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Abstract. We establish an integral test involving only the distribution of the increments of
a random walk S which determines whether lim supn→∞(Sn/n

κ) is almost surely zero, finite
or infinite when 1/2 < κ < 1 and a typical step in the random walk has zero mean. This
completes the results of Kesten and Maller [9] concerning finiteness of one-sided passage
times over power law boundaries, so that we now have quite explicit criteria for all values
of κ ≥ 0. The results, and those of [9], are also extended to Lévy processes.

1. Random walks

In [9] an almost complete solution was given to the problem of finding analytic
conditions, expressed directly in terms of the step distribution F of the random
walk S = (Sn, n ≥ 0), for first-passage times over one-sided and two-sided power
law boundaries of the random walk to be almost surely (a.s.) finite. The exception
was for the one-sided passage time

T ∗κ (a) = min{n ≥ 1 : Sn > anκ}, a > 0, (1.1)

in the case that

1

2
< κ < 1, E|X| <∞, EX = 0, E(X+)

1
κ <∞ and E(X−)

1
κ = ∞. (1.2)

(HereX denotes a generic step in the random walk.) This passage time is a.s. finite
for all a > 0 if and only if

lim sup
n→∞

(
Sn

nκ

)
= +∞ a.s.,
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and although Theorem 3 of [9] does give a necessary and sufficient condition for
this when (1.2) holds, it is complicated and not expressed directly in terms of F .

In this section, Theorem 1.1 and Corollary 1.1 contain quite explicit necessary
and sufficient conditions of the required form, and also give some additional infor-
mation. In the following section, we extend the present results, and those of [9], to
Lévy processes, again giving explicit criteria for finiteness of passage times above
power law boundaries, in terms of the characteristics of the process.

To state our main results, define, for y ≥ 0, the function

W(y) =
∫ y

0

∫ −z
−∞
|x|F(dx)dz =

∫ y

0

∫ ∞
x

F (−z)dzdx +
∫ y

0
xF(−x)dx, (1.3)

and note that W(y) > 0 for all y > 0 if F is not concentrated on [0,∞), thus,

certainly if E(X−)
1
κ = ∞ for some κ > 0, and W(y) < ∞ for all y > 0 if

EX− <∞. When W(y) > 0 for all y > 0, define, for λ > 0,

Iκ(λ) :=
∫ ∞

1
exp


−λ

(
y

2κ−1
κ

W(y)

) κ
1−κ


dy

y
≤ ∞. (1.4)

Theorem 1.1. Assume (1.2) holds, and let

λ∗ = inf{λ > 0 : Iκ(λ) <∞}.
Then:

(i) if λ∗ = ∞, we have

lim sup
n→∞

(
Sn

nκ

)
= +∞ a.s.; (1.5)

(ii) if λ∗ = 0, we have

lim sup
n→∞

(
Sn

nκ

)
a.s.= 0; (1.6)

(iii) if 0 < λ∗ <∞ we have, for some 0 < b <∞,

lim sup
n→∞

(
Sn

nκ

)
a.s.= b. (1.7)

Applying Theorem 1.1 and the results of [9] gives the following criterion for
(1.5):

Corollary 1.1. Assume 1
2 < κ < 1, E|X| <∞, and EX = 0. Then (1.5) holds if

and only if (i) E(X+)
1
κ = ∞, or (ii) E(X+)

1
κ < ∞ = E(X−) 1

κ and Iκ(λ) = ∞
for all λ > 0.

Remark 1.1. If F(−y) ∼ 1/(y1/κL(y)) as y → ∞, with L slowly varying, it
follows thatW(y) ∼ cy2−1/κ/L(y) for some c > 0, and the result of Theorem 1.1
holds with Iκ(λ) replaced by
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∫ ∞
1

exp{−λ(L(y))
κ

1−κ }dy
y
.

So, writing �k for the k-th iterated logarithm, examples of the three possibilities in

the theorem are got by taking (i) L(y) = (�3(y))
1−κ
κ , (ii) L(y) = (�1(y))

1−κ
κ , and

(iii) L(y) = (�2(y))
1−κ
κ .

It was observed in [9] that there is no loss of generality in assuming that the
distribution of X+ is concentrated at a single point, and it is not difficult to extend
this argument to show that it is suffices to deal with the case that F is concentrated
on {· · · ,−2,−1, 0, 1}.We refer to this as the u.s.f. (upwards skip free) case. Now
the condition given in Theorem 3 of [9] is got by applying a result in Zhang [13] to
the renewal process (σn, n ≥ 1) of increasing ladder times in S. Our contribution
is to exploit the fact that in the u.s.f. case the Wiener-Hopf factorisation gives a
simple analytic link between the tail behaviour of σ1 and that of −X. (This obser-
vation goes back at least to Spitzer; see [12], p. 228.) We also notice that Zhang’s
result can be used to get (ii) and (iii) of Theorem 1.1. The final ingredient is some
inequalities connecting the distribution tail of a non-negative random variable with
its Laplace transform; these may have some independent interest, and are given in
the Appendix. The proof of Theorem 1.1 is given in Section 3. In Section 2 we use
the present ideas and those of Kesten and Maller [9] to give criteria for finiteness of
passage times of Lévy processes above power law boundaries. Proofs of the Section
2 results are in Section 4.

2. Lévy processes

In this section X = (Xt , t ≥ 0) will be a Lévy process with characteristic triplet
(γ, σ,�(·)). We use throughout similar notation to, and some of the results of,
Doney [4] and Doney and Maller [5], [6]. In particular, we write

�
+
(x) = �((x,∞)), �−(x) = �((−∞,−x)), x > 0, (2.1)

for the tails of �(·), and assume X is not spectrally negative, so �
+
(x) is not

identically zero. (For the spectrally negative case, see Remark 2.3 below.) By a
rescaling which will not affect the results we can and will assume�

+
(1) > 0. Let

�#(·) be the Lévy measure of −X, and define

J�− =
∫

[1,∞)

(
x

�
+
(1)+ ∫ x1 �+(y)dy

)
�#(dx). (2.2)

If �
−
(1) > 0 define

J�+ =
∫

[1,∞)

(
x

�
−
(1)+ ∫ x1 �−(y)dy

)
�(dx).

If�
−
(1) = 0 we set J�+ = EX+1 ∈ (0,∞] (thus if�(·) is bounded on the left we

can say that J�+ is finite or infinite according as EX+1 is finite or infinite).
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From [7], [6] and [11], the following four equivalences can be deduced:

lim
t→∞

(
Xt

t

)
= +∞ a.s.⇐⇒ J�− <∞ = EX+1 ; (2.3)

lim
t→∞Xt =+∞ a.s.⇐⇒J�− <∞=EX+1 or 0 < EX1≤E|X1| <∞; (2.4)

lim sup
t→∞

Xt = +∞ a.s.⇐⇒ J�+ = ∞ or 0 ≤ EX1 ≤ E|X1| <∞; (2.5)

lim sup
t→∞

(
Xt

t

)
= +∞ a.s. ⇐⇒ J�+ = ∞. (2.6)

Next, let c1 = �+(1)+�−(1) > 0, µ̃ = γ /c1, and define, for y > 0,

W�(y) = 1

c1

∫ y

0

∫ ∞
x

|z|�(dz− µ̃)1{|z−µ̃|>1}dx. (2.7)

Note that W�(y) is positive for all y > 0 if �
−
(1) > 0, which certainly holds if

E(X−1 )
1
κ = ∞ for any κ > 0, and is finite if EX−1 <∞.

Our main result gives necessary and sufficient conditions for

lim sup
t→∞

(
Xt

tκ

)
= +∞ a.s. (2.8)

Theorem 2.1. The following conditions are necessary and sufficient for (2.8).

(a) For κ > 1:

∫
[1,∞)

(
x

1
κ

1+ x 1
κ
−1 ∫ x

1 �
−
(y)dy

)
�(dx) = ∞. (2.9)

(b) For κ = 1:

J�+ = ∞. (2.10)

(c) For 1
2 < κ < 1 and E|X1| = ∞:

J�+ = ∞. (2.11)

(d) For 0 ≤ κ ≤ 1
2 :

J�+ = ∞ or 0 ≤ EX1 ≤ E|X1| <∞. (2.12)

(e) For 1
2 < κ < 1, E|X1| <∞, and EX1 	= 0:

EX1 > 0. (2.13)
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(f) For 1
2 < κ < 1, E|X1| <∞ and EX1 = 0:

(i) E(X+1 )
1
κ = ∞, or (ii) E(X+1 )

1
κ <∞ = E(X−1 )

1
κ

and

I�κ (λ) :=
∫ ∞

1
exp


−λ

(
y

2κ−1
κ

W�(y)

) κ
1−κ


dy

y
= ∞ for all λ > 0. (2.14)

Remark 2.1. The moment conditions onX in this theorem can easily be expressed
in terms of the characteristics of X; see [10], p. 163.

Remark 2.2. Using

1

1/a + 1/b
≤ min(a, b) = 1

max(1/a, 1/b)
≤ 2

1/a + 1/b
, a > 0, b > 0,

the integral condition in (2.9) can alternatively be written

∫
[1,∞)

min

(
x

1
κ ,

x∫ x
1 �
−
(z)dz

)
�(dx) = ∞.

In this form it corresponds to condition (1.6) of [9] for random walks (the criterion
due to Chow and Zhang 1986), and, similarly, that condition can be written

∫
[1,∞)

(
x

1
κ

1+ x 1
κ
−1 ∫ x

0 F(−z)dz

)
F(dx) = ∞, (2.15)

which is perhaps more convenient. Condition (2.15) is thus necessary and sufficient
for lim supn→∞(Sn/nκ) = ∞ a.s. (using the notation of Section 1) when κ > 1.

Remark 2.3. Suppose �
+
(x) = 0 for all x > 0, so that EX+1 < ∞ and limt→∞

(Xt/t) = EX1 ∈ [−∞,∞) a.s. In this case we make the convention that J�+ and

the integral in ( 2.9) converge regardless of whether�
−
(1) > 0 or not. Then parts

(a) and (b) of Theorem 2.1 remain true in the sense that neither (2.9) nor (2.10)
holds. If in addition E|X1| = ∞ , so EX−1 = ∞ and limt→∞(Xt/t) = −∞ a.s.,
part (c) of Theorem 2.1 remains true in the sense that (2.11) does not hold. If instead
E|X1| <∞ then part (d) of Theorem 2.1 remains true since lim supt→∞(Xt/tκ ) =
+∞ a.s. if and only ifEX1 = 0, as is shown in the proof of (2.11). Part (e) obviously
remains true. The proof of Part (f) of Theorem 2.1 does not depend on�

+
(1) > 0,

so it remains true in this spectrally negative case too.

The two-sided exit results of [9] for random walks can also be extended to Lévy
processes as follows:

Theorem 2.2. (a) If κ ≥ 1 or if 1
2 < κ < 1, E|X1| <∞ and EX1 = 0, then

lim sup
t→∞

( |Xt |
tκ

)
= ∞ a.s. if and only if E|X1|1/κ = ∞.



62 R.A. Doney, R.A. Maller

(b) In all other cases, we have

lim sup
t→∞

( |Xt |
tκ

)
= ∞ a.s.

Theorem 2.2 is proved just as in Theorem 1 of [9], using the following version
of the Marcinkiewicz—Zygmund strong law of large numbers for Lévy processes.
We omit the details of these, as, for the two-sided case, they are almost the same as
for the random walk proofs.

Proposition 2.1. Fix κ > 1/2. Then

lim sup
t→∞

( |Xt − ct |
tκ

)
<∞ a.s.

for some finite c implies E|X1|1/κ <∞, and E|X1|1/κ <∞ implies

lim
t→∞

(
Xt − c′t
tκ

)
= 0 a.s.

where c′ = EX1 if 1
2 < κ ≤ 1 and c′ = 0 if κ > 1.

3. Proof of Theorem 1.1 and Corollary 1.2

3.1. The u.s.f. case

Throughout this sub-section we will assume that Sn =
∑n

1 Xi , where the Xi are
independent and identically distributed copies of a random variable X whose dis-
tribution is given by

X =
{

1 with probability p,

−Y with probability q,
(3.1)

in which p+ q = 1, Y takes non-negative integer values only, and has finite mean
µ, and EX = p − qµ = 0.

The crucial point is that if σn is the nth strict increasing ladder time of S then
in this u.s.f. case we have Sσn ≡ n, so

lim sup
n→∞

(
Sn

nκ

)
= lim sup

n→∞
n

(σn)κ
=
(

lim inf
n→∞

(
σn

n
1
κ

))−κ
. (3.2)

By specialising Theorem 1 of [13] to the case γ (x) = x1/κ we see that (1.5),
(1.6) or (1.7) holds according as λ∗0 = ∞, λ∗0 = 0, or 0 < λ∗0 < ∞, where

λ∗0 = inf{λ > 0 : I (0)κ (λ) < ∞}, and, writing (1 − κ)−1 = γ ∈ (2,∞) and
Aσ (x) =

∫ x
0 P(σ > y)dy,

I (0)κ (λ) =
∫ ∞

1
exp{−λx−1(Aσ (x))

γ }dx
x
. (3.3)
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Here we have written σ for a random variable with the distribution of σ1. Now put
ψσ (λ) = E(e−λσ ) ; then Corollary 5.1 of the Appendix tells us that the ratio

Aσ (x)

x(1− ψσ (1/x))
is bounded above and below by positive constants for all x > 0. It follows that the
previous statement holds good with λ∗0 replaced by λ∗1, where the latter is defined

by replacing I (0)κ (λ) by

I (1)κ (λ) =
∫ ∞

1
exp{−λxγ−1(1− ψσ (1/x))γ }dx

x
. (3.4)

To relate this to the distribution of X, note that −X is left-continuous, in the nota-
tion of p. 185 of Spitzer [12]. LetQ(z) = E(z−X+1), which is the analogue in our
notation of Spitzer’s P(z) . Our σ , the first upwards ladder time of S, is Spitzer’s
T ∗, the first downwards ladder time of −S, so our ψσ (z) = E(e−zσ ) = E(tT ∗),
with t = e−z, 0 < t < 1, z > 0, in Spitzer’s notation. Thus from p. 228 of [12] we
have

Q(ψσ (z)) = ezψσ (z), for 0 < z ≤ 1. (3.5)

Now the fact that EX = 0 shows that�X(λ) := E(eλX)− 1 has a positive deriva-
tive on (0,∞) for λ > 0 and hence possesses a strictly increasing inverse function
�←X (·) on (0,∞). From (3.5)

�X(− logψσ (z)) = Q(e−(− logψσ (z)))

e−(− logψσ (z))
− 1 = ez − 1,

so, for all z > 0,

ψσ (z) = exp
(−�←X (ez − 1)

)
.

Thus, as x →∞,

1− ψσ (1/x) 
 − logψσ (1/x) = �←X (e1/x − 1).

This allows us to replace 1−ψσ (1/x) in I (1)κ (λ) by�←X (e
1/x − 1), and if we then

write e1/x = 1+ 1/y in the resulting integral we see easily that we can replace λ∗1
by λ∗2, defined by replacing I (1)κ (λ) by

I (2)κ (λ) =
∫ ∞

1
exp

[
−λyγ−1{�←X (1/y)}γ

] dy
y
.

A further change of variable z = 1/�←X (1/y) shows that we can replace λ∗2 by λ∗3,

defined by replacing I (2)κ (λ) by

I (3)κ (λ) =
∫ ∞

1
exp{−λ(�X(1/z))1−γ z−γ }

�′X(1/z)dz
z2�X(1/z)

.

In the appendix we will prove the following result.
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Lemma 3.1. Assume (3.1) holds, and that EY 2 = ∞. Then, with �X(λ) =
E(eλX)− 1 and

V (x) = VY (x) =
∫ x

0

∫ ∞
y

zP (Y ∈ dz)dy, (3.6)

we have

�X(λ) 
 λ2V (1/λ) and �′X(λ) 
 λV (1/λ) as λ ↓ 0, (3.7)

where “
 as λ ↓ 0" means that the ratio of the two sides is bounded above and
below by positive constants on some interval (0, λ0].

Using this result, and noting that in this case W(y) = qV (y), we see that we
can replace λ∗3 by λ∗, as required.

3.2. The general case.

Now suppose that X has any distribution satisfying (1.2). Then, as pointed out in
[9], the Marcinkiewicz-Zygmund law (see [2], p. 125) gives

∑n
i=1{X+i − E(Xi |Xi > 0)1(Xi>0)}

nκ
a.s.→ 0,

and this means can we replace Xi by the constant E(Xi |Xi > 0) when Xi > 0,
without affecting the value of lim supn→∞(Sn/nκ), or of course λ∗. In other words
there is no loss of generality in assuming that X can take only one positive value;
furthermore by scaling, we can take this value to be 1. Thus we almost have the
situation discussed in the previous sub-section, the difference being that in the rep-
resentation (3.1) the non-negative random variable Y has an arbitrary distribution,
rather than one concentrated on the integers. However the random walk S(0) defined
by

S(0)n =
n∑
i=1

X
(0)
i , where X(0)i = �Xi�

and �x� denotes the integer part of x, is u.s.f.. Moreover, the i.i.d. sequence Zi =
Xi − X(0)i take values in [0, 1), Xi = 1 implies Zi = 0, and p := E(Zi |Zi >
0) ∈ (0, 1) if S is not u.s.f., which we assume from now on. Let I1, I2, · · · , denote
a sequence of i.i.d. random variables, independent of S, with P(Ir = 1) = p and
P(Ir = 0) = 1− p, and define another u.s.f. random walk by

S(1)n =
n∑
r=1

X(1)r where X(1)r = X(0)r + Ir1{Zr 	=0}.

The point is that

EX(1)r = EX(0)r + pP {Zr 	= 0} = EX(0)r + EZr = EXr = 0,
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and

Sn = S(1)n + S(2)n , where S(2)n =
n∑
r=1

Vr and Vr = Zr − Ir1{Zr 	=0}.

Now S(2) is a random walk whose steps take values in [−1, 1] and have zero mean.
Thus by the Marcinkiewicz-Zygmund law

S
(2)
n

nκ
→ 0 a.s.,

and consequently (1.5) holds for S if and only if it holds for S(1). By construction
(1.2) holds forX(1), and we finish the proof by showing that the λ∗ of Theorem 1.1

evaluated for S and for S(1) are the same. SinceE(X−)
1
κ = ∞ impliesW(y)→∞

as y →∞ this will certainly follow if we can show that, in the obvious notation,

sup
y>0
|W(y)−W(1)(y)| <∞.

However, using the representations

W(y) =
∫ y

0
E{|X|;X ≤ −z}dz,

W(1)(y) =
∫ y

0
E{|X + V |;X + V ≤ −z}dz,

where |V | ≤ 1 a.s., this is easy to check.

Proof of Corollary 1.1. Fix 1
2 < κ < 1, E|X| < ∞, and EX = 0. Suppose

(1.5) holds. If E(X+)
1
κ < ∞ and E(X−)

1
κ < ∞, that is, E|X| 1κ < ∞, then

limn→∞(Sn − nEX)/nκ = limn→∞(Sn/nκ) = 0 a.s. by the Marcinkiewicz-Zyg-

mund law, a contradiction. If E(X+)
1
κ <∞ = E(X−) 1

κ , then also Iκ(λ) = ∞ for
all λ > 0 or else we get a contradiction from Theorem 1.1.

Conversely, if E(X+)
1
κ = ∞ then (1.5) holds by Part (f) of Theorem 2 of [9],

while ifE(X+)
1
κ <∞ = E(X−) 1

κ and Iκ(λ) = ∞ for all λ > 0 then (1.5) follows
from Part (i) of Theorem 1.1. ��

4. Proof of Theorem 2.1

We will make repeated use of results of [4], [5] and [6] to transfer between the Lévy
process and approximating random walks. For the “large time” (t → ∞) results
we are concerned with here, “small jumps” inX can be neglected, with some care.
Most useful is a representation in [4] which leads to inequality (4.6) below. Let
Jn be the n –th jump in X with absolute value exceeding 1, occurring at time τn,
say. Since we assume c1 = �

+
(1) + �−(1) > 0, there are such jumps and the

(Ji)i=1,2,··· are i.i.d. with distribution �(dx)1{|x|>1}/c1.
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(a) Keep κ > 1. Suppose the integral in (2.9) is infinite. Then

∫
[1,∞)

(
x

1
κ

1+ x 1
κ
−1 ∫ x

0 P(J1 ≤ −z)dz

)
dP (J1 ≤ x) = ∞, (4.1)

so from (1.6) of [9] (and see also Remark 2.2) we get that
lim supn→∞(

∑n
1 Ji/n

κ) = +∞ a.s. Since κ > 1 this means
lim supn→∞(

∑n
1(Ji + µ̃)/nκ) = +∞ a.s. for any µ̃ ∈ R. Now by (2.19) of [6],

Ŝn =
n∑
i=1

(Ji + µ̃)+
n∑
i=1

Wi = S∗n +
n∑
i=1

Wi, say, (4.2)

where µ̃ = γ /c1, and the Wi are i.i.d. random variables with expectation 0 and a
finite moment generating function (m.g.f.). So
lim supn→∞(S∗n/nκ) = +∞ a.s. We can write (see the display after (2.19) of [6])

Xt = S∗Nt − γ (Nt − c1t)/c1 +Xt, (4.3)

where Nt = max{n : τn ≤ t} is a Poisson process of rate c1 , and X is a Lévy
process withEXt = 0, having a finite m.g.f. for each t > 0, and being independent
of S· and N·, which are also independent processes. Since limt→∞(Nt/t) = c1
a.s. and both Nt − c1t and Xt are o(t) a.s. as t → ∞ by the strong law of large
numbers, we get

lim sup
t→∞

(
Xt

tκ

)
= ∞ a.s., (4.4)

as required. Conversely, still with κ > 1, let (4.4) hold. Then ( 4.3) and the strong
law give lim supt→∞(S∗Nt /N

κ
t ) = +∞ a.s., so

lim sup
t→∞

(
Nt∑
1

(Ji + µ̃)/Nκ
t

)
= +∞ a.s.,

thus lim supn→∞(
∑n

1 Ji/n
κ) = +∞ a.s. Thus (4.1) holds by (1.6) of [9]. But (4.1)

is equivalent to (2.9).
(b) (2.10) is immediate from (2.6).
(c) Keep 1

2 < κ < 1 and E|X1| = ∞. Then (4.4) implies lim supt→∞Xt =
+∞ a.s. and hence J�+ = ∞ by (2.5) and the fact that E|X1| = ∞. Conversely,
suppose J�+ = ∞. Then for all constants µ̃ ∈ R,

J+(µ̃) :=
∫

[µ̃,∞)

(
xdP ((J1 + µ̃)+ ≤ x)∫ x
0 P(J1 + µ̃ ≤ −y)dy

)
= ∞. (4.5)

To show this, suppose J+(µ̃) <∞ for some µ̃ ∈ R . If
E(J1 + µ̃)− < ∞, or, equivalently, EJ−1 < ∞, then the denominator of (4.5) is
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bounded as x →∞ and so J�+ <∞, a contradiction. ConsequentlyE(J1+µ̃)− =
∞, so EJ−1 = ∞ and thus, as x →∞,

∫ x

1
P(J1 + µ̃ ≤ −y)dy =

∫ x+µ̃

1+µ̃
P (J1 ≤ −y)dy ∼

∫ x

0
P(J1 ≤ −y)dy.

This means that

J+(µ̃) =
∫
(0,∞)


 x + µ̃∫ x+2µ̃

µ̃
P (J1 ≤ −y)dy


 dP (J+1 ≤ x)

∼
∫
(0,∞)

(
x∫ x

1 P(J1 ≤ −y)dy

)
dP (J+1 ≤ x)

is also infinite, thus J�+ <∞, a contradiction. So (4.5) holds.
Now (4.5) together with E|J1 + µ̃| = ∞ gives lim supn→∞(S∗n/nκ) = +∞

a.s., where S∗n =
∑n

1(Ji + µ̃), by [9], equation (1.8). Thus by (4.2) and the law of
the iterated logarithm, lim supn→∞(Ŝn/nκ) = +∞ a.s.. From equations (1.3) and
(1.8) of [4] we see that

S(−)n + ĩ0 ≤ Xt ≤ S(+)n + m̃0, for τn ≤ t < τn+1, (4.6)

where S(−) and S(+) are random walks with the same distribution as Ŝ, and ĩ0 and
m̃0 are finite random variables. Thus

lim sup
n→∞

(
S
(−)
n

nκ

)
= lim sup

n→∞

(
Ŝn

nκ

)
= +∞ a.s.

Then (4.6) together with τn ∼ c1n a.s. gives

lim sup
n→∞

(
Xτn

τκn

)
= 1

cκ1
lim sup
n→∞

(
S
(−)
n

nκ

)
= +∞ a.s.,

so (4.4) holds for this case.
(d) Keep 0 ≤ κ ≤ 1

2 . Then (4.4) implies (4.4 ) for κ = 0, so J�+ = ∞ or
0 ≤ EX1 ≤ E|X1| <∞ by (2.5). If J�+ = ∞ then (4.4) holds for κ = 1 hence for
0 ≤ κ ≤ 1/2 by (2.6). So suppose 0 ≤ EX1 ≤ E|X1| <∞. If EX1 > 0 we have
limt→∞(Xt/t) = EX1 > 0 by the strong law, so (4.4) holds for 0 ≤ κ ≤ 1/2.
Finally, supposeEX1 = 0. NowXn =

∑n
1 
Xi , where
Xi = Xi−Xi−1 are i.i.d.

as X1, thus 0 ≤ E
X1 ≤ E|
X1| < ∞, and so lim supn→∞(Xn/
√
n) = +∞

a.s. by [9], Eq. (1.9). But this implies ( 4.4) for 0 ≤ κ ≤ 1/2.
(e) Keep 1

2 < κ < 1, E|X1| < ∞, EX1 	= 0. Clearly EX1 > 0 implies (4.4)
by the strong law, while (4.4) implies J�+ = ∞ or 0 ≤ EX1 ≤ E|X1| < ∞ by
(2.5). In the present case, since E|X1| <∞, EX1 	= 0, we must have EX1 > 0.

(f) Keep 1
2 < κ < 1, E|X1| < ∞, and EX1 = 0. Suppose E(X+1 )

1
κ =

∞. Then from Corollary 1.1, we get lim supn→∞(Xn/nκ) = +∞ a.s., hence
lim supt→∞(Xt/tκ ) = +∞ a.s.
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Alternatively, suppose E(X+1 )
1
κ < ∞ = E(X−1 )

1
κ and (2.14) holds. From the

definition of W�(y) in (2.7) we see that

W�(y) =
∫ y

0

∫ −x
−∞
|z|P(J1 + µ̃ ∈ dz)dx (4.7)

coincides with the W of Section 1 evaluated for J1 + µ̃. Recall from (4.2) that
S∗n =

∑n
1(Ji + µ̃), where µ̃ = γ /c1. Now E|X1| < ∞ gives E|J1 + µ̃| < ∞,

while, from (4.3), EX1 = 0 implies ES∗n = 0 hence E(J1 + µ̃) = 0. Also,

E(X+1 )
1
κ < ∞ implies E((J1 + µ̃)+) 1

κ < ∞, and, similarly, E(X−1 )
1
κ = ∞

implies E((J1 + µ̃)−) 1
κ = ∞. Thus, with (4.7), we can apply Corollary 1.2 to get

lim sup
n→∞

(∑n
i=1(Ji + µ̃)
nκ

)
= lim sup

n→∞

(
S∗n
nκ

)
= +∞ a.s.

So lim supn→∞(S
(−)
n /nκ) = +∞ a.s. and (4.4) holds, by (4.6).

Conversely, assume (4.4). Then (4.3) and the law of the iterated logarithm
give lim supn→∞(S∗n/nκ) = +∞ a.s. As above, we have E(J1 + µ̃) = 0, so we

can apply Corollary 2 to see that E((J1 + µ̃)+) 1
κ = ∞, hence E(J+1 )

1
κ = ∞ and

E(X+1 )
1
κ = ∞, or elseE(J+1 )

1
κ <∞ = E(J−1 )

1
κ , thusE(X+1 )

1
κ <∞ = E(X−1 )

1
κ

and (by virtue of (4.7)), ( 2.14) holds. ��

5. Appendix

We want to establish some inequalities involving φY (λ) = E(e−λY ),where Y is an
arbitrary non-negative random variable, but we start with a more general set-up.

Lemma 5.1. Suppose that for λ > 0

f (λ) = λ
∫ ∞

0
e−λyU(y)dy =

∫ ∞
0

e−yU(y/λ)dy, (5.1)

whereU is non-negative, non-decreasing, and such that there is a positive constant
c with

U(2x) ≤ cU(x) for all x > 0. (5.2)

Then

U(x) 
 f (1/x), (5.3)

where 
 means that the ratio of the two sides is bounded above and below by
positive constants for all x > 0.

Proof. (This proof is similar to that of Proposition 1, p. 74 of Bertoin [1]. Since
(5.2) implies thatU is O-regularly varying, it is also related to a Tauberian theorem
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for functions of dominated variation, due to de Haan and Stadtmūller, [8].) It is
immediate from (5.1) that for any k > 0, λ > 0,

U(k/λ) = ekU(k/λ)
∫ ∞
k

e−ydy ≤ ek
∫ ∞
k

e−yU(y/λ)dy ≤ ekf (λ), (5.4)

and with k = 1 this is one of the required bounds. Next, condition (5.2) gives

f (λ/2) =
∫ ∞

0
e−yU(2y/λ)dy ≤ c

∫ ∞
0

e−yU(y/λ)dy = cf (λ).

Using this and rewriting (5.4) as

U(y/λ) = U((y/2)/(λ/2)) ≤ ey/2f (λ/2)
gives, for any x > 0,

f (λ) ≤ U(x/λ)
∫ x

0
e−ydy + f (λ/2)

∫ ∞
x

ey/2e−ydy

= (1− e−x)U(x/λ)+ 2f (λ/2)e−x/2

≤ (1− e−x)U(x/λ)+ 2cf (λ)e−x/2.

Assuming, with no loss of generality, that c > 1/4, and choosingx = x0 := 2 log 4c
and an integer n0 with 2n0 ≥ x0 we deduce, using (5.2) again, that

f (λ) ≤ 2(1− 1

16c2 )U(x0/λ) ≤ 2cn0(1− 1

16c2 )U(1/λ),

and this is the other bound. ��
Corollary 5.1. Let φY (λ) = E(e−λY ), where Y is an arbitrary non-negative ran-
dom variable, and for x > 0 put AY (x) =

∫ x
0 P(Y > y)dy. Then

1− φY (x) 
 xAY (1/x). (5.5)

Proof. Two integrations by parts give

f (λ) := 1− φY (λ)
λ

=
∫ ∞

0
e−λyP (Y > y)dy = λ

∫ ∞
0

e−λyAY (y)dy,

which is (5.1) with U(y) = AY (y), and it is obvious that (5.2) holds for AY with
c = 2. ��
Corollary 5.2. Let φY (λ) = E(e−λY ), where Y is an arbitrary non-negative ran-
dom variable with finite mean µ > 0, and for x > 0 put

VY (x) =
∫ x

0

∫ ∞
y

zP (Y ∈ dz)dy.

Then

µ+ φ′Y (x) 
 xVY (1/x), (5.6)

and consequently

φY (x)− 1+ µx 
 x2VY (1/x). (5.7)
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Proof. Note that VY (x) = µAZ(x), where the distribution of Z is given by

P(Z ∈ dy) = yP (Y ∈ dy)
µ

.

Since φZ(λ) := E(e−λZ) = −φ′Y (λ)/µ, ( 5.6) follows from (5.5), and then (5.7)
follows by integration. ��

We can now prove Lemma 3.1:

Proof. Just note that with φY (λ) = E(e−λY ) we have

�X(λ)− 1 = p(eλ − 1)+ q(φY (λ)− 1)

= p(eλ − 1− λ)+ q(φY (λ)− 1+ µλ)
= q(φY (λ)− 1+ µλ)+O(λ2),

and

�′X(λ) = p(eλ − 1)+ q(φ′Y (λ)+ µ) = q(φ′Y (λ)+ µ)+O(λ),
and use (5.6) and (5.7). ��
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1. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge, 1996
2. Chow, Y.S., Teicher, H.: Probability Theory. Independence, Interchangeability, Martin-

gales, 2nd edition, Springer-Verlag, New York-Berlin, 1988
3. Chow,Y.S., Zhang, C.-H.: A note on Feller’s strong law of large numbers. Ann. Probab.,

14, 1088–1094 (1986)
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