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Abstract. In this paper two kinds ofcumulant processesare studied in a general
setting. These processes generalize the cumulant of an infinitely divisible random
variable and they appear as theexponential compensatorof a semimartingale. In a
financial context cumulant processes lead to a generalizedEsscher transform. We
also provide some new criteria for uniform integrability of exponential martingales.
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1 Introduction

Anyexponential semimartingale, i.e. any process of the formS = exp(X) for some
semimartingaleX, can be written as stochastic exponentialS = E(X̃) for some
semimartingalẽX. The process̃X is calledstochastic logarithmofS orexponential
transformofX. If X̃ is a special semimartingale, then its predictable part of finite
variationK̃ will be denoted theLaplace cumulant processof X. This process is
closely linked to theexponential compensatorof X, i.e. the unique predictable
processK of finite variation such thatexp(X −K) is a local martingale. In fact,
K̃ is the exponential transform ofK. These notions and their properties are the
subject of the subsequent section.
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The question of uniform integrability of localmartingalesexp(X−K) plays an
important role in statistics and finance because they appear as candidates for den-
sity processes. Among others, Gihman and Skorohod (1972), Grigelionis (1971),
Liptser and Shiryaev (1972), Novikov (1972, 1975, 1979, 1980), Jacod andMémin
(1976), Kazamaki (1977, 1978a,b, 1979), Mémin (1978), Ĺepingle and Ḿemin
(1978a,b), Ḿemin andShiryaev (1979), Kabanov et al. (1979, 1980),Okada (1982),
Yan (1980, 1982a,b), Kazamaki and Sekiguchi (1982, 1983), Stummer (1993), Jer-
schow (1994), Kramkov andShiryaev (1998) contributed to this issue. InSect. 3, we
show that the cumulant process naturally leads to a hierachy of sufficient criterions
for uniform integrability ofexp(X − K), which includes in particular Novikov-
and Kazamaki-type conditions in the sense of Revuz and Yor (1999), Propositions
VIII.1.14 and VIII.1.15.

In mathematical finance, measure transformations with density processdPϑ

dP |Ft

= exp(ϑXt−k(ϑ)t) for somegiven ĹevyprocessX and real numbersϑ, k(ϑ)have
been considered under the nameEsscher transformfor contingent claim pricing
(cf., e.g., Gerber and Shiu 1994; Madan andMilne 1991; Eberlein and Keller 1995;
Chan 1999). This concept can be generalized to integrals

∫ ·
0 ϑsdXs of a large class

of semimartingales if the cumulantk(ϑ)t is replaced with the cumulant process of∫ ·
0 ϑsdXs. This approach is discussed in Sect. 4.
We generally use the notation of Jacod and Shiryaev (1987) (henceforth JS) and

Jacod (1979, 1980). The transposed of a vector or matrixx is denoted asx� and
its components by superscripts. In particular,ϑ� ·X denotes the stochastic integral
of ϑ relative toX. Increasing processes are identified with their corresponding
Lebesgue-Stieltjes measure.

2 Cumulant processes

2.1 Stochastic exponential and logarithm

In this section we review and introduce some notions of stochastic calculus that
turn out to be useful for the study of exponential semimartingales. Firstly, we recall
the definition of thestochasticorDoléans-Dade exponentialof a semimartingale.

Definition 2.1 LetX be a real-valued semimartingale. Thestochastic exponential
E(X) is definedas the (up to indistinguishability unique) solutionZ to thestochastic
differential equation

Z = 1 + Z− ·X.
The mappingX �→ E(X) can be inverted. In analogy to real calculus, we call its
converse thestochastic logarithmofX (cf., also Foldes 1990; Choulli et al. 1998;
Kallsen and Shiryaev 2000).

Lemma 2.2 LetZ be a semimartingale such thatZ,Z− areR \ {0}-valued. Then
there exists an up to indistinguishability unique semimartingaleX with X0 = 0
andZ = Z0E(X). It is given by

X =
1
Z−

· Z.
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ProofW.l.o.g.Z0 = 1. The existence and explicit form ofX follows from1+Z− ·
( 1
Z−
·Z) = 1+ (Z− 1

Z−
) ·Z = Z. Now letX be any semimartingale withX0 = 0

andZ = E(X). ThenX = ( 1
Z−
Z−) ·X = 1

Z−
· (Z− ·X) = 1

Z−
·Z, which yields

the uniqueness. �

Definition 2.3 We call the processX in the previous lemmastochastic logarithm
of Z and writeL(Z) := X.

The following lemma summarizes some properties of these processes.

Lemma 2.4 LetX̃, Z be real-valued semimartingales such thatZ,Z− areR\{0}-
valued. Then the following statements hold.

1. E(X̃) = exp(X̃ − X̃0 − 1
2 〈X̃c, X̃c〉)∏s≤·(1 +∆X̃s)e−∆X̃s

2. L(Z) = log(| ZZ0
|) + 1

2Z2
−
· 〈Zc, Zc〉 −∑s≤·(log(| Zs

Zs−
|) + 1− Zs

Zs−
)

3. If∆X̃ > −1, thenE(X̃) = exp(X̃−X̃0− 1
2 〈X̃c, X̃c〉+(log(1+x)−x)∗µX̃).

4. L(Z) = log(| ZZ0
|) + 1

2Z2
−
· 〈Zc, Zc〉 − (log(|1 + x

Z−
|)− x

Z−
) ∗ µZ

5. If∆X̃ �= −1 outside some evanescent set, thenL(E(X̃)) = X̃ − X̃0.
6. E(L(Z)) = Z

Z0

Proof

1. JS, I.4.64
2. By Itô’s formula (cf., JS, I.4.57 and Goll and Kallsen 2000, Lemma A.5), we

havelog(|Z|) = log(|Z0|) + 1
Z−
· Z − 1

2Z2
−
· 〈Zc, Zc〉 +

∑
s≤·(log(|Zs|) −

log(|Zs−|)− 1
Zs−

∆Zs), which yields the assertion.
3. This follows from Statement 1.
4. This follows from Statement 2.
5. ForZ := E(X̃) we haveL(Z) = 1

Z−
· Z = 1

Z−
· (1 + Z− · X̃) = X̃ − X̃0.

6. This holds by definition. ��
For the study of exponentials of semimartingales the following notions will

prove useful.

Definition 2.5 For any real-valued semimartingaleX withX0 = 0, we callX̃ :=
L(exp(X)) theexponential transformofX. Conversely, we callX := log(E(X̃))
the logarithmic transformof any real-valued semimartingalẽX with X̃0 = 0 and
∆X̃ > −1.

Exponential and logarithmic transforms can be determined explicitly:

Lemma 2.6 LetX be a real-valued semimartingale withX0 = 0 and letX̃ :=
L(exp(X)) be its exponential transform (i.e.,X is the logarithmic transform of
X̃). Then we have:

1. X̃ = X + 1
2 〈Xc, Xc〉+ (ex − 1− x) ∗ µX

2. X = X̃ − 1
2 〈X̃c, X̃c〉+ (log(1 + x)− x) ∗ µX̃

3. ∆X̃ = e∆X − 1
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4. ∆X = log(1 +∆X̃)

Proof

1. Note that∆Z = Z−(e∆X − 1) for Z := exp(X) and hence(log(|1 + x
Z−
|)−

x
Z−

)∗µZ = (x−ex+1)∗µX . From It̂o’s formula, it follows thatZc = eX− ·Xc

(cf., e.g., the proof of Corollary A.6 in Goll and Kallsen (2000)), which implies
that 1

Z2
−
· 〈Zc, Zc〉 = 〈Xc, Xc〉. The claim follows now from Statement 4 in

Lemma 2.4.
2. This follows directly from Statement 3 in Lemma 2.4.
3. This is implied by Statement 1.
4. This is implied by Statement 2. ��

For some processes these transforms are of a simple form:

Lemma 2.7

1. IfX ∈V is continuous, then its exponential and logarithmic transforms coin-
cide withX.

2. IfX is a real-valued Ĺevy process with characteristic triplet(b, c, F ) relative
to some truncation functionh : R → R, then its exponential transform̃X is
again a Ĺevy process. Its characteristic triplet(̃b, c̃, F̃ ) is given by

b̃ = b+
c

2
+
∫

(h(ex − 1)− h(x))F (dx),

c̃ = c,

F̃ (G) =
∫

1G(ex − 1)F (dx) for G ∈ B.

Conversely, the logarithmic transformX of a Lévy process̃X with∆X̃ > −1
and characteristic triplet(̃b, c̃, F̃ ) is again a Ĺevy process, with triplet(b, c, F )
as follows:

b = b̃− c̃

2
+
∫

(h(log(1 + x))− h(x))F̃ (dx),

c = c̃,

F (G) =
∫

1G(log(1 + x))F̃ (dx) for G ∈ B.

(ByLévy processwe refer to a PIIS in the sense of JS, II.4.1, II.4.19.)

Proof

1. This follows immediately from Lemma 2.6 becauseXc andµX vanish in this
case.

2. Goll and Kallsen (2000), Lemma A.8 ��
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2.2 Special semimartingales

To prepare our study of exponential semimartingales, we review some properties
of special semimartingales. We introduce some notation but do not state any new
results here. Recall that a real-valued semimartingale is calledspecialif it can be
written asX = X0 +M + V for some local martingaleM and some predictable
processV of finite variation, both starting at 0. Put differently,X is a special
semimartingale if there exists a predictable processV ∈V such thatX − X0 −
V ∈ M loc. We call the unique processV the compensatoror drift processof
X and we writeDX := V (for drift or Doob-Meyer decomposition). Whether a
semimartingale is special or not, is an integrability property of the big jumps as the
following lemma shows.

Lemma 2.8 LetX be a real-valued semimartingale. Denote byνX the compen-
sator of the measure of jumps ofX. Then the following statements are equivalent.

1. X is special.
2. (|x|2 ∧ |x|) ∗ νX ∈V
3. 1{|x|>1}|x| ∗ νX ∈V
Proof The equivalence 1⇔2 is stated in JS, II.2.29. Note that predictable processes
inV belong toAloc (cf., JS, I.3.10). The equivalence 2⇔3 follows from the fact
that(|x|2 ∧ 1) ∗ νX ∈V for any semimartingaleX (cf., JS, II.2.13). ��

For the following, let us slightly extend the notion of a drift process.

Definition 2.9 LetX be a semimartingale inRd andϑ ∈ L(X) such thatϑ� ·X
is a special semimartingale. Then we call its compensator thedrift process of X in
ϑ and we writeDX(ϑ) := Dϑ�·X .

Remark If X andϑ� · X in the previous definition are special, thenDX(ϑ) =
ϑ� ·DX (cf., Jacod 1980, Proposition 2). Here,special semimartingaleanddrift
processin R

d are to be interpreted componentwise. Note, however, thatϑ� · X
may not be special even ifX is special (and vice versa).

A simple property of drift processes is given in the following

Lemma 2.10 Letϑ ∈ L(X),λ ∈ L(ϑ� ·X) be such that(λϑ)� ·X = λ ·(ϑ� ·X)
is special. ThenDϑ�·X(λ) = DX(λϑ).

Proof This follows fromλ · (ϑ� · X) = (λϑ)� · X (cf., e.g., Goll and Kallsen
(2000), Proposition A.1). ��

The drift process can be expressed explicitly in terms of semimartingale char-
acteristics. LetX be a semimartingale inRd. We assume that the characteristics
(B,C, ν) of X relative to some fixed truncation functionh : R

d → R
d are given

in the form
B = b ·A, C = c ·A, ν = A⊗ F, (2.1)

whereA ∈ A +
loc is a predictable process,b is a predictableRd-valued process,c

is a predictableRd×d-valued process whose values are non-negative, symmetric
matrices, andF is a transition kernel from(Ω × R+,P) into (Rd,Bd). By JS,
Proposition II.2.9 such a representation always exists.
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Lemma 2.11 Letϑ ∈ L(X) such thatϑ� ·X is special. Then we have:

1. DX(ϑ) = δ(ϑ) ·A, whereδ(ϑ)t := ϑ�
t bt +

∫
ϑ�
t (x− h(x))Ft(dx)

2. ∆DX(ϑ)t =
∫
ϑ�
t xν({t} × dx)

Proof For real-valuedX andϑ = 1 cf., JS, II.2.29. In the general case, observe that
the characteristics ofϑ� ·X relative to some truncation functionh1 : R → R are
of the form (2.1) withbt = ϑ�

t bt +
∫

(h1(ϑ�
t x) − ϑ�

t h(x))Ft(dx) andF t(G) =∫
1G(ϑ�

t x)Ft(dx) instead ofbt andFt(·) (cf., Kallsen and Shiryaev 2000, Lemma
2.5). ��

2.3 Exponentially special semimartingales

Amain subject of this paper areexponentially special semimartingalesin the sense
of the following

Definition 2.12 LetX be a real-valued semimartingale.X is calledexponentially
specialif exp(X −X0) is a special semimartingale.

As in the case of special semimartingales (cf., Lemma 2.8), this property can be
expressed in terms of the compensated measure of jumpsνX of X.

Lemma 2.13 LetX be a real-valued semimartingale. Denote byνX the compen-
sator of the measure of jumps ofX and byh : R → R a truncation function. Then
the following statements are equivalent.

1. X is exponentially special.
2. (ex − 1− h(x)) ∗ νX ∈V
3. 1{x>1}ex ∗ νX ∈V

Proof SetX̃ := L(exp(X −X0)). By Jacod (1979), (2.51),̃X is a special semi-
martingale if and only ifexp(X −X0) is a special semimartingale.

1⇒3: By Statement 3 in Lemma 2.6 we have that∆X̃ = e∆X − 1. From
Lemma 2.8 follows that|ex − 1|1{|ex−1|>1} ∗ νX = |x|1{|x|>1} ∗ νX̃ ∈ V . In
particular, we have(ex−1)1{x>1} ∗νX ∈V . Since1{x>1} ∗νX ∈V , this implies
ex1{x>1} ∗ νX ∈V .

3⇒2: Note that0 ≤ ex−1−h(x) ≤ ex1{x>1} +M(1∧x2) for some constant
M ∈ R+ which is independent ofx ∈ R. Since(1 ∧ x2) ∗ νX ∈V holds for any
semimartingale,1{x>1}ex ∗ νX ∈V implies(ex − 1− h(x)) ∗ νX ∈V .

2⇒1: Statement 1 in Lemma 2.6 implies thatX̃ = −X0 + 1
2 〈Xc, Xc〉+(ex−

1− h(x)) ∗ (µX − νX) + (ex − 1− h(x)) ∗ νX + (X − (x− h(x)) ∗ µX). Since
all components are special semimartingales, this is true forX̃ as well. ��

The counterpart of the compensator of a special semimartingale is defined in
the following

Definition 2.14 LetX be a real-valued semimartingale. A predictable processV ∈
V is calledexponential compensatorof X if exp(X −X0 − V ) ∈M loc.
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Put differently, we decomposeexp(X − X0) = MU whereM ∈ M loc and
U = exp(V ) is a positive predictable process of finite variation. Well-known
results on the multiplicative decomposition of semimartingales yield that such a
representation exists if and only ifexp(X −X0) is a special semimartingale:

Lemma 2.15 A real-valued semimartingaleX has an exponential compensator if
and only if it is exponentially special. In this case, the exponential compensator is
up to indistinguishability unique.

Proof Suppose thatX is exponentially special. By Jacod (1979), (6.19), there
exists a unique positive processU of finite variation such thatU0 = 1 andM :=
exp(X−X0)

U ∈ M loc. Sinceexp(X −X0) > 0 and exp(X−−X0)
U−

= M− <∞, we
haveU− > 0. Therefore,V := log(U) ∈V .

Conversely, suppose thatV is an exponential compensator ofX. Sinceexp(V )
is of finite variation, the special semimartingale property ofX and the uniqueness
of V follows again from Jacod (1979), VI.2a and (6.19). ��
In the following, we want to determine exponential compensators explicitly.

2.4 Laplace cumulant processes

For R
d-valued infinitely divisible random variablesX, we haveE(eϑ

�X) =
exp(k(ϑ)) for ϑ ∈ R

d, wherek(ϑ) denotes the cumulant ofX in ϑ (if it exists).
Below, this notion is generalized to semimartingales and leads to the so-called
Laplace cumulant process. A modification of this process allows to determine ex-
ponential compensators explicitly. For a closely related complex counterpart (the
Fourier cumulant process) we refer the reader to Kallsen and Shiryaev (2000).

LetX be a semimartingale inRd. We assume that the characteristics(B,C, ν)
of X are given in the form (2.1).

Definition 2.16

1. Letϑ ∈ L(X) such thatϑ� ·X is exponentially special. TheLaplace cumu-
lant processK̃X(ϑ) of X in ϑ is defined as the compensator of the special
semimartingale(ϑ� ·X)∼ = L(exp(ϑ� ·X)), i.e.K̃X(ϑ) := D(ϑ�·X)∼

. For
ϑ = 1 we writeK̃X := K̃X(1).

2. Themodified Laplace cumulant processKX(ϑ) of X in ϑ is the logarithmic
transform ofK̃X(ϑ), i.e.KX(ϑ) := log(E(K̃X(ϑ))). For ϑ = 1 we write
KX := KX(1).
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Remarks

1. From the proof of Statement 2 in Theorem 2.18 below it follows thatKX(ϑ)
is a well-defined predictable process of finite variation.

2. Observe that the mappings̃X �→ DX̃ andX �→ KX are dual in the sense that
(KX)∼ = DX̃ , where∼ denotes the exponential transform.

3. A theorem by Yor states thatE(X̃)E(Ỹ ) = E(X̃ + Ỹ + [X̃, Ỹ ]) for any real-
valued semimartingales̃X, Ỹ (cf., Jacod 1979, (6.4)). This fact can also be
interpreted in terms of a duality: A simple calculation shows that the mappings
(X̃, Ỹ ) �→ X̃ + Ỹ + [X̃, Ỹ ] and(X,Y ) �→ X + Y are dual in the sense that
(X + Y )∼ = X̃ + Ỹ + [X̃, Ỹ ].

The following twostatements summarizesomepropertiesof thecumulant processes
and their explicit form in terms of the characteristics ofX. They correspond to
Lemmas 2.10 and 2.11, respectively.

Lemma 2.17 Letϑ ∈ L(X),λ ∈ L(ϑ� ·X) be such that(λϑ)� ·X = λ ·(ϑ� ·X)
is exponentially special. TheñKϑ�·X(λ) = K̃X(λϑ) andKϑ�·X(λ) = KX(λϑ).

Proof This follows fromexp(λ · (ϑ� ·X)) = exp((λϑ)� ·X) (cf., e.g., Goll and
Kallsen 2000, Proposition A.1). ��
Theorem 2.18 Letϑ ∈ L(X) such thatϑ� ·X is exponentially special. Then the
following statements hold.

1. K̃X(ϑ) = κ̃(ϑ) · A, where κ̃(ϑ)t := ϑ�
t bt + 1

2ϑ
�
t ctϑt +

∫
(eϑ

�
t x − 1 −

ϑ�
t h(x))Ft(dx)

2. KX(ϑ) = K̃X(ϑ) +
∑

s≤·(log(1 +∆K̃X(ϑ)s)−∆K̃X(ϑ)s)

3. K̃X(ϑ) = KX(ϑ) +
∑

s≤·(e
∆KX(ϑ)s − 1−∆KX(ϑ)s)

4. ∆K̃X(ϑ)t =
∫

(eϑ
�x − 1)ν({t} × dx) =: Ŵ (ϑ)t

5. ∆KX(ϑ)t = log(1 +∆K̃X(ϑ)t) = log(1 + Ŵ (ϑ)t)
6. IfX is quasi-left-continuous, thenKX(ϑ) = K̃X(ϑ).

Proof

1. By Lemma 2.6, we have(ϑ� ·X)∼ = ϑ� ·X + 1
2 〈ϑ� ·Xc, ϑ� ·Xc〉+ (ex−

1 − x) ∗ µϑ�·X . From Goll and Kallsen (2000), Propositions A.2 and A.3, it
follows thatϑ� ·X = ϑ� ·Xc + ϑ�x1∆C ∗ (µX − ν) + ϑ�x1∆(x) ∗ µX +
ϑ� · B̃ for some∆ ∈ P ⊗ Bd andB̃ = B + (x1∆C (x) − h(x)) ∗ ν. Since
〈ϑ� · Xc, ϑ� · Xc〉 = (ϑ�cϑ) · A and(ex − 1 − x) ∗ µϑ�·X = (ex − 1 −
x) ∗ (µϑ

�·X − νϑ�·X) + (eϑ
�x − 1− ϑ�x) ∗ ν, straightforward calculations

yield that(ϑ� · X)∼ equals(ϑ�b + 1
2ϑ

�cϑ +
∫

(eϑ
�x − 1 − ϑ�x1∆(x) −

ϑ�h(x))F (dx))·A+ϑ�x1∆(x)∗µX up to a localmartingale. Since(ϑ� ·X)∼

is a special semimartingale, JS, I.4.23(iii) yields thatϑ�x1∆(x) ∗ µX ∈ Aloc
and hence|ϑ�x1∆(x)| ∗ µX ∈ A +

loc. This in turn meansϑ�x1∆(x) ∗ µX =
ϑ�x1∆(x) ∗ (µX − ν) + ϑ�x1∆(x) ∗ ν (cf., JS, II.1.28). Together, we have
that (ϑ� · X)∼ equals(ϑ�b + 1

2ϑ
�cϑ +

∫
(eϑ

�x − 1 − ϑ�h(x))F (dx)) · A
up to indistinguishability, which yields Statement 1.
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2. FromStatement 1wehave∆K̃X(ϑ)t = ϑ�
t ∆Bt+

∫
(eϑ

�
t x−1−ϑ�

t h(x))ν({t}
×dx). Since∆Bt =

∫
h(x)ν({t}×dx) (cf., JS, II.2.14), this implies∆K̃X(ϑ)t

=
∫

(eϑ
�x − 1)ν({t} × dx) > −1, hence1 + ∆K̃X(ϑ)t > 0. From JS,

I.4.63 it follows thatE(K̃X(ϑ)) = exp(K̃X(ϑ)+
∑

s≤·(log(1+∆K̃X(ϑ)s)−
∆K̃X(ϑ)s)), which yields Statement 2.

3. In view of∆KX(ϑ) = ∆K̃X(ϑ)+ log(1+∆K̃X(ϑ))−∆K̃X(ϑ) = log(1+
∆K̃X(ϑ)), this follows from Statement 2.

4. This has been shown in the proof of Statement 2.
5. This follows from the proof of Statement 3.
6. In view of JS, II.1.19, this follows from Statements 2 and 4. ��

We are now ready to determine the promised explicit form of the exponential
compensator in terms of Laplace cumulant processes.

Theorem 2.19 Let ϑ ∈ L(X) such thatϑ� · X is exponentially special. Then
KX(ϑ) is the exponential compensator ofϑ� ·X. More specifically,

Z := exp(ϑ� ·X −KX(ϑ))

=
exp(ϑ� ·X)

E(K̃X(ϑ))

= E
(
ϑ� ·Xc +

eϑ
�x − 1

1 + Ŵ (ϑ)
∗ (µX − ν)

)
∈M loc,

whereŴ (ϑ)t :=
∫

(eϑ
�x − 1)ν({t} × dx).

Proof Step 1:If we setS := exp(ϑ� · X) and denote bypS its predictable pro-
jection, thenH := 1

S−
− 1

pS is locally bounded by Jacod (1979), (6.19). This
implies thatH · S is a special semimartingale (cf., Jacod 1979, (2.51)). Since
pSt = E(St|Ft−) = St− + E(∆St|Ft−) = St−(1 + E(eϑ

�
t ∆Xt − 1|Ft−)) =

St−(1+Ŵ (ϑ)t) by JS, I.2.28 and II.1.26, it follows thatH = 1
S−

(1− 1
1+Ŵ (ϑ)

) =

1
S−

Ŵ (ϑ)
1+Ŵ (ϑ)

. If DH·S denotes the drift process ofH · S, we have that∆DH·S =

p(∆DH·S) = p(∆(H · S)) = H p(∆S) = H(pS − S−) = (Ŵ (ϑ))2

1+Ŵ (ϑ)
. In particular,

we have|(eϑ�x − 1) Ŵ (ϑ)
1+Ŵ (ϑ)

| ∗ ν =
∑

s≤·
(Ŵ (ϑ)s)2

1+Ŵ (ϑ)s
=
∑

s≤·∆D
H·S
s ∈ V . It

follows that(eϑ
�x − 1) Ŵ (ϑ)

1+Ŵ (ϑ)
∈ Gloc(µX) and

(eϑ
�x − 1)

Ŵ (ϑ)

1 + Ŵ (ϑ)
∗ (µX − ν) =

∑
s≤·

(eϑ
�
s ∆Xs − 1− Ŵ (ϑ)s)

Ŵ (ϑ)s
1 + Ŵ (ϑ)s

(cf., JS, I.3.10 and II.1.28).
Step 2:DefineY := ϑ� ·X −KX(ϑ). By Statement 1 in Lemma 2.6 we have

thatL(exp(Y )) = ϑ� ·X −KX(ϑ) + 1
2 〈ϑ� ·Xc, ϑ� ·Xc〉+∑s≤·(e

∆Ys − 1−
∆Ys). Sincee∆Ys − 1 − ∆Ys = e∆(ϑ�·X)s − 1 − ∆(ϑ� · X)s + ∆KX(ϑ)s +
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e∆(ϑ�·X)s(e−∆KX(ϑ)s − 1) and in view of Theorem 2.18 and Step 1, straightfor-
ward calculations yieldL(exp(Y )) = ϑ� ·X+ 1

2 〈ϑ� ·Xc, ϑ� ·Xc〉+(eϑ
�x−1−

ϑ�x)∗µX−K̃X(ϑ)−(eϑ
�x−1) Ŵ (ϑ)

1+Ŵ (ϑ)
∗(µX−ν). FromGoll andKallsen (2000),

Propositions A.2 andA.3, it follows thatϑ� ·X = ϑ� ·Xc+ϑ�x1∆C ∗(µX−ν)+
ϑ�x1∆(x)∗µX+ϑ� ·B̃ for some∆ ∈ P⊗Bd andB̃ = B+(x1∆C (x)−h(x))∗ν.
Similarly, Statement 1 in Theorem 2.18 and Proposition A.3 in Goll and Kallsen
(2000) yieldK̃X(ϑ) = ϑ� ·B̃+ 1

2 〈ϑ� ·Xc, ϑ� ·Xc〉+(eϑ
�x−1−ϑ�1∆C (x))∗ν.

Together, it follows thatL(exp(Y )) = ϑ� ·Xc + eϑ�x−1
1+Ŵ (ϑ)

∗ (µX − ν) ∈M loc. In

view of exp(KX(ϑ)) = E(K̃X(ϑ)), the proof is complete. ��

If Z is the density process of a probability measureP ′ loc� P , then the following
result is useful for the application of Girsanov’s theorem for semimartingales as in
JS, III.3.24.

Lemma 2.20 Let ϑ and Z be as in Theorem 2.19. Defineβ := ϑ and theP̃-
measurable functionY : Ω × R+ × R

d → R+ by

Y (t, x) :=
eϑ

�x

1 + Ŵ (ϑ)t
.

If MP
µX (·|P̃) is defined as in JS, III.3c and if we setat := ν({t} × R

d) and

Ŷt :=
∫
Y (t, x) ν({t} × dx), then we have

1. (a) Y Z− = MP
µX (Z|P̃),

(b) 〈Zc, Xi,c〉 = (Z−ci·β) ·A for i = 1, . . . , d,

2. Z = E
(
β� ·Xc + (Y − 1 + Ŷ −a

1−a 1{a<1}) ∗ (µX − ν)
)
.

Proof

1. Note thatZ = Z− exp(ϑ�∆X−∆KX(ϑ)) by definition. In view of Theorem

2.18, this equalsZ− eϑ�∆X

1+Ŵ (ϑ)
. Moreover, we havex = ∆Xt(ω) forMP

µX -almost

all (ω, t, x) ∈ Ω × R+ × R
d. Together, it follows thatUZ = UZ− eϑ�x

1+Ŵ (ϑ)
=

UZ−Y MP
µX -almost everywhere for any non-negativeP̃-measurable function

U . This implies the first statement.
The second statement follows immediately fromZc = Z− · (ϑ� · Xc) =
(Z−β)� ·Xc.

2. Straightforward calculations yield̂Y = a+Ŵ (ϑ)
1+Ŵ (ϑ)

and henceY −1+ Ŷ −a
1−a 1{a<1}

= eϑ�x−1
1+Ŵ (ϑ)

for a �= 1. Fora = 1 we haveY − 1 + Ŷ −a
1−a 1{a<1} = eϑ�x−1

1+Ŵ (ϑ)
−

Ŵ (ϑ)
1+Ŵ (ϑ)

. From the definition of the stochastic integral with respect toµX − ν
it follows that Ŵ (ϑ)

1+Ŵ (ϑ)
∗ (µX − ν) = 0 because the integrand does not depend

onx. In view of Theorem 2.19, we are done. ��
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Corollary 2.21 Suppose thatP ′ loc� P is aprobabilitymeasurewithdensityprocess
Z as in Theorem 2.19. Then theP ′-characteristics(B′, C ′, ν′) ofX are given by

B′i = Bi + ci·ϑ ·A+ hi(x)
(

eϑ
�x

1 + Ŵ (ϑ)
− 1
)
∗ ν for i = 1, . . . , d

C ′ = C

ν′ =
eϑ

�x

1 + Ŵ (ϑ)
· ν.

Proof Lemma 2.20 and JS, III.3.24 ��

2.5 Derivatives of cumulant processes

Theorem2.19 shows that cumulant processes play an important role for the study of
exponential martingales. We consider now its derivative with respect toϑ since it is
needed in the following sections. ByTheorem2.18,wehave thatK̃X(ϑ) = κ̃(ϑ)·A
with

κ̃(ϑ)t = ϑ�
t bt +

1
2
ϑ�
t ctϑt +

∫
(eϑ

�
t x − 1− ϑ�

t h(x))Ft(dx).

If we may differentiate under the integral sign, then the derivative of the mapping
R
d → R, ϑ �→ κ̃(ϑ)(ω, t) equalsDκ̃(ϑ)(ω, t) = (D1κ̃(ϑ), . . . , Ddκ̃(ϑ))(ω, t)

with

Diκ̃(ϑ)t = bit + ci·t ϑt +
∫

(xieϑ
�
t x − hi(x))Ft(dx).

Even in cases where it is not obvious whether differentiation and integration may
be exchanged, the following definition makes sense.

Definition 2.22 Let ϑ ∈ L(X) such thatϑ� ·X is exponentially special and such
that |xieϑ�x − hi(x)| ∗ ν ∈ V for i = 1, . . . , d. Thederivative ofK̃X in ϑ is
defined as theRd-valued processDK̃X(ϑ) = (D1K̃

X(ϑ), . . . , DdK̃
X(ϑ))where

DiK̃
X(ϑ) := Diκ̃(ϑ) ·A and

Diκ̃(ϑ)t := bit + ci·t ϑt +
∫

(xieϑ
�
t x − hi(x))Ft(dx)

for i = 1, . . . , d.

We want to define a derivative forKX(ϑ) as well. If the mappingRd → R,
ϑ �→ ∆K̃X(ϑ)(ω, t) = κ̃(ϑ)(ω, t)∆A(ω, t) is differentiable, then the mapping
R
d → R, ϑ �→ log(1 + ∆K̃X(ϑ)(ω, t)) is differentiable as well with derivative

D(log(1 + ∆K̃X(ϑ)t)) = 1
1+∆K̃X(ϑ)t

D∆K̃X(ϑ)t. In view of Statement 2 in

Theorem 2.18, we are led to define the derivative ofKX(ϑ) as follows.

Definition 2.23 Let ϑ ∈ L(X) such thatϑ� ·X is exponentially special and such
that |xieϑ�x − hi(x)| ∗ ν ∈ V for i = 1, . . . , d. Thederivative ofKX in ϑ is
defined as theRd-valued processDKX(ϑ) = (D1K

X(ϑ), . . . , DdK
X(ϑ))where

DiK
X(ϑ) := 1

1+Ŵ (ϑ)
·DiK̃

X(ϑ).
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Proposition 2.24 Letϑ ∈ L(X) such thatϑ� ·X is exponentially special and such
that |xieϑ�x − hi(x)| ∗ ν ∈V for i = 1, . . . , d. Then the derivatives of̃KX and
KX in ϑ are well-defined predictable processes whose components are of finite
variation.

Proof Sincebi ·A = Bi and(ci·ϑ) ·A = 〈Xi,c, ϑ� ·Xc〉, it follows thatDiK̃
X(ϑ)

is a well-defined predictable process inV .
If we setZ := exp(ϑ� · X) and denote bypZ its predictable projection,

then 1
pZ is locally bounded by Jacod (1979), (6.19). SincepZt = E(Zt|Ft−) =

Zt− +E(∆Zt|Ft−) = Zt−(1+E(eϑ
�
t ∆Xt − 1|Ft−)) = Zt−(1+ Ŵ (ϑ)t) by JS,

I.2.28 and II.1.26, it follows that1Z−
( 1
1+Ŵ (ϑ)

) and hence also 1
1+Ŵ (ϑ)

is locally

bounded. Therefore 1
1+Ŵ (ϑ)

∈ L(DiK
X(ϑ)) for i = 1, . . . , d. This implies that

DiK
X(ϑ) is a well-defined predictable process inV as well. ��

Proposition 2.25 Under the conditions of Definition 2.23 we haveDiK
X(ϑ) =

Diκ(ϑ) ·A, where

Diκ(ϑ)t := bit + ci·t ϑt +
∫ (

xieϑ
�
t x

1 + Ŵ (ϑ)t
− hi(x)

)
Ft(dx).

Proof By Definitions 2.23 and 2.22, we haveDiK
X(ϑ) = 1

1+Ŵ (ϑ)
· (Bi + ϑ� ·

C·i + (xieϑ
�x − hi(x)) ∗ ν). Note that Ŵ (ϑ)

1+Ŵ (ϑ)
· Bi − ( Ŵ (ϑ)

1+Ŵ (ϑ)
hi(x)) ∗ ν =∑

s≤· 1{Ŵ (ϑ) �=0}
Ŵ (ϑ)

1+Ŵ (ϑ)
(∆Bi

s −
∫
hi(x)ν({s} × dx)) = 0 by JS, II.2.14 and

the fact that{Ŵ (ϑ) �= 0} is a predictable thin set. Moreover, 1
1+Ŵ (ϑ)

· C = C

becauseC is continuous. Together, it follows thatDiK
X(ϑ) = Bi + ϑ� · C ·i +

(xi eϑ�x

1+Ŵ (ϑ)
− hi(x)) ∗ ν = Diκ(ϑ) ·A. ��

Remarks

1. If X is quasi-left-continuous, then the derivatives ofK̃X andKX coincide.
2. LetX be a real-valued exponentially special semimartingale. If|xex−h(x)| ∗
ν ∈V , then

DK̃X(1)− K̃X(1) =
1
2
C + ((x− 1)ex + 1) ∗ ν.

3. If Z := eX is a real-valued local martingale, thenwe haveK̃X(1) = KX(1) =
0 andŴ (1) = 0 (cf., Theorems 2.19 and 2.18). If|xex − h(x)| ∗ ν ∈V , then

DKX(1) = DK̃X(1) =
1
2
C + ((x− 1)ex + 1) ∗ ν

=
1
2
C̃ + ((1 + x) log(1 + x)− x) ∗ ν̃,

where (B̃, C̃, ν̃) denotes the characteristics of the local martingaleX̃ with
Z = E(X) (cf., Lemma 2.6).
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The following result shows how to calculateDKϑ�·X(1) in terms ofDKX(·),
which is useful in view of the conditions on uniform integrability in Sect. 3.

Lemma 2.26 Let ϑ ∈ L(X) be such thatϑ� · X is exponentially special and
such that|xieϑ�x − hi(x)| ∗ ν ∈ V for i = 1, . . . , d. Moreover, suppose that
|ϑ�xeϑ

�x − h1(ϑ�x)| ∗ ν ∈V for some truncation functionh1 : R → R. Then

DK̃ϑ�·X(1) = ϑ� ·DK̃X(ϑ)

and

DKϑ�·X(1) = ϑ� ·DKX(ϑ).

Proof From Definition 2.22 and Kallsen and Shiryaev (2000), Lemma 2.5 it fol-
lows thatDK̃ϑ�·X(1) = Dκ(1)·AwhereDκ(1) := ϑ�b+ϑ�cϑ+

∫
(ϑ�xeϑ

�x−
ϑ�h(x))F (dx) = ϑ�Dκ̃(ϑ). Since |Dκ(1)| · A ∈ V , we have that
ϑ ∈ L(DK̃X(ϑ)) andDK̃ϑ�·X(1) = ϑ� ·DK̃X(ϑ). In view ofDKϑ�·X(1) =

1
1+Ŵ (ϑ)

DK̃ϑ�·X(1), the second statement follows as well. ��

3 Uniform integrability of exponential local martingales

In this section, we consider positive local martingales of the formE(X̃) or equiv-
alently exp(X), whereX denotes the logarithmic transform of̃X. They play an
important role in statistics and finance because they appear as natural candidates for
density processes. SinceE(X̃) is a supermartingale (cf., e.g., Jacod 1979, (5.17)),
it converges to some random variableE(X̃)∞ with E(E(X̃)∞) ≤ 1. To define a
probability measureP ′ ∼ P via its densitydP

′
dP := E(X̃)∞ is only possible if

E(X̃)∞ = 1, or equivalently, ifE(X̃) is a uniformly integrable martingale. This
explains why the question of uniform integrability has received so much attention
(cf., the references in the introduction).

Roughly speaking, one may distinguish two kinds of sufficient conditions for
uniform integrability.Predictablecriteria (as e.g., Novikov’s condition) depend
only on the characteristics of̃X, whereasoptionalconditions (as e.g., Kazamaki’s
condition) involveX̃ directly and not only its characteristics. Our conditions below
will be formulated in terms ofX while the literature focuses mainly oñX. In the
predictable case or for continuous processes, the two viewpoints lead essentially
to the same results. For processes with jumps, however, we obtain new kinds of
optional criteria. Note that all proofs are relegated to the end in this section.

Our setting is as follows. LetX be aR
d-valued semimartingale and letϑ ∈

L(X) be such thatϑ� · X is exponentially special. We want to obtain sufficient
conditions forexp(ϑ� ·X −KX(ϑ)) ∈ M loc to be a uniformly integrable mar-
tingale. Since this process equalsexp(Y −KY (1)) for Y := ϑ� ·X, it suffices to
consider the case thatX is R-valued andϑ = 1. The reason to consider arbitrary
ϑ in the first place is that density processes of the above type appear frequently in
applications (cf., Sect. 4).
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Fromnowon letX be a real-valued semimartingale that is exponentially special
and whose characteristics are of the form (2.1). SetK(·) := KX(·) and

Z := exp(X −K(1)).

We start by defining a number of prospective sufficient conditions for uniform
integrability ofZ.

Definition 3.1 Let a ∈ [0, 1], δ ∈ (0, 1). We define the following integrability
conditions:

I(a, 1 + δ)1+ε : We say that ConditionI(a, 1 + δ)1+ε holds if (1 + δ)X is expo-
nentially special and if there exists someε > 0 such that

sup

{
E

(
exp

(
(1 + ε)

(
a
(
(1 + δ)XT −K(1 + δ)T

)
+

1− a
δ

(
K(1 + δ)T − (1 + δ)K(1)T

))))
: T finite stopping time

}
<∞.

I(a, 1)1+ε : We say that ConditionI(a, 1)1+ε holds if |xex − h(x)| ∗ ν ∈V and
if there exists someε > 0 such that

sup

{
E

(
exp

(
(1 + ε)

(
aXT + (1− a)DK(1)T −K(1)T

)))
:

T finite stopping time

}
<∞.

I(a, 1) : We say that ConditionI(a, 1) holds if |xex − h(x)| ∗ ν ∈V and

sup

{
E

(
exp

(
aXT + (1− a)DK(1)T −K(1)T

))
:

T finite stopping time

}
<∞.

I(0, 1 + δ) : We say that ConditionI(0, 1 + δ) holds if(1 + δ)X is exponentially
special and

sup
t∈R+

E

(
exp

(
1
δ

(
K(1 + δ)t − (1 + δ)K(1)t

)))
<∞.

I(0, 1) : We say that ConditionI(0, 1) holds if |xex − h(x)| ∗ ν ∈V and

sup
t∈R+

E

(
exp

(
DK(1)t −K(1)t

))
<∞.



The cumulant process and Esscher’s change of measure 411

Table 1.Relationships

0 I(0, 1)1+ε 3.2⇒ I(0, 1)
3.2⇐

I(0, 1−)
≥ ⇓ 3.4 ⇓ 3.2 ⇓ 3.4

a I(a, 1)1+ε ⇒ I(a, 1)

≥ ⇓ 3.4 ⇓ 3.4

ã I(ã, 1)1+ε ⇒ I(ã, 1)

>

3.6⇒ (
3.7⇐

) ⇓ 3.4

1 I(1, 1)1+ε 3.3⇒ Z ∈ M 3.3⇒ I(1, 1)

I(0, 1−) : We say that ConditionI(0, 1−) holds if

lim
δ↓0

sup
t∈R+

δ log

(
E

(
exp

(
1
δ

(
(1− δ)K(1)t −K(1− δ)t

))))
= 0.

Remarks

1. Note thatI(0, 1) is defined twice. But sinceDK(1) −K(1) is an increasing
process, the two definitions coincide (cf., Proposition 3.15 forδ = 1).

2. The conditionsI(a, 1+δ)1+ε andI(0, 1+δ) are rather of auxiliary nature than
of interest on their own.

For a = 0 the above criteria depend only on the cumulant process and hence
the characteristics ofX. Therefore, they are predictable conditions which makes
them handy for applications.

Theorem 3.2 We haveI(0, 1)1+ε ⇒ I(0, 1) ⇒ I(0, 1−) ⇒ Z ∈ M, where the
last statement means thatZ is a uniformly integrable martingale.

For continuous local martingales, ConditionI(0, 1)1+ε goes back to Liptser and
Shiryaev (1972). Novikov (1972, 1975) and Lépingle and Ḿemin (1978b) showed
that I(0, 1) suffices to conclude thatZ is a uniformly integrable martingale. The
slight generalization toI(0, 1−)has been shown inYan (1982b) for continuous pro-
cesses. The general version of ConditionI(0, 1−) is, to the best of our knowledge,
new.

In the casea �= 0 we obtain optional criteria which are usually weaker than the
predictableconditionsabove.Therefore theymaybehelpful in caseswhere the latter
do not hold. In order to understand the criteria let us start with the essentially trivial
casea = 1, where the conditions are close to the desired uniform integrability.
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Proposition 3.3 We haveI(1, 1)1+ε ⇒ Z ∈M⇒ I(1, 1).

Now observe that for0 < a < 1 the conditionsI(a, 1) (resp.I(a, 1)1+ε) are some
kind of convex combination ofI(1, 1) andI(0, 1) (resp.I(1, 1)1+ε andI(0, 1)1+ε).
The following lemma shows that themorea is increased, the weaker the conditions
get.

Lemma 3.4 Leta, ã ∈ [0, 1] with a < ã.

1. If ConditionI(a, 1)1+ε holds and̃a < 1, then ConditionI(ã, 1)1+ε holds as
well.

2. If ConditionI(a, 1) holds, then ConditionI(ã, 1) holds as well.

One may wonder whether Statement 1 in the previous lemma holds also forã = 1.
This is not the case as the following example shows.

Example 3.5Let f : R → R+ be some continuous function with
∫
f(x)dx <∞,∫ |xex| f(x)dx < ∞, and

∫
e(1+ε)xf(x)dx = ∞ for any ε > 0. Moreover,

let L be a real-valued Ĺevy process with characteristic triplet(b, 0, F ) whereF
has Lebesgue densityf and b := − ∫ (ex − 1 − h(x))F (dx). SinceKL(1) =
K̃L(1) = 0, it follows thateL is a local martingale and hence a martingale (cf.,
e.g., Kallsen 2000, Lemma 4.4). Therefore,sup{E(exp(XT )) : T finite stopping
time} < ∞ for X := (Lt∧1)t∈R+ . Note thatKX(1) = 0 andDKX(1)t =
(1∧t) ∫ ((x−1)ex+1)f(x)dx is boundedbysomeconstant.Bychoosing1+ε < 1

a ,
it follows that ConditionI(a, 1)1+ε holds forX and anya ∈ (0, 1). However,
Theorem 2 in Wolfe (1971) yields thatE(e(1+ε)L1) = ∞ for anyε > 0. Hence,
ConditionI(1, 1)1+ε does not hold.

Note that ConditionI(a, 1)1+ε obviously impliesI(a, 1). The reason to intro-
duceI(a, 1)1+ε as well is that ConditionI(a, 1) is only sufficient ifX does not
have too many large negative jumps.

Theorem 3.6 Leta ∈ [0, 1]. If ConditionI(a, 1)1+ε holds, thenZ ∈M.

Theorem 3.7 Suppose thatX is quasi-left continuous and that there exist some
m,M ∈ R with ν(R+ × (−∞,m]) < M P -almost surely. Leta ∈ [0, 1). If
ConditionI(a, 1) holds, thenZ ∈M.

At first, the condition on the large negative jumps im Theorem 3.7 looks quite
unnatural. However, it cannot be dropped in general. In the following example,
I(a, 1) holds for anya ∈ [0, 1], butZ is not a uniformly integrable martingale.

Example 3.8Let N be a standard Poisson process in the sense of JS, I.3.26 and
denote byT its first jump time. DefineX := − ∫ ·

0 tdN
T
t . Obviously,X is ex-

ponentially special andK(a)t = (eax − 1) ∗ νt = − ∫ t∧T

0 (1 − e−as)ds for
anya ∈ (0, 1]. Moreover, we haveDK(1)t −K(1)t = ((x − 1)ex + 1) ∗ νt =∫ t∧T

0 (1−(1+s)e−s)ds. Note that(1−(1+s)e−s)−(1−e−as) ≤ e−as. Straight-
forward calculations yieldDK(1)−K(1) ≤ 1

a −K(a) and−K(1) ≤ 1
a −K(a).
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Sinceexp(aX−K(a)) is a supermartingale, we haveE(exp(aXT −K(a)T )) ≤ 1
for any finite stopping timeT (cf., JS, I.1.39). This implies that

E

(
exp

(
aXT + (1− a)DK(1)T −K(1)T

))
= E

(
exp

(
aXT − aK(1)T + (1− a)(DK(1)T −K(1)T )

))
≤ e

1
aE

(
exp

(
aXT −K(a)T

))
≤ e

1
a

for any finite stopping timeT . Therefore, ConditionI(a, 1) holds for anya ∈ (0, 1].
On the other hand, we will prove thatZ := exp(X −K(1)) is not a uniformly

integrable martingale. It suffices to show thatZ∞ < 1 P -almost surely, whereZ∞
denotes the limit of the positive supermartingaleZ. On [0, T ) we haveNt = 0
and henceXt − K(1)t = t − (1 − e−t). From∆XT = −T it follows that
XT −K(1)T = XT− −K(1)T− +∆XT = −(1− e−T ) < 0 on{0 < T <∞}.
SinceX − K(1) = (X − K̃(1))T , we haveZ∞ < e0 = 1 on {0 < T < ∞}.
Therefore, it suffices to prove that0 < T <∞ P -almost surely. But this is evident
becauseT is the first jump time of a standard Poisson process.

Let us relateTheorems3.6and3.7 to the literature.Kazamaki’s criterion for con-
tinuous local martingales is equivalent to ConditionI( 1

2 , 1) (cf., Kazamaki 1979).
Similarly, the subsequent generalization by Kazamaki and Sekiguchi (1982) corre-
sponds toI(a, 1) in the continuous case. Note that ConditionsI(a, 1), I(a, 1)1+ε

for a �= 0 depend onX, whereas similar criterions in the literature involve the local
martingaleM := (X−K(1))∼ which satisfiesZ = E(M) (cf., e.g., Ĺepingle and
Mémin 1978b,a; Okada 1982; Yan 1982a). SinceX andM coincide only in the
continuous case, one cannot generally compare these two kinds of conditions. We
feel that the conditions derived fromX instead ofM are the more natural ones.

Counterexamples in Ĺepingle and Ḿemin (1978b), VI.2 and Jacod (1979),
Exercices 8.12–8.14 show that ConditionI(0, 1) is “optimal” in the following
sense. For anyε ∈ (0, 1), they present continuous and discontinuous processesX
such thatZ = exp(X −K(1)) is not a uniformly integrable martingale but

sup
t∈R+

E

(
exp((1− ε)(DK(1)t −K(1)t))

)
<∞ (3.1)

holds. This implies that ConditionI(0, 1) cannot be improved by a factor1 − ε.
From (3.1) and Proposition 3.11 it follows that

sup

{
E

(
exp

(
(1− ε)

(
aXT + (1− a)DK(1)T −K(1)T

)))
:

T finite stopping time

}
<∞

for anya ∈ [0, 1]. Therefore ConditionI(a, 1) cannot be improved by a factor1−ε
either.
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In the following example, Kazamaki-type criterions are derived for a particular
class of pure jump processes.

Example 3.9Let X̃ be a purely discontinuous local martingale with jumps of fixed
sizex̃ ∈ (−1,∞) \ {0}. SetZ := E(X̃). We want to determine a factorα > 0
such that the condition

sup{E(exp(αX̃T )) : T finite stopping time} <∞ (3.2)

suffices to ensure thatZ is a uniformly integrable martingale. (Note that for con-
tinuous local martingales, the “right” factor isα = 1

2 by Kazamaki’s criterion.)

Firstly, wewrite the compensator of themeasure of jumps ofX̃ asνX̃ = A⊗εx̃
withA ∈ Aloc. Note thatX̃ is quasi-left-continuous, because

∫
xνX̃({T}×dx) =

E(∆X̃T |FT−) = 0 impliesνX̃({(T, x̃)}) = 0 for any predictable stopping time
T (cf., JS, II.1.26, I.2.27, II.1.17, II.1.19). IfX denotes the logarithmic transform
of X̃, thenE(X̃) = exp(X) andKX(1) = 0 by Theorem 2.19. The application
of Remark 3 following Proposition 2.25 yieldsDKX(1) = ((1 + x̃) log(1 +
x̃) − x̃)A. Starting e.g. from Lemma 2.6, straightforward calculations yields that
X = log(1+x̃)

x̃ X̃ + (log(1 + x̃) − x̃)A. By Theorem 3.7, a sufficient criterion for
Z ∈M is sup{E(exp(aXT + (1− a)DKX(1))) : T finite stopping time}<∞.
If we choosea := (1+x̃) log(1+x̃)−x̃

x̃ log(1+x̃) , thenaXT + (1− a)DK̃X(1) is a multiple of

X̃. It follows that a sufficiently large factor in Condition (3.2) is

α :=
(1 + x̃) log(1 + x̃)− x̃

x̃2 .

Note thatα ≈ 1
2 if the jump size is close to 0, which corresponds approximately

to Kazamaki’s criterion for continuous local martingales. In Yan (1982a), (7), the
factormax(1, 1

2+x̃ ) is proposed, which is strictly larger thanα. The criterion in
Okada (1982) leads to the factorα above, but he requires uniform integrability of
the set{exp(αX̃T ) : T finite stopping time}, which is slightly stronger.

Let us summarize the sufficient conditions of this section in the following

Corollary 3.10 Leta ∈ [0, 1). ForZ to be a uniformly integrable martingale, any
of the following conditions suffices.

1. I(0, 1)
2. I(0, 1−)
3. I(a, 1)1+ε

4. I(a, 1) if X is quasi-left continuous and if there exist somem,M ∈ R with
ν(R+ × (−∞,m]) < M P -almost surely

Table 1 provides an overview about the relationships between the conditions in this
paper.
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3.1 Proofs

We start with some auxiliary results.

Proposition 3.11 Let (Ui)i∈I , (Vi)i∈I be families of random variables, moreover
a, ã ∈ [0, 1] with a < ã.

1. Letã < 1 andε ∈ (0, 1]. If supi∈I E(exp(Ui)) <∞ andsupi∈I E(exp((1 +
ε)(aUi + (1 − a)Vi))) < ∞, then there exists somẽε ∈ (0, 1] such that
supi∈I E(exp((1 + ε̃)(ãUi + (1− ã)Vi))) <∞.

2. If supi∈I E(exp(Ui)) <∞ andsupi∈I E(exp(aUi + (1− a)Vi)) <∞, then
supi∈I E(exp((ãUi + (1− ã)Vi)) <∞.

Proof

1. W.l.o.g. chooseε so small that(1 + ε)ã < 1. Moreover, let̃ε ∈ (0, ε) such that
(1−ã)(1+ε̃)
1−(1+ε̃)ã < 1 + ε. We haveexp((1 + ε̃)(ãUi + (1− ã)Vi)) = exp( ã−a

1−a (1 +
ε̃)Ui) exp( 1−ã

1−a (1 + ε̃)(aUi + (1 − a)Vi)). If we setα := ã−aã
ã−a , thenα > 1

and 1−ã
1−a = 1 − ãα−1. From Ḧolder’s inequality with1

p := (1+ε̃)ã
α and 1

q :=

1− 1
p := α−(1+ε̃)ã

α it follows that

E(exp((1 + ε̃)(ãUi + (1− ã)Vi))

≤ E(exp(Ui))
1
pE

(
exp

(
q(1 + ε̃)(1− ã)

1− a (aUi + (1− a)Vi)
)) 1

q

.(3.3)

Easy calculations yield thatq(1+ε̃)(1−ã)
1−a = (α−ã)(1+ε̃)

α−(1+ε̃)ã ≤ 1 + ε. In view of the
assumptions, this implies that the right-hand side of inequality (3.3) is bounded
uniformly in i ∈ I. This proves the first claim.

2. This is shown as Statement 1 if we replaceε, ε̃ with 0. ��
Proposition 3.12 LetU be a real-valued random variable withE(eU ) = 1 and
E(|U |eU ) <∞. If ϑ ∈ [0, 1), then 1

1−ϑ log(E(eϑU )) ≥ −E(UeU ).

Proof Step 1:We will show that the mapping[0, 1] → R, ϑ �→ E(eϑU ) is differ-
entiable in 1 with derivativeE(UeU ): For any sequence(ϑn)n∈N with ϑn ↑ 1 we
have eϑnU −eU

ϑn−1 → UeU for n → ∞. By convexity of the mappingϑ �→ eϑU , we

have| eϑnU −eU

ϑn−1 | ≤ UeU for U ≥ 0 and | eϑnU −eU

ϑn−1 | ≤ | e0−eU

0−1 | ≤ 1 for U < 0.
Hence dominated convergence yields the claim.

Step 2:Step 1 and the chain rule yield that the mappingf : [0, 1] → R, ϑ �→
log(E(eϑU )) is differentiable in 1 with derivativeE(UeU )

E(eU ) = E(UeU ). For λ ∈
[0, 1],ϑ, ϑ̃ ∈ (0, 1]wehaveλf(ϑ)+(1−λ)f(ϑ̃) = log((E(eϑU ))λ(E(eϑ̃U ))1−λ).
By Hölder’s inequality with 1

p := λ, 1
q := 1 − 1

p = 1 − λ, this dominates

log(E((eϑU )λ(eϑ̃U )1−λ)) = f(λϑ+ (1− λ)ϑ̃). Thereforef is convex. Together,
we obtain thatlog(E(eϑU )) ≥ log(E(eU )) + (ϑ− 1)E(UeU ) = (ϑ− 1)E(UeU )
for anyϑ ∈ [0, 1]. ��
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Proposition 3.13 For any predictable processV ∈V the following holds.

1. KX+V (ϑ) = KX(ϑ) + ϑV for anyϑ ∈ R.
2. 1

δ ((1− δ)KX+V (1)−KX+V (1− δ)) = 1
δ ((1− δ)K(1)−K(1− δ)) for any

δ ∈ (0, 1).
3. If (1+δ)X is exponentially special, then1δ (KX+V (1+δ)−(1+δ)KX+V (1))

= 1
δ (KX(1 + δ)− (1 + δ)KX(1)).

4. If |xex − h(x)| ∗ ν ∈V , then|xex − h(x)| ∗ νX+V ∈V andDKX+V (1)−
KX+V (1) = DK(1)−K(1).

Proof Lemma2.15 andTheorem2.19 yield the first assertion, which in turn implies
Statements 2 and 3. For the last assertion assume w.l.o.g.V = −K(1) and denote
by (B,C, ν) the characteristics ofX + V . Obviously, we haveC = C. Since
1G(∆(X + V )) = 1G(∆X +∆V )1{∆X �=0} + 1G(∆V )(1 − 1{∆X �=0}) for any
G ∈ Bwith 0 /∈ G, wehave1G(x)∗ν = 1G(x+∆V )∗νt+

∑
s≤· 1G(∆V )(1−as),

whereas := ν({s}×R). It follows that 12C+((x− 1)ex +1) ∗ ν = 1
2C+

(
(x−

∆K(1)− 1)ex−∆K(1) + 1
)
∗ ν +

∑
s≤·(1− (∆K(1)s − 1)e−∆K(1)s)(1− as).

A straightforward calculation yields that this expression equals1
2C + ( xex

1+Ŵ (1)

−ex + 1) ∗ ν +
∑

s≤·(Ŵ (1)s− log(1 + Ŵ (1)s)). In view ofDK(1) = B+C +
( xex

1+Ŵ (1)
−h(x)) ∗ ν andK(1) = B+ 1

2C+(ex− 1−h(x)) ∗ ν+
∑

s≤·(log(1+

Ŵ (1)s)− Ŵ (1)s) (cf., Proposition 2.25 and Theorem 2.18), it follows that1
2C +

((x−1)ex +1)∗ν = DK(1)−K(1) ∈V . In particular,((x−1)ex +1)∗ν ∈V .
Since|ex − 1− h(x)| ∗ ν ∈V , this implies that|xex − h(x)| ∗ ν = |(x− 1)ex +
1+ ex− 1−h(x)| ∗ ν ∈V . But by Remark 3 following Proposition 2.25, we have
DKX+V (1)−KX+V (1) = 1

2C+((x−1)ex +1)∗ν, which completes the proof
of Statement 4. ��

Proposition 3.14 LetX be quasi-left-continuous and|xex−h(x)|∗ν ∈V . More-
over, suppose that there exist somem,M ∈ R with ν(R+ × (−∞,m]) < M P -
almost surely. For anyδ ∈ (0, 1) there exists some real numberα ∈ (0,∞) such
that

1 + α

δ

(
(1− δ)K(1)−K(1− δ)

)
≤ αM +

(
DK(1)−K(1)

)
.

Proof W.l.o.g.m ≤ 0. For α ∈ R+ setgα : R → R, x �→ ex(x − 1) + 1 −
(1 + α)(ex( 1−e−δx

δ − 1) + 1). Note thatgα(0) = 0. Moreoverg′
α(x) ≥ ex(x −

(1 + α)(1 − δ)x) ≥ 0 for x ≥ 0 if α is so small that(1 + α)(1 − δ) ≤ 1.
Straightforward calculations yieldgα(x) ≥ ex( e

−δx−1+δx
δ − α(e−x − 1 + x))

for x ≤ 0. This implies thatg0(x) ≥ 0 for any x ∈ R. Sincee−x − 1 + x is
bounded on[m, 0] and limx→0( e

−δx−1−δx
δ )/(e−x − 1 + x) = δ > 0, we have

gα(x) ≥ 0 for x ∈ [m,∞) if α > 0 is chosen small enough. Now letα > 0
be so small that(1 + α)(1 − δ) ≤ 1 andgα(x) ≥ 0 for x ∈ [m,∞). Note that
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gα(x) = g0(x)−α(ex( 1−e−δx

δ − 1) + 1) ≥ −α(ex(x− 1) + 1) ≥ −α for x ≤ 0.
Therefore

αM + (DK(1)−K(1))− 1 + α

δ
((1− δ)K(1)−K(1− δ))

= αM +
1
2
C(1− (1 + α)(1− δ)) + gα(x) ∗ ν

≥ αM + 0 + gα(x)1[m,∞)(x) ∗ ν + gα(x)1(−∞,m)(x) ∗ ν
≥ αM + 0− αM = 0,

which proves the claim. ��

Proposition 3.15 Let δ ∈ (0, 1] and suppose that|xex − h(x)| ∗ ν ∈V . Then(
DK(1)−K(1)

)
− 1
δ

(
(1− δ)K(1)−K(1− δ)

)
(3.4)

is a non-negative increasing process.

Proof Step 1:Because of Proposition 3.13 we can replaceX with X − K(1).
Consequently, we may w.l.o.g. assume thatK(1) = K̃(1) = 0 andŴ (1) = 0.

Step 2:As in the proof of Proposition 3.14 it follows thatDK̃(1) − K̃(1) −
1
δ ((1−δ)K̃(1)−K̃(1−δ)) = 1

2C(1−(1−δ))+g0(x)∗ν. Since1−(1−δ) = δ > 0
andg0 ≥ 0, we have that this process is increasing.

Step 3:Since (3.4) andDK̃(1)− K̃(1)− 1
δ ((1− δ)K̃(1)− K̃(1− δ)) grow

identically outside the thin set{Ŵ (1) �= 0}∪ {Ŵ (1− δ) �= 0} (i.e., the stochastic
integral of1{Ŵ (1)=Ŵ (1−δ)=0} with respect to both processes coincides), it remains

to be shown that the jumps of (3.4) are non-negative. SinceŴ (1) = 0, we have
∆(DK(1)−K(1) + 1

δ ((1− δ)K(1)−K(1− δ)))t =
∫

((x− 1)ex + 1)ν({t}×
dx)+ 1

δ log(1+
∫

(e(1−δ)x−1)ν({t}×dx)) (cf., Remark 3 following Proposition
2.25 and Theorem 2.18). This equals

∫
xexQ(dx) + 1

δ log(
∫
e(1−δ)xQ(dx)) if we

define the probabilitymeasureQ(·) := ν({t}×·)+(1−ν({t}×R))ε0(·). Note that∫
exQ(dx) = 1 + Ŵ (1) = 1. Proposition 3.12 yields1δ log(

∫
e(1−δ)xQ(dx)) ≥

− ∫ xexQ(dx). Altogether, it follows that the jumps of (3.4) are non-negative.��

Now we turn to the proof of the sufficient conditions for uniform integrability.

Proof of Proposition 3.3The assertion follows immediately from JS, I.1.47 and
Jacod (1979), Exercise 1.12. ��
Proof of Lemma 3.4The claims follow from Doob’s stopping theorem (cf., JS,
I.1.39) and Proposition 3.11. ��

Lemma 3.16 Let a ∈ [0, 1), δ ∈ (0, 1
a − 1). If ConditionI(a, 1 + δ)1+ε holds,

thenZ ∈M.



418 J. Kallsen, A.N. Shiryaev

Proof W.l.o.g.K(1) = 0 (cf., Proposition 3.13). Chooseε > 0 as in the defi-
nition of ConditionI(a, 1 + δ)1+ε and letε̃ := δε

1+δ+ε . Defineα ∈ (1,∞) by
a = 1

1+αδ . Note thatexp((1 + ε̃)X) = exp((1 − α−1) 1+ε̃
1+δ ((1 + δ)X −K(1 +

δ)) exp(α−1 1+ε̃
1+δ ((1+ δ)X−K(1+ δ))+ 1+ε̃

1+δK(1+ δ)). Application of Ḧolder’s
inequality with 1

p := (1− α−1) 1+ε̃
1+δ and

1
q := 1− 1

p yields

E(exp((1 + ε̃)XT ))

≤
(
E(exp((1 + δ)XT −K(1 + δ)T ))

) 1
p

(3.5)(
E

(
exp

(
1 + αδ

1 + αδ(1 + ε)−1

(
a((1 + δ)XT −K(1 + δ)T ) +

1− a
δ

K(1 + δ)T

)))) 1
q

for any finite stopping timeT . The first expectation on the right-hand side of
Inequality (3.5) is bounded by 1 because(1 + δ)X − K(1 + δ) is a positive
supermartingale (cf., JS, I.1.39). Note that 1+αδ

1+αδ(1+ε)−1 ≤ 1+ε. Hence, Condition
I(a, 1 + δ)1+ε implies that the second integral is bounded uniformly over all finite
stopping timesT . In view of Proposition 3.3, we are done. ��

Proof of Theorem 3.6W.l.o.g.a �= 1,K(1) = 0 (cf., Propositions 3.3 and 3.13).
SinceZ is a non-negative local martingale and hence a supermartingale, we only
have to prove thatE(Z∞) ≥ 1.

Step 1:Chooseδ > 0 so small thata + δ < 1 and set̃δ := 1
1−δ − 1. Let

Y := (1 − δ)X. In view of Proposition 3.15, straightforward calculations yield
thata((1 + δ̃)Y − KY (1 + δ̃)) + 1−a

δ̃
(KY (1 + δ̃) − (1 + δ̃)KY (1)) ≤ aX +

(1− a)DK(1). Therefore, ConditionI(a, 1 + δ̃)1+ε holds forY instead ofX and
henceexp(Y −KY (1)) ∈M by Lemma 3.16.

Step 2:Sinceexp(Y −KY (1))∞ = Z
1−a−δ̃a

(1+δ̃)(1−a)∞ lim inft→∞ exp
(

δ̃a

(1+δ̃)(1−a)

Xt − K(1 − δ)t
)
, Step 1 and the application of Hölder’s inequality with1

p :=
1−a−δ̃a

(1+δ̃)(1−a)
and 1

q := 1− 1
p = δ

1−a yields

1 ≤ (E(Z∞))
1
p lim inf

t→∞

(
E

(
exp

(
aXt − 1− a

δ
K(1− δ)t

))) 1
q

. (3.6)

Since1
p → 1 for δ → 0, it remains to be shown that the second factor converges to

1 for δ → 0.
Step 3:By Proposition 3.15, we have− 1

δK(1 − δ) ≤ DK(1). Since Condi-
tion I(a, 1)1+ε impliesI(a, 1), it follows thatE(exp(aXt − 1−a

δ K(1 − δ)t)) ≤
E(exp(aXt + (1 − a)DK(1)t)) is bounded uniformly int. Since 1

q → 0 for
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δ → 0, this implies that the second factor on the right-hand side of Inequality (3.6)
converges to 1 as desired. ��
Proof of Theorem 3.7W.l.o.g.K(1) = 0 (cf., Proposition 3.13).

Step 1:Defineδ, δ̃ andY as in Step 1 of the proof of Theorem 3.6. Applying
Proposition 3.14 instead of Proposition 3.15 in that proof, we havea((1 + δ̃)Y −
KY (1 + δ̃)) + 1−a

δ̃
(KY (1 + δ̃)− (1 + δ̃)KY (1)) ≤ aX + 1−a

1+αDK(1) + α
1+αM

for someα > 0. Chooseε > 0 so small that1+ε ≤ 1+α
1+αa and set̃a := a(1+ε). It

follows that(1+ε)((a(1+δ̃)Y −KY (1+δ̃))+ 1−a

δ̃
(KY (1+δ̃)−(1+δ̃)KY (1))) ≤

ãX + (1− ã)DK(1) +αM . Hence ConditionI(ã, 1 + δ̃)1+ε holds forY instead
of X, which implies thatexp(Y −KY (1)) ∈M by Lemma 3.16.

Step 2:Z ∈ M follows now as in Steps 2 and 3 of the proof of Theorem 3.6.
��

Lemma 3.17 Let δ ∈ (0, 1). If ConditionI(0, 1 + δ) holds, thenZ ∈M.

Proof W.l.o.g.K(1) = 0 (cf., Proposition 3.13). SinceZ is a non-negative local
martingale and hence a supermartingale, we only have to prove thatE(Z∞) ≥ 1.

Step 1:Define the local martingalẽZ := exp((1 + δ)X −K(1 + δ)). By JS,
I.3.10 there exists a sequence of stopping times(Sn)n∈N with Sn ↑ ∞ P -almost
surely andK(1 + δ)t ≤ n on [0, Sn]. Fix n ∈ N. SinceZ̃ is a supermartingale, we
haveE((ZSn)1+δ

T ) = E(Z̃Sn∧T exp(K(1+δ)Sn∧T )) ≤ en for any finite stopping
timeT . By Jacod (1979), Exercise (1.12) and JS, I.1.47, this implies thatZSn is a
uniformly integrable martingale.

Step 2:Forn ∈ N andt ∈ R+ we haveZSn∧t1{Sn<∞} = Z̃
(1+δ)−1

Sn∧t exp( 1
1+δ

K(1 + δ)Sn∧t)1{Sn<∞}. Application of Ḧolder’s inequality with1
p := 1

1+δ and
1
q := 1− 1

p = δ
1+δ yields

sup
t∈R+

E(ZSn∧t1{Sn<∞}) ≤
(

sup
t∈R+

E(Z̃Sn∧t)
) 1

p

(
sup
t∈R+

E

(
exp

(
1
δ
K(1 + δ)Sn∧t

)
1{Sn<∞}

)) 1
q

. (3.7)

The first factor on the right-hand side is dominated by 1 becauseZ̃ is a supermartin-
gale. From Theorem 2.18 it follows thatK(1 + δ) = K(1 + δ)− (1 + δ)K(1) is
increasing. ConditionI(0, 1+δ) implies thatP (Sn <∞)→ 0 forn→∞. Domi-
nated convergence and oncemoreConditionI(0, 1+δ) yields that the second factor
on the right-hand side of Inequality (3.7) converges to 0 forn→∞. From Fatou’s
lemma we conclude thatE(ZSn

1{Sn<∞}) → 0 for n → ∞. SinceE(Z∞) =
E(ZSn∞ ) + E(Z∞1{Sn<∞}) − E(ZSn1{Sn<∞}) ≥ 1 − E(ZSn∧t1{Sn<∞}), we
obtainE(Z∞) = 1. ��
Proposition 3.18 ConditionI(0, 1) implies ConditionI(0, 1−).

Proof This follows from Proposition 3.15. ��



420 J. Kallsen, A.N. Shiryaev

Lemma 3.19 If ConditionI(0, 1−) holds, thenZ ∈M.

Proof W.l.o.g.K(1) = 0 (cf., Proposition 3.13). SinceZ is a non-negative local
martingale and hence a supermartingale, we only have to prove thatE(Z∞) ≥ 1.

Step 1:Chooseδ ∈ (0, 1) so small thatsupt∈R+
E(exp(− 1

δK(1− δ)t)) <∞.

Let Y := (1 − δ)X and δ̃ := 1
1−δ − 1. It follows that 1

δ̃
(KY (1 + δ̃) − (1 +

δ̃)KY (1)) = − 1
δK(1 − δ). Therefore ConditionI(0, 1 + δ) holds forY instead

of X, which implies thatexp(Y −KY (1)) ∈M by Lemma 3.17.
Step 2:Sinceexp(Y −KY (1)) = Z1−δ exp(−K(1−δ)), Step 1 and Ḧolder’s

inequality with 1
p := 1− δ and 1

q := 1− 1
p = δ yield that

1 = E(exp(Y −KY (1))∞) ≤ (E(Z∞))1−δ

(
E

(
exp

(
− 1
δ
K(1− δ)∞

)))δ

.

Note that the second factor on the right-hand side converges to 1 forδ → 0 by
ConditionI(0, 1−). Since1 − δ → 1 for δ → 0, it follows thatE(Z∞) ≥ 1 as
desired. ��

Proof of Theorem 3.2This follows from Proposition 3.18 and Lemma 3.19. ��
Proof of Corollary 3.10Theorems 3.2, 3.6, 3.7 ��

4 Esscher’s change of measure in finance

If a probability space(Ω,F , P ) and a random variableX are given, probability
measuresPϑ with Radon-Nikod́ym density dPϑ

dP := exp(ϑX − k(ϑ)) for some
real numbersϑ, k(ϑ) are calledEsscher transformbecause they were applied by
Esscher in the actuaries (cf., Esscher 1932). This concept has been transferred to
finance byGerber andShiu (1994) and others. Suppose thatX is a real-valued Ĺevy
process. Ifk(ϑ) denotes the cumulant ofX, thenZϑ := (exp(ϑXt− tk(ϑ)))t∈R+

is the density process of some probability measurePϑ
loc∼ P for anyϑ ∈ R. In

finance one is particularly interested in so-calledequivalent martingale measures,
i.e. measuresP ∗ ∼ P such that some given security price processS becomes a
martingale or at least a local martingale.

Fix a terminal timeT ∈ R+ and suppose thatS is of the formS = S0 exp(X).
Then a necessary and sufficient condition for(St)t∈[0,T ] to be aPϑ-martingale is

k(ϑ+ 1)− k(ϑ) = 0

(cf., Shiryaev 1999, VII.3c). This kind of measure change has been considered by
Madan and Milne (1991), Gerber and Shiu (1994), Eberlein and Keller (1995). A
closely related security model isS = S0E(X) if ∆X > −1. In fact, any such
positive processS = S0E(X) can be written asS = S0 exp(X̃) for some other
Lévy processX̃ and vice versa (cf., Goll and Kallsen 2000, Lemma A.8). In this
case, a necessary and sufficient condition for(St)t∈[0,T ] to be aPϑ-martingale is

k′(ϑ) = 0.
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The correspondingmeasurePϑminimizes the relative entropy amongall equivalent
martingale measures (cf., Miyahara 1999; Chan 1999) and it can be used to deter-
mine optimal portfolios relative to exponential utility (cf., Kallsen 2000). Note that
the two measure transformations above generally differ although they correspond
to the same class of security price models. Whereas Gerber and Shiu (1994) used
the notionEsscher transformin the first case, Chan (1999) applied the same name
to the second setting.

In this sectionwewant toextend thisapproach togeneral semimartingales.More
specifically, suppose thatX is aR

d-valued semimartingale whose characteristics
are of the form (2.1). For anyϑ ∈ L(X) such thatϑ� ·X is exponentially special,
define a local martingale

Zϑ := exp(ϑ� ·X −KX(ϑ)).

If it is a uniformly integrable martingale (cf., the previous section), then it is the
density process of some probability measurePϑ ∼ P . As in the Ĺevy process
setting, we want to determine necessary and sufficient conditions for someR

d-
valued securities price processS = (S1, . . . , Sd) to be aPϑ-local martingale.

Firstly, let us consider the case

Si = Si
0 exp(Xi) for i = 1, . . . , d (4.1)

with Si
0 ∈ R \ {0}.

Theorem 4.1 Letϑ ∈ L(X) be such thatϑ� ·X is exponentially special and such
thatZϑ is a uniformly integrablemartingale. DefinePϑ ∼ P by itsRadon-Nikod́ym
densitydPϑ

dP := Zϑ
T and setϑ(i) := (ϑ1, . . . , ϑi−1, ϑi + 1, ϑi+1, . . . , ϑd)�. Then

the processesSi = Si
0 exp(Xi) arePϑ-local martingales if and only if(ϑ(i))� ·X

is exponentially special and

KX(ϑ(i))−KX(ϑ) = 0 for i = 1, . . . , d. (4.2)

In this case we callPϑ anEsscher martingale transform for exponential processes.

Proof By JS, III.3.8,exp(Xi) is aPϑ-localmartingale if and only ifexp(Xi)Zϑ =
exp((ϑ(i))� · X − KX(ϑ)) is aPϑ-local martingale. By Lemma 2.15 and The-
orem 2.19 this is the case if and only if(ϑ(i))� · X is exponentially special and
KX(ϑ(i)) = KX(ϑ) up to indistinguishability. ��
Theorem 4.2 If d = 1, then the Esscher martingale transform for exponential
processes is unique (provided that it exists).

Proof Step 1:Letϑ, ϑ ∈ L(X) be such thatϑ ·X, (ϑ+1) ·X,ϑ ·X, (ϑ+1) ·X are
exponentially special and such thatPϑ, Pϑ are Esscher martingale transforms for
exponential processes. ThenKX(ϑ+ 1)−KX(ϑ) = 0 = KX(ϑ+ 1)−KX(ϑ)
(cf., Theorem 4.1). In particular,̃κ(ϑ+1)− κ̃(ϑ) = 0 = κ̃(ϑ+1)− κ̃(ϑ) (P ⊗A)-
almost everywhere on the set{∆A = 0} (cf., Theorem2.18). On the set{∆A �= 0}
we have∆KX(ϑ + 1) − ∆KX(ϑ) = 0 = ∆KX(ϑ + 1) − ∆KX(ϑ). In view
of Theorem 2.18, this implies0 = b + 1

2c + cϑ +
∫

((ex − 1)eϑx − h(x))F (dx)
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on the set{∆A = 0} and0 = log 1+
∫
(e(ϑ+1)x−1)ν({t}×dx)

1+
∫
(eϑx−1)ν({t}×dx) on the set{∆A �= 0}.

Parallel statements hold forϑ.
Step 2:Fix (ω, t) ∈ Ω × [0, T ] and letϑ ≤ ϑ in (ω, t) w.l.o.g. Firstly, suppose

that∆At(ω) = 0. Since
∫ |(ex−1)eϑx−h(x)|Ft(dx) <∞ and likewise forϑ, we

have thatsupψ∈[ϑ,ϑ]

∫ |(ex−1)eψx−h(x)|Ft(dx) <∞. Definev : [0, 1]→ R by

v(λ) := bt + 1
2ct + ct(ϑ+ λ(ϑ− ϑ)) +

∫
((ex − 1)e(ϑ+λ(ϑ−ϑ))x − h(x))Ft(dx).

Note thatv is a well-defined, continuous, increasing mapping. Similarly as in Step
2 of the proof of Theorem 4.5 below one concludes that(ϑ−ϑ)ct = 0, (ϑ−ϑ)bt−∫

(ϑ− ϑ)h(x)Ft(dx) = 0, and(ϑ− ϑ)x = 0 for Ft-almost allx ∈ R.
Secondly, assume that∆At(ω) �= 0. Since

∫
e(ϑ+1)xν({t} × dx) < ∞

and
∫
eϑxν({t} × dx) < ∞ and likewise forϑ, the same integrability condi-

tions hold uniformly on[ϑ, ϑ]. This time, definev : [0, 1] → R by v(λ) :=

log 1+
∫
(e(ϑ+λ(ϑ−ϑ)+1)x−1)ν({t}×dx)

1+
∫
(e(ϑ+λ(ϑ−ϑ))x−1)ν({t}×dx)

. Observe thatv is differentiable on(0, 1) with
derivative

v′(λ) =
(ϑ− ϑ)

∫
xe(ϑ+λ(ϑ−ϑ))xexν({t} × dx)

1 +
∫

(e(ϑ+λ(ϑ−ϑ))xex − 1)ν({t} × dx)

− (ϑ− ϑ)
∫
xe(ϑ+λ(ϑ−ϑ))xν({t} × dx)

1 +
∫

(e(ϑ+λ(ϑ−ϑ))x − 1)ν({t} × dx) .

Fix λ ∈ (0, 1) for the moment. Define a family(Q()(∈[0,1] of probability measures

on R by Q((M) := (
∫
e(xe(ϑ+λ(ϑ−ϑ))xP∆Xt|Ft−(dx))−1

∫
M
e(xe(ϑ+λ(ϑ−ϑ))x

P∆Xt|Ft−(dx) forM ∈ B. With this notion, we havev′(λ) = (ϑ− ϑ)(EQ1(I)−
EQ0(I)), whereI : R → R, x → x denotes the identity mapping (cf., JS,
II.1.26). Since(Q()(∈[0,1] is a class with increasing likelihood ratio, it follows
thatv′(λ) ≥ 0 (cf., Witting 1985, Satz 2.28). Thereforev is an increasing mapping
on [0, 1]. Similarly as in Step 2 of the proof of Theorem 4.5 below we conclude
that v(λ) = 0 and v′(λ) = 0 for any λ ∈ (0, 1). This implies0 = v′(λ) =
(ϑ − ϑ)

∫
xe(ϑ+λ(ϑ−ϑ))x(ex − 1)ν({t} × dx) for anyλ ∈ (0, 1), which in turn

means that(ϑ− ϑ)x = 0 for ν({t} × ·)-almost allx ∈ R.
Step 3:As in the proof of Theorem 4.5 below it follows thatϑ · X = ϑ · X,

which proves the claim. ��
Uniqueness may cease to hold in markets with more than one underlying:

Example 4.3We consider a simple one-period model withT := 1 andFt =
{∅, Ω} for t ∈ [0, 1). The sigma-fieldF = F1 is supposed to be generated by
some random variableU with P (U = −1) = P (U = 0) = P (U = 1) = 1

3 .
Define securities price processesS1, S2 by S1

t = 1 for t ∈ [0, 1), S1
1 = eU , and

S2 := 1 + S1. Moreover, define probability measuresP ′, P ′′ ∼ P via dP ′
dP :=

1
c′ exp(− 1

2U) for c′ := E(exp(− 1
2U)) and dP ′′

dP := 1
c′′

2
1+eU for c′′ := E( 2

1+eU ).
A straightforward calculation yields thatS1, S2 are martingales relative to bothP ′

andP ′′. If we setX1 := log(S1) andX2 := log(S2), thendP ′
dP = exp(− 1

2 (X1
1 −

X1
0 ) −KX1

1 (− 1
2 )) and dP ′′

dP = exp(−(X2
1 −X2

0 ) −KX2

1 (−1)). Therefore both
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measures are Esscher martingale transforms for exponential processes, namely
corresponding toϑ = (− 1

2 , 0) andϑ = (0,−1), respectively.

The following theorems correspond to the securities price process

Si = Si
0E(Xi) for i = 1, . . . , d, (4.3)

where we assume∆Xi �= −1 outside some evanescent set andSi
0 ∈ R\{0}. Note

thatSi is a local martingale if and only ifXi is a local martingale because1
Si

−
is

locally bounded. Therefore one can apply the following result also to the model

Si = Xi for i = 1, . . . , d.

Theorem 4.4 Letϑ ∈ L(X) be such thatϑ� ·X is exponentially special and such
thatZϑ is a uniformly integrablemartingale. DefinePϑ ∼ P by itsRadon-Nikod́ym
densitydPϑ

dP := Zϑ
T . Then the processesS

i = Si
0E(Xi) arePϑ-local martingales

if and only if|xieϑ�x − hi(x)| ∗ ν ∈V for i = 1, . . . , d and

DKX(ϑ) = 0. (4.4)

In this case we callPϑ anEsscher martingale transform for linear processes.

Proof “⇒”: Suppose thatSi, or equivalently,Xi is a Pϑ-local martingale for
i = 1, . . . , d. By Corollary 2.21, thePϑ-characteristics(B,C, ν) of X are of the

form (2.1) but withb = b + cϑ +
∫
h(x)( eϑ�x

1+Ŵ (ϑ)
− 1)F (dx), c = c, F (dx) =

eϑ�x

1+Ŵ (ϑ)
F (dx) instead of(b, c, F ). SinceXi is a Pϑ-local martingale, we have

0 = B
i
+(xi−hi(x))∗ν = Bi+ϑ� ·C ·i+

(
xi eϑ�x

1+Ŵ (ϑ)
−hi(x))∗ν for i = 1, . . . , d

(cf., Lemma 2.11). In particular, we have|xi eϑ�x

1+Ŵ (ϑ)
− hi(x)| ∗ ν ∈V . As in the

proof of Proposition 2.25, it follows that( Ŵ (ϑ)
1+Ŵ (ϑ)

hi(x)) ∗ ν = Ŵ (ϑ)
1+Ŵ (ϑ)

· Bi ∈
V . Together, we have that|(1 + Ŵ (ϑ))−1(xieϑ

�x − hi(x))| ∗ ν ∈ V . Since
1 + Ŵ (ϑ) is locally bounded (cf., e.g., Statement 4 in Theorem 2.18), it follows
that |xieϑ�x − hi(x)| ∗ ν ∈V as well (cf., JS, I.3.5). Proposition 2.25 yields that
DiK

X(ϑ) = 0 for i = 1, . . . , d.
“⇐”: Conversely, assume thatDKX(ϑ) = 0. From Proposition 2.25, we con-

clude that0 = bi + ci·ϑ+
∫ (

xieϑ�x

1+Ŵ (ϑ)
−hi(x))F (dx) = b

i
+
∫

(xi−hi(x))F (dx)

for i = 1, . . . , d, whereb, c, F are defined as in Step 1. In view of Lemma 2.11, we
are done. ��
Theorem 4.5 The Esscher martingale transform for linear processes is unique
(provided that it exists).

Proof Step 1:Let ϑ, ϑ ∈ L(X) be such thatϑ� · X, ϑ
� · X are exponentially

special and such thatPϑ, Pϑ are Esschermartingale transforms for linear processes.
ThenDKX(ϑ) = 0 = DKX(ϑ) (cf., Theorem 4.4) and henceDiK̃

X(ϑ) =
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(1 + Ŵ (ϑ)) · DiK
X(ϑ) = 0 for i = 1, . . . , d and likeweise forϑ. In particular,

we haveDiκ̃(ϑ) = 0 = Diκ̃(ϑ) (P ⊗A)-almost everywhere fori = 1, . . . , d.
Step 2:Fix (ω, t) ∈ Ω× [0, T ]. Suppose thatϑ ≤ ϑ in (ω, t). Since

∫ |xeϑ�x−
h(x)|Ft(dx) <∞and likewise forϑ, we have thatsupλ∈[0,1]

∫ |xe(ϑ+λ(ϑ−ϑ))�x−
h(x)|Ft(dx) < ∞. Definev : [0, 1] → R by v(λ) := (ϑ − ϑ)�(bt + ct(ϑ +
λ(ϑ − ϑ)) +

∫
(xe(ϑ+λ(ϑ−ϑ))�x − h(x))Ft(dx)). Moreover, setu : [0, 1] → R,

λ �→ ∫ λ

0 v(z)dz. Sincev is increasing, we have thatu is a closed proper convex
mapping (Rockafellar 1970,Theorem24.2). Let us identifyuwithaconvex function
R → R ∪ {∞} by settingu(λ) := ∞ for λ /∈ [0, 1]. Sinceu′(λ) = v(λ) for
λ ∈ (0, 1), Rockafellar (1970), Theorem 25.6 yields thatv(λ) belongs to the
subdifferential∂u(λ) for anyλ ∈ [0, 1]. Step 1 implies thatv(0) = 0 = v(1),
which means thatu achieves its infimum in 0 and 1. Since the minimum set of a
convex function is convex, we have thatv(λ) = 0 for anyλ ∈ [0, 1]. This implies
that(ϑ − ϑ)�ct(ϑ − ϑ) = 0 and(ϑ − ϑ)�x = 0 for Ft-almost allx ∈ R

d. This
in turn yields(ϑ− ϑ)�ct = 0 and hence(ϑ− ϑ)�bt −

∫
(ϑ− ϑ)�h(x)Ft(dx) =

v(0) = 0. From Kallsen and Shiryaev (2000), Lemma 2.5 we conclude that the

characteristics of(ϑ− ϑ)� ·X vanish, which in turn means thatϑ� ·X = ϑ
� ·X

up to indistinguishability. This proves the assertion. ��

Remarks

1. Note that the conditions in both Theorems 4.1 and 4.4 correspond tod equations
in d unknownsϑ1(ω, t), . . . , ϑd(ω, t) for fixed (ω, t).

2. If one is interested in thePϑ-local martingale property ofXi rather thanSi,
then of course the restriction∆Xi �= −1 is not necessary for Theorem 4.4 to
hold.

3. Suppose thatX is a Lévy process. For real-valued Lévy processesL it is well-
known thateL is a martingale if and only if it is a local martingale (cf., e.g.,
Kallsen (2000), Lemma 4.4). Consequently,Zϑ in Theorems 4.1 and 4.4 is
automatically a martingale (and hence a uniformly integrable martingale if we
restrict the time to some interval[0, T ] with T ∈ R+). Note thatX is still a
Lévy process under the new measurePϑ as can be seen from the change of
its characteristics (cf., Corollary 2.21 and JS, II.4.19). Therefore, the processes
Si in Theorems 4.1 and 4.4 arePϑ-martingales if they are positivePϑ-local
martingales (cf., e.g., Kallsen 2000, Lemmas 4.4 and 4.2).

4. Bühlmann et al. (1996) considered Esscher transforms in the sense of Equation
(4.1) and Theorem 4.1 for general discrete-time processes. Their Equation (76)
corresponds to Equation (4.2) above. Delbaen and Haezendonck (1989) char-
acterize measure changes such that a compound Poisson processX remains
a compound Poisson process under the new probability measure. If the func-
tion β in that paper is chosen asx �→ ϑx for someϑ ∈ R, one obtains the
measure changedPϑ

dP = exp(ϑXT −KX(ϑ)T ) in our notation. Note, however,
that the Esscher principle in Delbaen and Haezendonck (1989), Example 3.3
corresponds to a different class of measures.
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Finally, we want to consider the meaning of the two measuresPϑ in Theorems
4.1 and 4.4 in finance on an informal level. Recall that arbitrage arguments do not
suffice to determine unique derivative prices in incomplete markets. By contrast,
even in popular stock price models the whole trivial arbitrage interval for European
call option values can be obtained via expectation relative to some equivalent mar-
tingale measure (EMM) (cf., Eberlein and Jacod 1997; Frey and Sin 1999; Cvitanić
et al. 1999). Additional criteria based on equilibrium-type arguments (e.g., Davis
1997; Karatzas and Kou 1996; Kallsen 2001, 2002), distance minimization (e.g.,
Keller 1997; Miyahara 1996, 1999; Chan 1999; Grandits 1999a,b; Fritelli 2000),
and hedging arguments (e.g., Schäl 1994; Schweizer 1996) have been proposed to
justify the choice of a particular EMM. Piecing together results from He and Pear-
son (1991a,b), Karatzas et al. (1991), Karamkov andSchachermayer (1999), Bellini
and Frittelli (2000), Kallsen (1998), Schachermayer (2001), Goll and Rüschendorf
(2001), Xia andYan (2000), Delbaen et al. (2000) one can observe that these criteria
are closely linked with each other as well as with portfolio optimization problems
(cf., Kallsen2001 for anoverview). Fix autility functionu, a securities priceprocess
S, and a terminal timeT . Very roughly speaking, an EMM with Radon-Nikodým
density of the formdP∗

dP = cu′(x+ϕ� ·ST ) (for somec ∈ R+, x ∈ R,ϕ ∈ L(S))
plays a threefold role in finance. Firstly, it leads toneutralcontingent claim prices
in the sense of Davis (1997), Kallsen (2001), i.e. utility maximizers do not trade
options at these prices. Put differently, it corresponds to theleast favourablemarket
completionin the eyes of a utility maximizer. Secondly, it minimizes a certain dis-
tance functional among all EMM (e.g., the relative entropy in case of exponential
utility). Thirdly, ϕ is the expected utility maximizing portfolio relative tou and
initial capitalx. Let us stress, however, that the extent to which these relationships
hold in general settings depends sensitively on the chosen sets of trading strategies
and probability measures, cf., Schachermayer (2000) for a thorough discussion and
illuminating counterexamples.

How do Esscher transforms fit into this picture? As noted before, the EMM
Pϑ in a one-dimensional Ĺevy process setting of type (4.3) minimizes the relative
entropy and it is related to exponential utility. On the above intuitive level, this
is due to the fact thatdPϑ

dP equalsexp( ϑ
S−
· ST ) up to a multiplicative constant

exp(−Tk(ϑ)). If we leave the framework of Ĺevy processes, this is no longer
true since the corresponding factorexp(−KX(ϑ)T ) is generally not a constant.
However,Pϑ can still be interpreted economically. It leads toneutral derivative
prices for local utilityin the sense of Kallsen (2001, 2002) ifu(x) = 1− exp(−x)
is chosen as utility function.

The Esscher transformPϑ referring to real-valued Ĺevy processes of type (4.1)
has a density proportionate toSϑ

T . Therefore, it corresponds to the utility function
u(x) = xϑ+1 in the senseof theaboveoverview (cf., alsoNaik andLee1990).Note,
however, that this utility function depends on the solution parameterϑ. Moreover,
the correspondence ceases to hold even for multidimensional Lévy processes.

An entirely mathematical property of Esscher transforms is that they can be
computed relatively easily for general semimartingales because the whole den-
sity process is known in a form that is suitable to apply Girsanov’s theorem (cf.,
Corollary 2.21). The unknown parameters ensuring the martingale property of the
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securities price process can be obtained by solving equations seperately for any
(ω, t) (cf., Equations (4.2) and (4.4)). There exist further instances of suchlo-
calmeasure changes which all share the property that they can be determined by
pointwise solution of equations inRd that depend only on the local characteristics
(b, c, F )(ω, t). Ignoring the fact that it is generally a signed measure, themini-
mal martingale measurein the sense of F̈ollmer and Schweizer (1991), Schweizer
(1995) constitutes a first example. Theneutral pricing measurein Kallsen (2002)
is of this type as well. Thirdly, the EMM leading to log-optimal portfolios shares
this simple structure, which explains the often statedmyopiaof logarithmic utility
(cf., Goll and Kallsen 2000). For continuous processes, there is in some sense only
one “natural” local measure change, which is why theselocal approaches lead to
the same equivalent martingale measure in this case.
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