi = T j . From this it is easy to see that

projFix(H) s j = projFix(H) si Ai

for any 1 ≤ i, j ≤ k.
Let [ j] = {x ∈6k | x0 = j} and fix any i0 ∈ {1, . . . , k}. Then

projFix(H)

∫
s f dµ= projFix(H)

k∑
j=1

∫
[ j]

s( j) f dµ

= projFix(H) s(i0)Ai0

k∑
j=1

∫
[ j]

f dµ

= projFix(H) s(i0)Ai0

∫
f dµ

= 0.

Hence for any k-tuple of matrices A = (A1, . . . , Ak) ∈ SO(d)k , the limit f̂ in (12) is
equal to 0. The same argument as in the proof of Proposition 4.3 can then be used to show
that this convergence is uniform in A. 2
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