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Abstract

In this article we consider solutions of affine stochastic functional dif-
ferential equations on Rd. The drift of these equations is specified by a
functional defined on a general function space B which is only described
axiomatically. The solutions are reformulated as stochastic processes in the
space B. By representing such a process in the bidual space of B we estab-
lish that the transition functions of this process form a generalized Gaussian
Mehler semigroup on B. Thus the process is characterized completely on B
since it is Markovian.

Moreover we derive a sufficient and necessary condition on the underlying
space B such that the transition functions are even an Ornstein-Uhlenbeck
semigroup. We exploit this result to associate a Cauchy problem in the
function space B to the finite-dimensional functional equation.

1 Introduction

In this article we consider affine stochastic functional differential equations. Vari-
ous approaches on functional differential equations exploit the idea of associating
an equation in a function space to the functional equation under consideration.
By this procedure which we call lifting the dependency on the past is removed. As
we will see below a canonical choice of this function space is a specific instance
of an Lp space. In a deterministic setting the lifting to such an Lp space was
used for instance in [4] and related work by the same authors when dealing with
problems in viscoelasticity, in [13], [14] and [21] for control problems or [8] for
some general aspects. Stochastic equations are lifted to the same Lp space with
p = 2 in [3]. More recently in [6], this approach was applied to obtain a stochastic
evolution equation in a Hilbert space, which we present in the example below:

Example 1.1. The drift of an affine stochastic differential equation with delay
is described by a linear functional on some function space. For α < 0 let C([α, 0])
denote the space of continuous functions on the interval [α, 0] equipped with the
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supremum norm. By choosing as most often in the literature the space C([α, 0])
as the domain of the linear functional, we arrive at:

dX(t) =

(∫
[α,0]

X(t+ s)µ(ds)

)
dt+ dW (t) for t > 0,

X(u) = ϕ(u) for u ∈ [α, 0],

(1.1)

where µ is a finite signed measure, W is a real-valued Wiener process and the
initial data ϕ is in C([α, 0]). For the underlying deterministic differential equation

ẋ(t) =
∫

[α,0]
x(t+ s)µ(ds) for almost all t > 0,

x(u) = ϕ(u) for u ∈ [α, 0],

there exists a unique solution x(·, ϕ) and the solution operators

T (t) : C([α, 0]) → C([α, 0]), (T (t)ϕ)(u) = x(t+ u, ϕ),

form a strongly continuous semigroup of bounded operators on C([α, 0]), see [11].
Let L2

ν denote the space of square-integrable functions on [α, 0] with respect to the
measure ν(dt) = δ0(dt) + dt and equipped with the standard norm. The solution
operators T (t) can be extended to linear bounded operators on L2

ν and the family
(T (t))t>0 forms also a strongly continuous semigroup on L2

ν , see [7]. Denoting
the generator of this semigroup by A we can formulate a Cauchy problem on L2

ν :

dZ(t) = AZ(t) dt+GdW (t) for t > 0,
Z(0) = ϕ,

(1.2)

where the operator G : R → L2
ν is defined by G(s) := s1{0}(·) for s ∈ R. In [3]

it is shown that the evaluation Z(t)(0) of the weak solution Z of (1.2) satisfies
(1.1), and vice versa, if X is the solution of (1.1) and if Xt denotes the function
u 7→ X(t+ u) for u ∈ [α, 0], the L2

ν-valued segment process (Xt : t > 0) is a weak
solution of equation (1.2).

In the example the solution of (1.2) and consequently the segment process (Xt :
t > 0) is an Ornstein-Uhlenbeck process in the enlarged space L2

ν and thus well
analyzed. However, much less is known for the segment process on the origi-
nal space C([α, 0]). But for instance when dealing with problems in control or
stability theory results are desired in the topology of the original space without
enlarging it. Moreover, the lifting in the example depends strongly on the space
C([α, 0]) and the representation of the linear drift functional. It does not allow
to conclude what happens if the original space differs from C([α, 0]) which may
occur as in applications the problem under consideration determines the function
space. The example raises two questions:

- how can we characterize the segment process in the original function space
without enlarging it, in particular for arbitrary function spaces?
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- which function spaces imply that the segment process solves an abstract
Cauchy problem on them?

In order to deal with these questions we provide a general formulation of the
problem where we do not specify the original function space, say B. We include
equations with infinite delay by assuming B ⊆ {ϕ : (−∞, 0] → R

d}. Equations
depending only on functions with compact support such as in the example will
be embedded later in this setting. The space B will be equipped with a semi-
norm ‖·‖B and endowed with the induced topology. For a function x : R → R

d

the segment function xt denotes the shifted function xt : (−∞, 0] → R
d with

xt(u) := x(t+ u) for u 6 0. Let (Ω,F , P ) be a probability space equipped with
a filtration {F t}t>0. In this article we deal with the following affine stochastic
differential equation with delay:

dX(t) = L(Xt)dt+ dW (t) for t > 0,
X(u) = ϕ(u) for u 6 0,

(1.3)

where W is a Brownian motion with values in Rd. The initial value ϕ is in B and
the functional L : B → R

d is linear and continuous on B. A solution (X(t, ϕ) :
t ∈ R) is an adapted stochastic process with continuous paths satisfying P -a.s.

X(t) = ϕ(0) +
∫ t

0
L(Xs) ds+W (t) for all t > 0,

with X0 = ϕ. The solution is called unique if all solutions are indistinguishable.
The segment process in B of a solution is denoted by (Xt(·, ϕ) : t > 0).
Given this setting we will answer the question above in the following way:

- the segment process (Xt(·, ϕ) : t > 0) on B turns out to be a pathwise
continuous, Gaussian, strong Markov process. Its transition functions form
a generalized Gaussian Mehler semigroup, a terminology explained in the
Appendix; in general this is not an Ornstein-Uhlenbeck semigroup.

- we derive sufficient and necessary conditions on the space B such that we can
associate a stochastic evolution equation on B which in addition is equiv-
alent to the fact that the transition semigroup is an Ornstein-Uhlenbeck
semigroup.

These results allow to study the solution of (1.3) in the topology of the arbitrary
space B by means of its transition functions.
We end this introduction with summarizing the article. In the next section we
consider the underlying deterministic differential equation. The problems treated
in this article require not to specify the function space B but not every space B
allows to solve equation (1.3). We tackle this problem by an approach developed
in the theory of deterministic differential equations with infinite delay. There the
admissible spaces B are only described axiomatically by some conditions which
we also introduce in the next section.
The linearity of the equation allows to derive easily a variation of constants
formula for the segment process (Xt(·, ϕ) : t > 0), which we present in the
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beginning of Section 3. Since the calculation of the transition functions fails
using this formula, we continue to establish a more appropriate representation of
the segment process in the larger bidual space B∗∗.
This representation in B∗∗ enables us to calculate the transition functions of the
segment process in Section 4. It turns out that the transition functions form
a generalized Gaussian Mehler semigroup. As a consequence of this result we
obtain that the segment process (Xt(·, ϕ) : t > 0) is a strong Markov process in
B.
In the last part we derive sufficient and necessary conditions on B such that
the transition functions form even an Ornstein-Uhlenbeck semigroup on B, not
only a Gaussian Mehler semigroup. We relate this result to the fact that the
segment process is the weak solution of a Cauchy problem on B. For establishing
this relation we evoke the theory of stochastic convolution integrals on Banach
spaces, rather recently introduced in [2] and [20].
In the Appendix we summarize some definitions and results on Gaussian semi-
groups and on stochastic convolution integrals on Banach spaces.

2 Linear Autonomous Systems

In this section we collect several results on the underlying deterministic differen-
tial equation of the stochastic equation (1.3), mostly from [12]. A linear delay
differential equation is of the following form:

ẋ(t) = L(xt) for almost every t > 0, x0 = ϕ ∈ B, (2.4)

where L : B → R
d is a linear bounded functional. We say, that a solution of (2.4)

is a function x = x(·, ϕ) on R which is locally absolutely continuous on [0,∞)
and satisfies the first equation in (2.4) with x0 = ϕ.
The space B = B((−∞, 0],Rd) is always assumed to be a linear subspace of {ϕ :
(−∞, 0] → R

d} with semi-norm ‖·‖B and endowed with the induced topology.
A norm on Rd is denoted by |·|. We denote by C(J,Rd) the space of bounded
continuous functions mapping an interval J into Rd with the norm ‖f‖C(J) :=
sup{|f(u)| : u ∈ J}.
In the sequel we summarize the conditions on B as they are proposed in [12].

Condition (A). For every function x : R → R
d which is continuous on [0,∞)

and satisfies x0 ∈ B the following conditions hold for every t > 0:

1) xt ∈ B;

2) there exists H > 0, independent of x and t, such that |x(t)| 6 H ‖xt‖B;

3) there exists N : [0,∞) → [0,∞), continuous, independent of x and t,
there exists M : [0,∞) → [0,∞), locally bounded, independent of x and t,
such that:

‖xt‖B 6 N(t) sup
06u6t

|x(u)|+M(t) ‖x0‖B.

4) t 7→ xt is a B-valued continuous function.
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A space B satisfying Condition (A) always contains the space Cc(R -,R
d), the

space of continuous functions on R - := (−∞, 0] with compact support. This is
due to the fact, that every function ϕ which is continuous on [0,∞) and vanishes
on (−∞, 0] is a function considered in Condition (A).1.
The homogeneous equation (2.4) has a unique solution under Condition (A).
Thus, for t > 0 we can define solution operators:

T (t) : B → B, T (t)ϕ = xt,

where x = x(·, ϕ) is the unique solution of equation (2.4) for ϕ ∈ B.
For ϕ ∈ B the symbol ϕ̂ denotes the equivalence class {ψ ∈ B : ‖ψ − ϕ‖B = 0}.
The quotient space B̂ := B / ‖·‖B is a linear space with norm ‖ϕ̂‖B̂ = ‖ϕ‖B. For
a bounded linear operator U on B let Û be the induced operator Û ϕ̂ = Uϕ for
some ϕ ∈ ϕ̂.

Condition (B). The quotient space B̂ is complete.

Condition (B) implies that the solution operators (T̂ (t))t>0 form a strongly con-
tinuous semigroup of bounded operators on B̂.

Condition (C). The space B is separable.

In the theory of deterministic equations with infinite delay Condition (C) is often
assumed when dealing with stability properties. In our context, Condition (C)
implies that the σ-algebra induced by the cylindrical sets equals the Borel σ-
algebra on B.
In this paper we assume that the space B of initial functions satisfies the Con-
ditions (A), (B) and (C). We call B phase space. Before we continue we present
some examples of function spaces satisfying these conditions. For details and
further examples we refer to [12].

Example 2.1. For a γ ∈ R we define the normed space

Cγ(R -,R
d) :=

{
ϕ ∈ C(R -,R

d) : lim
u→−∞

|ϕ(u)| e−γu exists in [0,∞)
}
,

‖ϕ‖Cγ
:= sup

u60

∣∣ϕ(u)e−γu
∣∣ .

The space Cγ(R -,R
d) satisfies the Conditions (A), (B) and (C), where the func-

tions N and M in Condition (A) can be chosen as

N(t) = max{1, eγt} and M(t) = eγt for t > 0.

Example 2.2. For α 6 0 and a nonnegative locally integrable function g : R - →
[0,∞) and p > 1 define the semi-normed space

(C[α, 0]× Lp
g)(R -,R

d)

:=
{
ϕ : R - → R

d : ϕ is continuous on [α, 0],
∫ α

−∞
|ϕ(u)|p g(u) du <∞

}
‖ϕ‖C[α,0]×Lp

g
:= sup

s∈[α,0]
|ϕ(s)|+

(∫ α

−∞
|ϕ(u)|p g(u) du

)1/p

.
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If there exists a locally bounded function G : R - → [0,∞) such that g(u + s) 6
G(u)g(s) for every u, s 6 α then the space (C[α, 0] × Lp

g)(R -,R
d) satisfies the

Conditions (A), (B) and (C). The functions N and M in Condition (A) can be
chosen as

N(t) = 1 +
(∫ 0

−t
g(u) du

)1/p

, M(t) = max
{(∫ 0

−t
g(u) du

)1/p

, G(−t)1/p
}

for t > 0. If α = 0, then the norm is simplified to

‖ϕ‖
R

d ×Lp
g

:= |ϕ(0)|+
(∫ 0

−∞
|ϕ(u)|p g(u) du

)1/p

and we use the notation Rd×Lp
g.

Example 2.2 describes a space of initial functions for differential equations with
infinite delay that often occurs in studies of mechanics of materials with memory,
see [15] and the references therein. In addition, this example of a phase space
enables us to deal also with finite delay equations in our frame work:

Example 2.3. A linear differential equation with finite delay on the space
C([α, 0],Rd) is of the form, cf. also Example 4.5:

ẋ(t) =
∫

[α,0]
x(t+ u)µ(du) for almost all t > 0, x0 = ψ

for ψ ∈ C([α, 0],Rd) and a finite signed measure µ. By defining the function
g(u) := 0 for every u < α and

Lϕ :=
∫

[α,0]
ϕ(u)µ(du) for ϕ ∈ (C[α, 0]× L1

g)(R -,R
d),

we obtain a linear bounded operator L on (C[α, 0]× L1
g)(R -,R

d). According to
Example 2.2 this function space satisfies the Conditions (A), (B) and (C) and

ẋ(t) = L(xt) for a.e. t > 0, x0(u) = ψ(u), u ∈ [α, 0], x0(u) = 0, u < α,

describes an equation in our setting of infinite delay equations whose solution is
a solution of the equation with finite delay.

The space of functions of bounded variation on an interval J ⊆ R is denoted
by BV (J,Rd) with norm ‖·‖BV and total variation Var [·, J ]. We call a function
f ∈ BV ((−∞, 0],Rd) normalized if it is left continuous on (−∞, 0) and f(0) = 0.
Based on the Riesz representation theorem one obtains the following result, cf.
Theorem 3.4.2 in [12].

Theorem 2.4. For every linear bounded operator L : B → R
d there exists a

unique function µL : (−∞, 0] → R
d×d, locally of bounded variation and normal-

ized with

Lϑ =
∫
dµL(u)ϑ(u) for all ϑ ∈ Cc(R -,R

d), (2.5)

Var [µL, [a1, a2]] 6 c ‖L‖B→Rd N(a2 − a1)M(−a2) for a1 < a2 6 0, (2.6)

where c is a constant depending on the norm of Rd.
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The function µL given in Theorem 2.4 defines two differential equations which
are closely connected to equation (2.4). The first one is the so-called fundamental
equation of (2.4):

ṙ(t) =
∫

[−t,0]
dµL(u) r(t+ u) for almost every t > 0, r(0) = Id, (2.7)

where Id denotes the identity matrix in Rd×d. Theorem 4.1.3 in [12] guarantees
the existence of a unique locally absolutely continuous function r : R+ → R

d×d

called fundamental solution satisfying the equations in (2.7).
The second equation defined by µL is the formal adjoint equation of (2.4):

y(s) +
∫ 0

s
y(u)µL(s− u)du = b(s) for all s 6 0, (2.8)

where the forcing function b : R - → R
d∗ is locally of bounded variation and Rd∗

denotes the space of d-dimensional row-vectors.
According to Theorem 4.1.4 in [12] equation (2.8) has a unique solution y = y(·, b),
which is locally of bounded variation for s 6 0:

Var [y, [s, 0]] 6 Var [b, [s, 0]] +
(
e−cs‖L‖B→Rd‖N‖C[0,−s] − 1

)
sup

s6u60
|b(u)| (2.9)

with a constant c > 0 depending on the norm of Rd. If the forcing function b
is normalized, then so is the solution y(·, b). Furthermore, by Corollary 4.1.7 in
[12] the solution of (2.8) is given by

y(s) = b(0)r(−s)−
∫

[s,0]
db(u) r(u− s) for all s 6 0, (2.10)

where r is the solution of (2.7).
Let B∗ and B̂∗ be the dual spaces of B and B̂, respectively, which are Banach
spaces with the usual operator norms. We denote by 〈ϕ∗, ψ〉 the duality pairing
of ψ ∈ B and ϕ∗ ∈ B∗. The space B∗ can be identified with B̂∗ by the mapping
ϕ∗ 7→ ϕ̂∗ for ϕ∗ ∈ B∗, where ϕ̂∗ ∈ B̂∗ is defined by 〈ϕ̂∗, ψ̂〉 = 〈ϕ∗, ψ〉 for every
ψ ∈ B. In the same way one can identify the adjoint operator Û∗ of Û with the
adjoint operator U∗ of U for a bounded linear operator U on B.
Theorem 2.4 implies that for every ϕ∗ ∈ B∗ a unique ϕ̃∗ : R - → R

d∗ exists which
is locally of bounded variation and normalized such that

〈ϕ∗, ϑ〉 =
∫
dϕ̃∗(u)ϑ(u) for every ϑ ∈ Cc(R -,R

d), (2.11)

and Var [ϕ̃∗, [−t, 0]] 6 cN(t) ‖ϕ∗‖B∗ for t > 0. (2.12)

For ϕ∗ ∈ B∗ we will always use the notation ϕ̃∗ or [ϕ∗]˜ for the transformation
introduced above.
The solution y of the adjoint equation (2.8) and the adjoint operators (T ∗(t))t>0

of the solution operators (T (t))t>0 are related in the following way:

[T ∗(t)ϕ∗ ]̃ (0−) = y(−t, ϕ̃∗) for every t > 0 and ϕ∗ ∈ B∗ . (2.13)

A proof is given in Theorem 4.2.2 in [12].
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3 Representations of the solution

We begin this section with deriving representations of the solution of (1.3) both
in the state space Rd and in the phase space B. These will be based on the
following random function: denoting the fundamental solution of (2.7) by r we
define for t > 0:

I(t) : R - → B, I(t)(u) :=

{∫ t+u
0 rt−s(u) dW (s), for u ∈ [−t, 0],

0, for u < −t,

where the integral is the Itô integral, which can be also viewed by partial in-
tegration as a Lebesgue-Stieltjes integral. Since the function I(t) is pathwise
continuous and vanishes on (−∞,−t] it is B-valued.

Theorem 3.1. For every ϕ ∈ B there exists a unique solution (X(t, ϕ) : t ∈ R)
of (1.3). The solution obeys for every t > 0:

Xt(·, ϕ) = T (t)ϕ+ I(t), (3.14)

and Xt(·, ϕ) is a B-valued random variable.

Proof. The uniqueness of the solution of (1.3) follows by uniqueness of the so-
lution of the homogeneous equation (2.4). Let Xt(·, ϕ) be defined by (3.14) and
define X(t) := Xt(0, ϕ), t > 0, and X(u) = ϕ(u), u < 0. Similarly to the finite
delay case in [?] we calculate by means of (2.5) and partial integration:

X(t)− ϕ(0)−W (t)−
∫ t

0
LXs ds

= (T (t)ϕ)(0) +
∫ t

0
ṙ(t− s)W (s) ds− ϕ(0)−

∫ t

0
L(T (s)ϕ+ I(s)) ds

=
∫ t

0
ṙ(t− s)W (s) ds−

∫ t

0

(∫
[−s,0]

dµL(u)W (s+ u)

)
ds

−
∫ t

0

(∫
[−s,0]

dµL(u)
(∫ s+u

0
ṙ(s− v + u)W (v) dv

))
ds

=
∫ t

0
ṙ(t− s)W (s) ds−

∫ t

0
µL(s− t)W (s) ds

−
∫ t

0

(∫
[v−t,0]

dµL(u)
(∫ t

v−u
ṙ(s− v + u) ds

))
W (v) dv

=
∫ t

0
ṙ(t− s)W (s) ds−

∫ t

0
µL(s− t)W (s) ds

−
∫ t

0

(∫
[v−t,0]

dµL(u) (r(t− v + u)− Id)

)
W (v) dv

= 0.

As the process (X(t) : t ∈ R) is adapted it is a solution of (1.3).
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The measurability of Xt follows by Pettis’s measurability theorem, since for every
ϕ∗ ∈ B∗ Fubini’s theorem implies by (2.11) and (2.10):

〈ϕ∗, I(t)〉 =
∫
d[ϕ̃∗(u)]

(∫ t+u

0
rt−s(u) dW (s)

)
=
∫ t

0

(∫
[s−t,0]

d[ϕ̃∗(u)] rt−s(u)

)
dW (s)

= −
∫ t

0
y(s− t, ϕ̃∗) dW (s), (3.15)

where y(·, ϕ̃∗) denotes the solution of the adjoint equation (2.8). The last term
in (3.15) is Ft-measurable which entails the same for Xt.

Note, that the representation (3.14) of the B-valued random variable Xt is simply
obtained by using straightforward the definition of the segment function Xt(u) =
X(t + u) applied to the representation in Rd, which in turns implies the naive
definition of the integral I(t). However, we will see that this definition of the
B-valued integral has some drawbacks when calculating the covariance operator
of the random variable I(t). We get around these problems by deriving a weak∗-
integral in the bidual space B∗∗ which coincides with I(t) upon identifying B as
a subspace of B∗∗, but which has the desired properties due to the larger space
B∗∗.
In a different context we introduced the weak∗-integral already in [16] and ap-
plied it to represent the solution of a deterministic delay equation. To keep our
exposition self-contained we present the weak∗-integral here again. We introduce
it on an arbitrary real Banach space E with norm ‖·‖E . Later we will set E = B∗.

Definition 3.2. A function f : [a, b] → E∗ is called weak∗-integrable on [a, b]
(with respect to continuous functions) if

1) the function t 7→ 〈f(t), x〉 is of bounded variation on [a, b] for each x ∈ E;

2) the linear operator

F : E → BV ([a, b],R), F (x)(s) := 〈f(s), x〉, s ∈ [a, b],

is continuous.

Lemma 3.3. Let f : [a, b] → E∗ be a weak∗-integrable function and h ∈ C([a, b],R).
Then there exists a unique element x∗ ∈ E∗ such that

〈x∗, x〉 =
∫ b

a
〈f(s), x〉 dh(s) for all x ∈ E,

where the integral is to be understood as a Lebesgue-Stieltjes integral.

Proof. Define the operator F : E → BV ([a, b],R) as in Definition 3.2. Since the
operator F is continuous, one obtains∣∣∣∣∫ b

a
〈f(s), x〉 dh(s)

∣∣∣∣ 6 2 ‖h‖C[a,b] ‖F (x)‖BV [a,b] 6 2 ‖h‖C[a,b] ‖F‖E→BV ‖x‖E .
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Hence, the linear functional x 7→
∫ b
a 〈f(s), x〉dh(s) is bounded and is thus an

element of E∗.

Lemma 3.3 allows to define a weak∗-integral:

Definition 3.4. Let f : [a, b] → E∗ be a weak∗-integrable function and h ∈
C([a, b],R). We define the weak∗-integral of f with respect to h by the functional

∗
∫ b

a
f(s) dh(s) ∈ E∗ : 〈∗

∫ b

a
f(s) dh(s), x〉 :=

∫ b

a
〈f(s), x〉 dh(s)

for all x ∈ E.

Let fi : [a, b] → E∗ be functions for i = 1, . . . , d which are weak∗-integrable.
For f = (f1, · · · , fd) and h ∈ C([a, b],Rd) the weak∗-integral ∗

∫
fdh is defined

component-wise.
In the following definition we introduce a function which will turn out to be
crucial for characterizing the segment process in the function space B.

Definition 3.5. We define the operator

Υ : B∗ → R
d∗, Υ(ϕ∗) := 〈ϕ∗,Υ〉 := −ϕ̃∗(0−),

where ϕ̃∗(0−) denotes the left-hand sided limit in 0 of ϕ̃.

We denote by Υk the k-th component of Υ and infer from (2.12)

|Υk(ϕ∗)| 6 |ϕ̃∗(0−)| 6 Var [ϕ̃∗, [−1, 0]] 6 cN(1) ‖ϕ∗‖B∗ ,

which implies Υk ∈ B∗∗ for k = 1, . . . , d. We set UΥ := (UΥ1, . . . , UΥd) for an
operator U on B∗∗.
The operator Υ formalize the relation (2.13) between the adjoint solution oper-
ators T ∗(t) and the solution of the adjoint equation (2.8), i.e.

〈T ∗(t)ϕ∗,Υ〉 = −y(−t, ϕ̃∗) for every ϕ∗ ∈ B∗, (3.16)

where y(·, ϕ̃∗) denotes the solution of the adjoint equation (2.8).
We identify the space B̂ with the subspace of the second dual space B∗∗ in the
usual manner. The dual pairing of ϕ∗ ∈ B∗ and ϕ∗∗ ∈ B∗∗ is denoted by 〈ϕ∗, ϕ∗∗〉.
Now we utilize a weak∗-integral according to Definition 3.4 where we replace the
Banach space E by the dual space B̂∗. By use of this weak∗-integral we represent
the segment of the solution of equation (1.3) in the second dual space B̂∗∗:

Theorem 3.6. Let (X(t, ϕ) : t ∈ R) be the solution of (1.3). Then T ∗∗(t−·)Υk :
[0, t] → B∗∗ is weak∗-integrable for all k = 1, · · · , d and we have for every t > 0

X̂t(·, ϕ) = T̂ (t)ϕ̂+ ∗
∫ t

0
T ∗∗(t− s)Υ dW (s) P-a.s. in B̂∗∗ (3.17)
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Proof. For ϕ∗ ∈ B∗ we denote by yk = yk(·, ϕ̃∗) the k-th component of the
solution y(·, ϕ̃∗) of the adjoint equation (2.8). The relation (3.16) for the function
Υ implies

〈ϕ∗, T ∗∗(t− s)Υk〉 = 〈T ∗(t− s)ϕ∗,Υk〉 = −yk(s− t, ϕ̃∗), s ∈ [0, t].

Consequently, the function s 7→ 〈ϕ∗, T ∗∗(t − s)Υk〉 is of bounded variation on
[0, t] since y(·, ϕ̃∗) is of bounded variation. The inequalities (2.9) and (2.12) yield

‖〈ϕ∗, T ∗∗(t− ·)Υk〉‖BV [0,t] =
∥∥∥yk(· − t, ϕ̃∗)

∥∥∥
BV [0,t]

6 ‖y(·, ϕ̃∗)‖BV [−t,0]

= |y(−t, ϕ̃∗)|+ Var [y(·, ϕ̃∗), [−t, 0]]

6 2
(

Var [ϕ̃∗, [−t, 0]] + b(t) sup
−t6u60

|ϕ̃∗(u)|
)

6 2(1 + 2b(t))Var [ϕ̃∗, [−t, 0]]
6 2(1 + 2b(t)) cN(t) ‖ϕ∗‖B∗ , (3.18)

with b(t) :=
(
ect‖L‖B→Rd‖N‖C[0,t] − 1

)
and a constant c > 0 depending on the

norm of Rd. Hence, the function s 7→ T ∗∗(t − s)Υk is weak∗-integrable for k =
1, · · · , d. Moreover, by means of (3.16) and (3.15) we infer

〈ϕ∗, ∗
∫ t

0
T ∗∗(t− s)Υ dW (s)〉 =

∫ t

0
〈ϕ∗, T ∗∗(t− s)Υ〉 dW (s)

=
∫ t

0
〈T ∗(t− s)ϕ∗,Υ〉 dW (s)

= −
∫ t

0
y(s− t, ϕ̃∗) dW (s)

= 〈ϕ∗, I(t)〉.

The assertion follows by the variation of constants formula (3.14).

Remark 3.7. Since the solution of (1.3) is unique we obtain by Theorems 3.1
and 3.6 for every t > 0∫ t

0
rt−s dW (s) = ∗

∫ t

0
T ∗∗(t− s)Υ dW (s) P-a.s.,

upon identifying B as a subspace of B̂∗∗. Note, that both integrals are defined
pathwise.

Enlarging B to the larger space B∗∗ has enabled us to represent the segment
process by means of the weak∗-integral. In contrast to the naively defined in-
tegral I(t) the weak∗-integral is an element of the same space as its integrand
and behaves therefore in many aspects as ordinary well-known integrals. As a
consequence, we can easily compute in the next section the transition functions
of the random variable defined by this weak∗-integral and obtain those of I(t) by
Remark 3.7.
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4 The Segment process in the Banach space

In the remaining part of the article we derive properties of the stochastic process
(X̂t(·, ϕ) : t > 0) on the Banach space B̂ which is induced by the segment process
(Xt(·, ϕ) : t > 0). In order to keep the notations simple we assume in the sequel
that the phase space B is a normed space. In the general situation all of the
following results remain true on the induced space B̂.
Later we will see that the covariance operator Rt of I(t) is of the form

Rtϕ
∗ =

∫ t

0
T ∗∗(s)Υ∗ΥT ∗(s)ϕ∗ ds for ϕ∗ ∈ B∗,

where the integral is defined as a Pettis integral:

〈ψ∗, Rtϕ
∗〉 :=

∫ t

0
〈ψ∗, T ∗∗(s)Υ∗ΥT ∗(s)ϕ∗〉 ds for every ψ∗ ∈ B∗ .

Although the integrand of the Pettis integral maps into the bidual space B∗∗ we
obtain in this way a well-defined operator Rt with values in B:

Theorem 4.1. For all ϕ∗ ∈ B∗ and t > 0 there exists a unique element Rtϕ
∗ ∈ B

satisfying

〈ψ∗, Rtϕ
∗〉 =

∫ t

0
〈ψ∗, T ∗∗(s)Υ∗ΥT ∗(s)ϕ∗〉 ds for every ψ∗ ∈ B∗ . (4.19)

In this way one obtains a linear bounded operator Rt : B∗ → B which is positive
and symmetric.

Proof. By use of relation (3.16) between the solution y(·, ·) of the adjoint equation
(2.8) and the adjoint operators T ∗(·) the integrand of Rt equals

〈ψ∗, T ∗∗(s)Υ∗ΥT ∗(s)ϕ∗〉 = 〈ΥT ∗(s)ψ∗,ΥT ∗(s)ϕ∗〉
R

d∗

= y(−s, ψ̃∗) yT (−s, ϕ̃∗). (4.20)

The estimate (3.18) in the proof of Theorem 3.6 guarantees the existence of the
integral in (4.19) and verifies the boundness of the operator Rt : B∗ → B∗∗. It
remains to show that Rt is B-valued. By the Krein-Shmulyan theorem this holds
if and only if Rtϕ

∗ is weak∗-continuous for every ϕ∗ ∈ B∗.
Since B is separable the linear functional Rtϕ

∗ : B∗ → R is weak∗-continuous if
and only if Rtϕ

∗ is weak∗-sequentially continuous, see e.g. Corollary 12.8 in [5].
Here as well in the sequel we will utilize this result.
Let (ψ∗n)n∈N be a sequence in B∗ that weak∗-converges to ψ∗ ∈ B∗. The repre-
sentation (2.11) for ψ∗n implies for every ϑ ∈ Cc(R -,R

d):

lim
n→∞

∫
d[ψ̃∗n(u)]ϑ(u) = lim

n→∞
〈ψ∗n, ϑ〉 = 〈ψ∗, ϑ〉 =

∫
d[ψ̃∗(u)]ϑ(u). (4.21)
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Let y(·, ψ̃∗n) be the solution of the adjoint equation (2.8) with forcing function
ψ̃∗n. By use of the variation of constants formula (2.10) for y(·, ψ̃∗n) and relation
(4.20) Fubini’s theorem implies

〈ψ∗n, Rtϕ
∗〉 =

∫ t

0
y(−s, ψ̃∗n) yT (−s, ϕ̃∗) ds

= −
∫ t

0

(∫
[−s,0]

d[ψ̃∗n(u)] r(u+ s)

)
yT (−s, ϕ̃∗) ds

= −
∫

[−t,0]
d[ψ̃∗n(u)]

(∫ t

−u
r(u+ s)yT (−s, ϕ̃∗) ds

)
. (4.22)

Since the inner integral in the last line defines a continuous function in u with
compact support we obtain by use of (4.21)

lim
n→∞

〈ψ∗n, Rtϕ
∗〉 = −

∫
[−t,0]

d[ψ̃∗(u)]
(∫ t

−u
r(u+ s)yT (−s, ϕ̃∗) ds

)
.

Applying the same computations as in (4.22) we see that the right hand side of
the above relation equals 〈ψ∗, Rtϕ

∗〉. Therefore, we have

lim
n→∞

〈ψ∗n, Rtϕ
∗〉 = 〈ψ∗, Rtϕ

∗〉,

which shows that Rtϕ
∗ is weak∗-continuous.

Since the operator Rt is symmetric and positive there is at least a Gaussian
cylindrical measure on the Borel-σ-field B(B) with covariance operator Rt, see
for example Proposition VI.3.3 in [18]. If this cylindrical measure is a measure
the operator Rt is called γ-radonifying. Theorem 3.1 indicates already that I(t)
is a B-valued random variable and by means of the weak∗ representation one can
identify Rt as its covariance operator in the following Corollary:

Corollary 4.2. The random variable

I(t) =
∫ t

0
rt−s dW (s)

is for every t > 0 a Gaussian random variable on (B,B(B)) with covariance
operator Rt.

Proof. In (3.15) we obtained the representation

〈ϕ∗, I(t)〉 = −
∫ t

0
y(s− t, ϕ̃∗) dW (s) for every ϕ∗ ∈ B∗,

where y denotes the solution of the adjoint equation. Since the integral is an Itô
integral with a deterministic integrand the random variable 〈ϕ∗, I(t)〉 is Gaussian,
thus I(t) is also Gaussian.
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By Remark 3.7 and Itô’s isometry we compute for ϕ∗ ∈ B∗:

E [〈ϕ∗, I(t)〉]2 = E
[
〈ϕ∗, ∗

∫ t

0
T ∗∗(t− s)Υ dW (s)〉

]2

= E
[∫ t

0
〈ϕ∗, T ∗∗(t− s)Υ〉 dW (s)

]2

= E
[∫ t

0
〈T ∗(t− s)ϕ∗,Υ〉 dW (s)

]2

=
∫ t

0
〈ΥT ∗(s)ϕ∗,ΥT ∗(s)ϕ∗〉

R
d∗ ds

= 〈ϕ∗, Rtϕ
∗〉,

which establishes Rt as the covariance operator of I(t).

Corollary 4.2 implies that the segment process (Xt(·, ϕ) : t > 0) for non-random
ϕ ∈ B is a Gaussian stochastic process on the Banach space B. As an immediate
consequence of the next theorem we will obtain, that this process is Markovian
on B. For that, we consider the transition functions defined by

P (t) : Bb(B,R) → Bb(B,R), (P (t)f)(ϕ) := E[f(Xt(·, ϕ))],

where Bb(B,R) denotes the set of real-valued, bounded, Borel-measurable func-
tions on B. The variation of constants formula (3.14) for the segment process
yields a special integral representation of the operators P (t). For such opera-
tors, if in addition they have the semigroup property on Bb(B,R), the notation
generalized Gaussian Mehler semigroup is introduced in [1].

Theorem 4.3. The transition functions of the segment process (Xt(·, ϕ) : t > 0)
form a Gaussian Mehler semigroup (P (t))t>0 on Bb(B,R) defined by (T (t))t>0

and (µt)t>0:

(P (t)f)(ϕ) =
∫
B
f(T (t)ϕ+ ψ)µt(dψ) for f ∈ Bb(B,R), ϕ ∈ B,

where µt denotes the distribution of I(t).

Proof. By the variation of constants formula (3.14) we compute

E[f(Xt(·, ϕ))] =
∫

Ω
f(T (t)ϕ+ I(t)(ω))P (dω) =

∫
B
f(T (t)ϕ+ ψ)µt(dψ).

Furthermore, from the identity

Rt+s = T (s)RtT
∗(s) +Rs for every s, t > 0,

follows by means of the characteristical functions that

µt+s = T (s)µt ∗ µs for every s, t > 0,

which implies that (P (t))t>0 is a Gaussian Mehler semigroup according to Defini-
ton B.7.
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Theorem 4.3 establishes a new approach for studying the delay equation (1.3)
by means of Gaussian Mehler semigroups. Since Gaussian Mehler semigroups
behave in many aspects as Ornstein-Uhlenbeck semigroups one can evoke results
on the latter to deal with the segment process.

Corollary 4.4. The segment process (Xt(·, ϕ) : t > 0) is a Gaussian, strong
Markov process on (B,B(B)) with continuous paths and transition functions as
given in Theorem 4.3.

Proof. To establish the continuity we infer from the variaton of constants formula

‖Xt2(·, ϕ)−Xt1(·, ϕ)‖B 6 ‖T (t1)ϕ− T (t2)ϕ‖B + ‖I(t1)− I(t2)‖B

for t2 > t1 > 0. Due to Condition (A).3 on B we obtain

‖I(t1)− I(t2)‖B 6 Ct2 sup
u∈[−t2,0]

|I(t2)(u)− I(t1)(u)|

for a constant Ct2 depending only on t2. Applying partial integration to I(t2)(u)−
I(t1)(u) some tedious calculations show that the right hand side tends to 0 as
t2 − t1 → 0 which is the continuity.
Since the transition semigroup is Feller, as it can be easily seen by the represen-
tation according to Theorem 4.3, the segment process is a strong Markov process
by [9, Thm. 3.10].

Example 4.5. The segment process (Xt(·, ϕ) : t > 0) of the solution of the
equation (1.1) is a Gaussian, strong Markov process on the space C([α, 0]) of
continuous functions. Its transition functions are given by

E[f(Xt(·, ϕ))] =
∫

C[α,0]
f(T (t)ϕ+ ψ)µt(dψ)

for every bounded, measurable function f : C([−α, 0]) → R, where µt is a Gaus-
sian measure on C([α, 0]) with covariance operator Rt.
Let us remark at this point that we deal in detail with this example in [19].
There we introduce a general weak∗ integral in locally convex spaces to obtain a
representation of the segment process as in Theorem 3.6.

5 The case of Ornstein-Uhlenbeck semigroup

In order that the transition semigroup (P (t))t>0 forms an Ornstein-Uhlenbeck
semigroup the covariance operators of the Gaussian measures µt have to be given
by

Qt =
∫ t

0
T (s)QQ∗T ∗(s) ds, (5.23)

for a linear bounded operator Q ∈ L(Rd,B). The operator Qt differs from the
covariance operator Rt defined in Theorem 4.1 only by the integrands which are
in general B∗∗-valued for Rt.
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Theorem 5.1. Let (X(t, ϕ) : t ∈ R) be the solution of equation (1.3) for non-
random ϕ ∈ B. Then the following statements are equivalent:

(1) there exists Q ∈ L(Rd,B) such that (Xt(·, ϕ) : t > 0) is an Ornstein-
Uhlenbeck process defined by (T (t))t>0 and Q;

(2) the functionals Υk : B∗ → R are weak∗-continuous for k = 1, . . . , d.

(3) the operators Υ∗
k : R→ B∗∗ are B-valued for k = 1, . . . , d.

Proof. We prove the theorem by (2) ⇔ (3) and (3) ⇒ (1) ⇒ (2).
From relation (2.13) follows that there exists ϕ∗ ∈ B∗ with ϕ̃∗(0−) 6= 0. Then
condition (2) is equivalent to the fact that Υ∗

kΥkϕ
∗ ∈ B∗∗ is weak∗-continuous

for every ϕ∗ ∈ B∗. By the Krein-Shmulyan theorem the latter is equivalent to
the fact that the operator Υ∗

kΥk : B∗ → B∗∗ is B-valued. The last property is
equivalent to condition (3) since Υk is surjective which follows by linearity and
the existence of a ϕ∗ ∈ B∗ with ϕ̃∗(0−) 6= 0.
For the proof (3) ⇒ (1) note that condition (3) implies that Υ∗ is also B-valued.
Hence, the covariance operator Rt of µt obeys

Rt =
∫ t

0
T ∗∗(s)Υ∗ΥT ∗(s) ds =

∫ t

0
T (s)Υ∗ΥT ∗(s) ds.

Therefore, the Mehler semigroup (P (t))t>0 is an Ornstein-Uhlenbeck semigroup
defined by (T (t))t>0 and Υ∗.
For establishing that Condition (1) implies (2) let

Qt =
∫ t

0
T (s)QQ∗T ∗(s) ds for t > 0

be the covariance operator of the Ornstein-Uhlenbeck process (Xt(·, ϕ) : t > 0).
According to Corollary 4.2 and Theorem 4.3 we have Rt = Qt for every t > 0.
Thus, considering QQ∗ as a B∗∗-valued operator yields for every ψ∗ and ϕ∗ ∈ B∗:∫ t

0
〈T ∗(s)ψ∗, (QQ∗ −Υ∗Υ)T ∗(s)ϕ∗〉 ds = 0 for every t > 0,

which results in

〈ψ∗, T (s)QQ∗T ∗(s)ϕ∗〉 = 〈ψ∗, T ∗∗(s)Υ∗ΥT ∗(s)ϕ∗〉 for Lebesgue a.e. s > 0.

Let (sm)m∈N ⊆ [0, 1] be a sequence which converges to 0 as m → ∞ such that
for every m ∈ N this relation is satisfied. We denote the canonical basis of Rd

by e1, . . . , ed. Since the mapping

s 7→ 〈Q∗T ∗(s)ψ∗, ek〉Rd = 〈ψ∗, T (s)Qek〉

is continuous for k = 1, . . . , d, we obtain

〈ψ∗, T (sm)QQ∗T ∗(sm)ϕ∗〉 =
d∑

k=1

〈Q∗T ∗(sm)ψ∗, ek〉Rd〈Q∗T ∗(sm)ϕ∗, ek〉Rd

→ 〈Q∗ψ∗, Q∗ϕ∗〉
R

d as m→ 0. (5.24)
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On the other hand, by use of the adjoint equation (2.8) we have

lim
m→∞

y(−sm, ψ̃
∗) = ψ̃∗(0−) = −〈ψ∗,Υ〉

which results in

lim
m→∞

〈ψ∗, T ∗∗(sm)Υ∗ΥT ∗(sm)ϕ∗〉 = lim
m→∞

y(−sm, ψ̃
∗) yT (−sm, ϕ̃

∗)

= 〈Υψ∗,Υϕ∗〉
R

d . (5.25)

The equations (5.24) and (5.25) yield QQ∗ = Υ∗Υ and consequently Υ∗Υ is B-
valued. Let (ψ∗n)n∈N be a sequence which weak∗-converges to ψ∗ ∈ B∗ and let
ϕ∗j ∈ B∗ be such that the span of {Υϕ∗j : j = 1, . . . , d′} equals {Υψ∗n : n ∈ N} ⊆
R

d∗. Since Υ∗Υ is now known to be B-valued we obtain

lim
n→∞

〈Υψ∗n,Υϕ∗j 〉Rd = lim
n→∞

〈ψ∗n,Υ∗Υϕ∗j 〉 = 〈Υ∗ψ∗,Υϕ∗j 〉Rd for every j = 1, . . . , d′,

which implies that Υ and therefore Υk are weak∗-continuous.

For simplifying the conditions in Theorem 5.1 we assume in the sequel that the
spaces B are Banach lattices. Even if this assumption may be not necessary for
the following the condition suits the axiomatic description of the phase spaces
and does not constitute a substantial limitation as it is satisfied by all spaces
occuring in the literature and applications.
We denote the canonical partial ordering in the Euclidean space Rd by u 6 v for
u, v ∈ Rd. The phase spaces B are equipped with the partial ordering

ϕ 6 ψ ⇔ ϕ(u) 6 ψ(u) for every u 6 0.

If B is a Banach lattice the positive cone {ϕ ∈ B : ϕ > 0} is closed, see Proposition
II.5.2 in [17]. The elements in the positive cone are called positive. Moreover, the
dual space B∗ enjoys the property that every element ϕ∗ ∈ B∗ obeys ϕ∗ = ϕ∗+−ϕ∗−
where ϕ∗+, ϕ∗− ∈ B∗ are positive functionals, see Proposition II.5.5 in [17]. A
functional ϕ∗ ∈ B∗ is called positive if 〈ϕ∗, ψ〉 > 0 for every positive ψ ∈ B.
Recall, that e1, · · · , ed denotes the canonical orthonormal basis of Rd.

Theorem 5.2. If B is a Banach lattice then the following conditions are equiv-
alent:

(1) there exists Q ∈ L(Rd,B) such that (Xt(·, ϕ) : t > 0) is an Ornstein-
Uhlenbeck process defined by (T (t))t>0 and Q;

(2) the functions u 7→ 1{0}(u)ek for u 6 0 are elements of B for k = 1, . . . , d.

Proof. To prove the implication (1) ⇒ (2) we consider a fixed k. By Theorem 5.1
condition (1) implies that the functional Υk is weak∗-continuous. Hence, there
exists a ϕ0 ∈ B such that Υk(ψ∗) = ψ∗(ϕ0) for every ψ∗ ∈ B∗ and it remains to
show that ϕ0 = 1{0} ek.
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We define the functions ϑn(u) := 1[−1/n,0](1 + nu)ek for u 6 0. By the represen-
tation (2.11) for functions in Cc(R -,R

d) and by partial integration we derive for
every ϕ∗ ∈ B∗:

〈ϕ∗, ϑn〉 =
∫

[−1/n,0]
d[ϕ̃∗(u)]ϑn(u)

= −n
∫ 0

−1/n
ϕ̃∗(u)ek du→ −ϕ̃∗(0−)ek as n→∞.

As the last term equals Υk(ϕ∗) the sequence (ϑn)n>1 converges weakly to ϕ0.
By a corollary to the Hahn-Banach Theorem there is a convex combination θn

of the (ϑn)n∈N such that (θn)n∈N converges strongly to ϕ0. By choosing each θn

in the span of ϑn, ϑn+1, . . . and passing, if necessary, to a subsequence we may
furthermore arrange that 0 6 θn 6 θm for every n > m. Therefore and since the
cone {ϕ ∈ B : ϕ > 0} is closed we obtain 0 6 ϕ0 6 θn for all n ∈ N, which results
in

ϕ0(u) = 0 for u < 0 and 0 6 ϕ0(0) 6 ek = θn(0).

Condition (A) guarantees that the evaluation functional π∗ : B → R with π∗(ϕ) =
〈ϕ(0), ek〉Rd for ϕ ∈ B is in B∗. The weak convergence of (ϑn)n∈N implies

1 = 〈π∗, ϑn〉 → 〈π∗, ϕ0〉 = 〈ϕ0(0), ek〉Rd

and analogously 〈ϕ0(0), el〉Rd = 0 for l 6= k. Thus, we end with ϕ0(0) = ek and
the proof of (2) is complete.
We prove now the converse direction. Note, that if we define r(u) = 0 for u < 0
where r denotes the fundamental solution then condition (2) implies, that the
segments rtek are elements of the space B for every t > 0 and k = 1, . . . , d. We
show first that the application of a functional ϕ∗ ∈ B∗ to rtek can be represented
by an integral, see (5.27) below.
More general, by continuous continuation of the function 1{0} ek condition (A)
guarantees that for arbitrary C > 0 every function ϕ : R - → R

d with compact
support [−C, 0] which is continuous on [−C, 0] but with a discontinuity in −C
is in B. For such a function ϕ which is firstly assumed to be positive, we define
continuous functions ϑn and θn which equal ϕ on [−C+ 1

n , 0] and [−C, 0], are linear
on [−C,−C+ 1

n ] and [−C− 1
n ,−C] and are zero on (−∞,−C] and (−∞,−C− 1

n ],
respectively, such that

ϑn 6 ϕ 6 θn for every n ∈ N .

Hence, every positive functional ψ∗ ∈ B∗ obeys the relations

〈ψ∗, ϑn〉 6 〈ψ∗, ϕ〉 6 〈ψ∗, θn〉. (5.26)

Since the functions ϑn are continuous and have compact support we obtain

〈ψ∗, ϑn〉 =
∫
d[ψ̃∗(u)]ϑn(u) →

∫
d[ψ̃∗(u)]ϕ(u) for n→∞
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and analogously for θn. Due to relation (5.26) we obtain the representation

〈ψ∗, ϕ〉 =
∫
d[ψ̃∗(u)]ϕ(u) (5.27)

for every positive functional ψ∗ ∈ B∗. The decompositions ϕ = ϕ+ − ϕ− and
ψ∗ = ψ∗+−ψ∗− show, that the representation (5.27) holds true for every continuous
function ϕ with support [−C, 0] and with a possible discontinuity in −C and every
functional ψ∗ ∈ B∗.
If we consider the integrand of the covariance operator Rt for ϕ∗, ψ∗ ∈ B∗ we
obtain by (4.20) and (2.10)

〈ψ∗, T ∗∗(s)Υ∗ΥT ∗(s)ϕ∗〉 = y(−s, ψ̃∗)yT (−s, ϕ̃∗)

=

(∫
[−s,0]

d[ψ̃∗(u)] rs(u)

)(∫
[−s,0]

d[ϕ̃∗(u)] rs(u)

)T

which entails by means of (5.27)

〈ψ∗, T ∗∗(s)Υ∗ΥT ∗(s)ϕ∗〉 =
d∑

k=1

〈ψ∗, rsek〉〈ϕ∗, rsek〉. (5.28)

On the other hand, for the operator G : Rd → B with G(v) := v 1{0}(·) we have
for v ∈ Rd

〈G∗ψ∗, v〉
R

d = 〈ψ∗, G(v)〉 =
d∑

k=1

〈ψ∗, ek 1{0}〉〈ek, v〉Rd ,

which yields

〈ψ∗, T (s)GG∗T ∗(s)ϕ∗〉 = 〈G∗T ∗(s)ψ∗, G∗T ∗(s)ϕ∗〉
R

d

=
d∑

k=1

〈T ∗(s)ψ∗, ek 1{0}〉〈ek, G∗T ∗(s)ϕ∗〉
R

d

=
d∑

k=1

〈ψ∗, rsek〉〈ϕ∗, rsek〉. (5.29)

It follows from (5.28) and (5.29) that Rt coincides with the operator

Qt : B∗ → B, Qt =
∫ t

0
T (s)GG∗T ∗(s) ds.

which shows that the Gaussian Mehler semigroup (P (t))t>0 is an Ornstein-Uhlenbeck
semigroup generated by (T (t))t>0 and G.

If the functions 1{0}(·)ek are elements of the space B we can define the linear,
bounded operator

G : Rd → B, G(v) := v 1{0}(·).

19



As shown in the proof of Theorem 5.2 the covariance operator Rt of I(t) is then
of the form

Rtϕ
∗ =

∫ t

0
T (s)GG∗T ∗(s)ϕ∗ ds. (5.30)

By means of the operator G we can formulate the following Cauchy problem on
the phase space B:

dY (t) = AY (t) dt+GdW (t) for t > 0,
Y (0) = ϕ.

(5.31)

The operator A is the generator of the semigroup (T (t))t>0 and ϕ ∈ B. The
Wiener process W is the same as before with values in Rd. See the Appendix
for the definition of a weak solution of (5.31). The evolution equation (5.31) is
of the form which is covered in the work [20] and [2] for evolution equations on
Banach spaces.

Corollary 5.3. Let B be a Banach lattice which contains the functions 1{0}(·)ek.
Then there exists a unique weak solution (Y (t, ϕ) : t > 0) of (5.31) which can be
represented by

Y (t, ϕ) = T (t)ϕ+
∫ t

0
T (t− s)GdW (s) for t > 0, (5.32)

where the integral is a stochastic convolution integral introduced in Appendix C.

Proof. Since Rt is the covariance operator of the Gaussian measure I(t) on B and
it is of the form (5.30) the result follows by Theorem C.5.

Corollary 5.4. Let B be a Banach lattice which contains the functions 1{0}(·)ek.
Then we have:

1) If (X(t, ϕ) : t ∈ R) is the solution of (1.3) in Rd then (Xt(·, ϕ) : t > 0) is
the weak solution of the Cauchy problem (5.31).

2) If (Y (t, ϕ) : t > 0) is the weak solution of the Cauchy problem (5.31) in B
then the process (Y (t, ϕ)(0) : t ∈ R) with Y (u, ϕ) := ϕ(u) for u 6 0 is the
solution of the differential equation (1.3) in Rd.

Proof. The process (Xt(·, ϕ) : t > 0) is a B-valued adapted stochastic process by
Theorem 3.1. Condition (A).4 guarantees that t 7→ 〈A∗ϕ∗, Xt〉 is P -a.s. Lebesgue
integrable for every ϕ∗ ∈ dom(A∗).
It remains to prove that the segment process (Xt(·, ϕ) : t > 0) obeys the vari-
ation of constants formula (5.32), which will follow from the coincidence of the
stochastic integrals:∫ t

0
T (t− s)GdW (s) = ∗

∫ t

0
T ∗∗(t− s)Υ dW (s) P-a.s. (5.33)
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As in the proof of Theorem 5.2 one obtains for v ∈ Rd and t > s > 0:

〈G∗T ∗(t− s)ϕ∗, v〉
R

d =
d∑

k=1

〈ϕ∗, rt−sek〉〈ek, v〉Rd ,

and on the other hand

〈ΥT ∗(t− s)ϕ∗, v〉
R

d =
d∑

k=1

〈ϕ∗, rt−sek〉〈ek, v〉Rd .

Consequently, we have

〈ϕ∗,
∫ t

0
T (t− s)GdW (s)〉 =

∫ t

0
G∗T ∗(t− s)ϕ∗ dW (s)

=
∫ t

0
ΥT ∗(t− s)ϕ∗ dW (s)

=
∫ t

0
〈T ∗(t− s)ϕ∗,Υ〉 dW (s)

= 〈ϕ∗, ∗
∫ t

0
T ∗∗(t− s)Υ dW (s)〉

which establishes the relation (5.33). Due to the uniqueness of the solutions the
proof is complete.

Example 5.5. Let us finish with the Example 1.1 of the introduction, cf. also
Example 2.3. The segment process of the solution of (1.1) is a Gaussian, strong
Markov process on C([α, 0]), its transition semigroup is represented in Example
4.5. Although the segment process is an Ornstein-Uhlenbeck process on the
larger space L2

ν , it is not an Ornstein-Uhlenbeck process on C([α, 0]) according
to Theorem 5.2.

Appendix

A Banach lattices

Let E be a real Banach space with a partial ordering 6. If there exists an element
s ∈ E such that

x 6 s, y 6 s and [x 6 z, y 6 z ⇒ s 6 z],

then s is called the least upper bound of x and y denoted by s =sup{x, y}. In a
similar way we define the greatest lower bound. The space E is called a lattice
if for each pair (x, y) the least upper bound and the greatest lower bound exist.
Moreover, E is called vector lattice or Riesz space if the following conditions are
satisfied for all x, y, z ∈ E and α > 0:

[x 6 y ⇒ x+ z 6 y + z] and [x 6 y ⇒ αx 6 αy].
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In a vector lattice E we define |x| :=sup{x, −x}. The Banach space E is called
a Banach lattice, if it satisfies

|x| 6 |y| ⇒ ‖x‖ 6 ‖y‖ for all x, y ∈ E.

Note, that in a semi-normed vector lattice the positive cone {x ∈ E : x > 0} is
closed, see Proposition II.5.2 in [17]. The elements in the positive cone are called
positive. Moreover, the dual space E∗ of the Banach lattice E enjoys the property
that for every element x∗ ∈ E∗ there exist positive functionals x∗+, x∗− ∈ E∗ such
that x∗ = x∗+ − x∗−, see Proposition II.5.5 in [17]. A functional x∗ ∈ E∗ is called
positive if 〈x∗, x〉 > 0 for every positive x ∈ E.

B Gaussian measures and semigroups

Let E denote a real separable Banach space and E∗ its dual space.

Definition B.1. Let F be a subset of E∗. A subset C ⊆ E is said to be a
cylindrical set based on F if it is of the form

C = {x ∈ E : (〈x∗1, x〉, . . . , 〈x∗n, x〉) ∈ B}

for some n ∈ N, x∗1, . . . , x∗n ∈ F and a Borel set B ∈ B(Rn).
Let C(E,F ) denote the set of all cylindrical sets based on F and C(E) := C(E,E∗).

For every finite-dimensional F ⊆ E∗ the set C(E,F ) is a σ-algebra and the set
C(E) of all cylindrical sets is an algebra. We denote by σ(C(E)) the σ-algebra
induced by the algebra C(E). It is well known that σ(C(E)) coincides with the
Borel σ-algebra B(E) since E is separable.

Definition B.2. A function µ : C(E) → R+ with µ(E) = 1 is called a cylindrical
measure on C(E) if for each finite subset F ⊆ E∗ the restriction µ|C(E,F ) is a
probability measure.

Definition B.3.

(1) A probability measure µ on B(R) is Gaussian if
(i) µ = δ0, where δ0 is the Dirac measure,

or (ii) there exist a ∈ R and b2 > 0 such that
µ(B) = (2πb2)−1/2

∫
B e

− 1
2b2

(t−a)2 dt for every B ∈ B(R).

(2) a cylindrial measure µ on C(E,F ) for F ⊆ E∗ is Gaussian if its one-
dimensional distributions x∗(µ) are Gaussian on R for every x∗ ∈ F .

(3) a probability measure on B(E) is Gaussian if it restricts to a Gaussian
cylindrical measure on C(E).

For a cylindrical measure µ on C(E) the function

χµ : E∗ → C, χµ(x∗) :=
∫

X
ei〈x

∗,x〉 dµ(x),
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is called characteristical functional or Fourier transform of the cylindrical measure
µ. The integral is the usual Lebesgue integral on the measure space (E, C(E, {x∗}), µ)
where µ is by definition a measure. The characteristical functional is positive-
definite, pseudo-continuous and χµ(0) = 1. Conversely, every functional χ : E∗ →
C, which is positive-definite, pseudo-continuous and χ(0) = 1 is the character-
istical function of a cylindrical measure on C(E). But in general that induced
cylindrical measure is not a measure on σ(C(E)).

Definition B.4. Let H be a Hilbert space with norm ‖·‖H . The cylindrical
measure γH on C(H) with the characteristical functional

χγH : H → C, χγH (h) = e−
1
2
‖h‖2H ,

is called the standard Gaussian cylindrical measure on H.

Definition B.5. Let H be a real Hilbert space and U ∈ L(H,E). Then U is called
γ-radonifying if the image cylindrical measure U(γH) extends to a Gaussian Borel
measure on (E,B(E)).

Remark B.6. The image cylindrical measure U(γH) for U ∈ L(H,E) is a cylin-
drical Gaussian measure on E whose characteristical functional χ is given by

χ(x∗) = exp(−1
2〈x

∗, UU∗x∗〉) for all x∗ ∈ E∗.

See Chapter VI in [18].

In [1] the concept of (generalized) Mehler semigroups is introduced which we
present in the following definition in the Gaussian case. We denote by Bb(E,R)
the space of bounded Borel measurable real-valued functions on E.

Definition B.7. Let (T (t))t>0 be a C0-semigroup on E and (µt)t>0 be a family
of Gaussian measures on B(E). If the measures satisfy

µt+s = T (s)µt ∗ µs for all s, t > 0, (2.34)

then (P (t))t>0 is called Gaussian Mehler semigroup defined by (T (t), µt)t>0, where

P (t) : Bb(E,R) → Bb(E,R), P (t)f(x) :=
∫
f(T (s)x+ y)µt(dy), x ∈ E.

Remark B.8.

The condition (2.34) on the measures is equivalent that the operators (P (t))t>0

form a semigroup, see [1]:

P (t+ s) = P (t)P (s) for every s, t > 0 and P (0) = Id .

For an operator Q ∈ L(H,E) on a separable real Hilbert space H we define for
t > 0:

Qt : E∗ → E, Qtx
∗ =

∫ t

0
T (s)QQ∗T ∗(s)x∗ ds, (2.35)
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where the integral is a Pettis integral defined by

〈y∗, Qtx
∗〉 =

∫ t

0
〈y∗, T (s)QQ∗T ∗(s)x∗〉 ds for every y∗ ∈ E∗.

In [2] it is shown that the operators Qt are E-valued and linear, bounded, positive
and symmetric. Therefore, we can consider the reproducing kernel Hilbert space
Ht associated with Qt in the following way: on the range of Qt one defines an
innner product by

〈Qtx
∗, Qty

∗〉Ht := 〈x∗, Qty
∗〉 for x∗, y∗ ∈ E∗.

Let Ht denote the Hilbert space completion of range Qt with respect to this inner
product. Since E is complete the inclusion mapping from range Qt into E has a
continuous extension to an injective linear map jt : Ht → E. By identifying Ht

with its dual space one obtains Qt = jtj
∗
t .

Let γt be the standard Gaussian cylindrical measure on Ht. If jt : Ht → E is γ-
radonifying for every t > 0 then the measures µt := jt(γt) are Gaussian measures
on B(E) with covariance operator Qt : E∗ → E. Since the operators Qt obeys

Qt+s = T (s)QtT
∗(s) +Qs,

we have by use of the characteristical functionals that the measures µt satisfies
the condition (2.34). Thus, (T (t), µt)t>0 defines a Gaussian Mehler semigroup
(P (t))t>0. But in addition to the general case in Definition B.7, the measures
µt are closely related to the semigroup (T (t))t>0 by their covariance operator Qt

which gives reason for the following definition:

Definition B.9. Let (T (t))t>0 be a C0-semigroup on E and Q ∈ L(H,E). If the
embedding

jt : Ht → E is γ-radonifying for every t > 0,

then (P (t))t>0 is called Ornstein-Uhlenbeck semigroup defined by (T (t))t>0 and
Q where

P (t) : Bb(E,R) → Bb(E,R), P (t)f(x) :=
∫
f(T (s)x+ y)µt(dy), x ∈ E.

C Cauchy problem

In this section we report shortly on results in [20] and [2] for the Cauchy problem
on Banach spaces.
Let E be a separable real Banach space, E∗ its dual space and B(E) the Borel
σ-algebra on E. We consider the following abstract Cauchy problem on E:

dY (t) = AY (t) dt+QdW (t), t ∈ [0, T ],
Y (0) = x0,

(3.36)

for x0 ∈ E. Here A is the generator of a strongly continuous semigroup (T (t))t>0

on E andQ is a bounded linear operator from a separable Hilbert space (H, 〈·, ·〉H)
into E. Denote by (W (t) : t ∈ [0, T ]) a cylindrical Wiener process with Cameron-
Martin space H according to the following definition:
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Definition C.1. A cylindrical Wiener process with Cameron-Martin space H is
a family (W (t) : t ∈ [0, T ]) of bounded linear operators from H into L2

P (Ω,R)
with the following properties:

(1) for all h ∈ H, (W (t)h : t ∈ [0, T ]) is a real-valued Brownian motion adapted
to the filtration {Ft}t∈[0,T ].

(2) for all s, t ∈ [0, T ] and h1, h2 ∈ H we have

E [(W (s)h1)(W (t)h2)] = min{s, t} 〈h1, h2〉H .

Example C.2. If W is a standard Wiener process in Rd, then

Wc(t) : Rd → L2
P (Ω,R), Wc(t)v := 〈Wc(t), v〉Rd

defines a cylindrical Wiener process (Wc(t) : t > 0) with Cameron-Martin space
R

d.

Definition C.3. An E-valued predictable process (Y (t, x0) : t ∈ [0, T ]) is called
a weak solution of (3.36) if

(1) s 7→ 〈A∗x∗, Y (s, x0)〉 is P-a.s. integrable on [0, T ] for every x∗ ∈ dom(A∗);

(2) for all t ∈ [0, T ] and x∗ ∈ dom(A∗) we have

〈x∗, Y (t, x0)〉 = 〈x∗, x0〉+
∫ t

0
〈A∗x∗, Y (s, x0)〉 ds+ (W (t)(Q∗x∗)) P-a.s.

In [2] it is shown that if the weak solution of (3.36) exists it can be represented
by a variation of constants formula. Before we state the result we introduce the
stochastic integration involved in this formula.
First, we introduce the straightforward definition of a stochastic integral for
certain H-valued functions with respect to a cylindrical Wiener process with
Cameron-Martin space H. For a step function 1(a,b)⊗h with h ∈ H define∫ T

0
1(a,b)(s)⊗ h dW (s) := W (b)h−W (a)h.

Extending this definition by linearity, we obtain a stochastic integral for H-valued
step functions. Since for such a step function holds

E

(∫ T

0
f(s) dW (s)

)2

=
∫ T

0
‖f(s)‖2

H ds

this integral can be uniquely extended to the isometry

J : L2([0, T ],H) → L2
P (Ω,R), Jf =

∫ T

0
f(s) dW (s).

Based on this integral for H-valued functions the following definition introduces
an integral for certain L(H,E)-valued operators:
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Definition C.4. Let F : [0, T ] → L(H,E) be a function, such that the map
t 7→ F ∗(t)x∗ is strongly measurable and is an element of L2([0, T ],H) for each
x∗ ∈ E∗. Then F is called stochastically integrable w.r.t. W if for all Borel-
measurable sets A ⊆ (0, T ) there exists a random variable YA ∈ L2

P (Ω, E) such
that for all x∗ ∈ E∗ we have

〈x∗, YA〉 =
∫ T

0
1A(s)F ∗(s)x∗ dW (s)

P -almost surely. In this case one writes

YA =
∫

A
F (s) dW (s).

This definition of a stochastic integral enables the authors of [20] to derive the
following result for the Cauchy problem (3.36):

Theorem C.5. The following assertions are equivalent:

(1) the Cauchy problem (3.36) has a weak solution Y = (Y (t, x0) : t ∈ [0, T ]);

(2) the function t 7→ T (t)Q is stochastically integrable w.r.t. W ;

(3) The operator V ∈ L(E∗, E) defined by

V x∗ :=
∫ T

0
T (s)QQ∗T ∗(s) ds

is a Gaussian covariance operator.

In this case the weak solution Y is unique and obeys

Y (t, x0) = T (t)x0 +
∫ t

0
T (t− s)QdW (s) for t ∈ [0, T ].

Moreover, for every x∗ ∈ dom(A∗) the process Y has a modification such that
〈x∗, Y (t, x0)〉 is continuous.

By the variation of constants formula one derives easily in the next Corollary
that the solution of the abstract Cauchy problem forms an Ornstein-Uhlenbeck
process.

Corollary C.6. Let (Y (t, x) : t > 0) be the weak solution of (3.36) with Y (0) = x
for x ∈ E. Then we have for every t > 0

E[f(Y (t, x)] = P (t)f(x) for every f ∈ Bb(E,R),

where (P (t))t>0 is the Ornstein-Uhlenbeck semigroup defined by (T (t))t>0 and Q.
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