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Abstract

We propose several measures, functional and scalar, for asymmetry of distributions by comparing the behavior of
probability densities to the right and left of the mode(s) and show how to generate classes of equivalent distributions from
a given distribution, allowing for varying asymmetry but retaining some information theoretic properties of the original
distribution, such as the entropy.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The numerical characteristic normally employed to characterize the lack of symmetry of a distribution is the
coefficient of skewness, a standardized version of the third central moment. A variant of this takes expectation
with respect to the median rather than the mean. Various measures of asymmetry are discussed by
MacGillivray (1986). The monograph of Dharmadhikari and Joag-dev (1988) does not treat asymmetry
directly but is still a very useful reference for its comprehensive study of closely related topics.

We propose some alternatives which measure asymmetry with respect to modes rather than means or
medians. The proposed measures always exist and seem quite intuitive. Our approach provides a systematic
way to create, from a reference distribution, an entire family of distributions having different asymmetries but
sharing some fundamental properties of the original distribution, such as the differential entropy. This may be
of some interest for kernel estimation as a source of asymmetric kernels.

2. Notation

We consider absolutely continuous distributions and measure asymmetry by comparing how long does it
take for the density to fall to a given value on the two sides of the modes. A very useful tool for this is the
confidence transformation (Boshnakov, 2003) which produces, from a given source distribution, a new
distribution (called the confidence characteristic) whose density is, effectively, a rearrangement of the values of
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the source density in decreasing order. This transformation preserves some important properties of the source
distribution and so it makes sense to say that distributions having the same confidence density belong to a
family, see Boshnakov (2003) for details and related notions. The distribution function and the probability
density of the confidence characteristic are called the confidence distribution function and confidence density,
respectively.

Given a distribution, we denote its distribution function, probability density, confidence distribution
function, and confidence density by F, f, G, and ¢, respectively.

3. Asymmetry curves and coefficients

Suppose that f* is unimodal with mode m. Let, for />0, x = x(/) and y = y(/) be such that f(m + x) =
f(m—y)and I = x+ y. Then x = x(/) and y = y(I) are monotonically increasing as functions of />0. If f is
strictly monotonically decreasing on each side of the mode then / represents the length of the region where f is
greater than f(m + x), while x and y represent the length of the part of this region where f is monotonically
decreasing and increasing, respectively. To accommodate multi-modal distributions we use this property to
define x(/) and y(/).

Forany ¢>0let S, = {z: f(z) = c}. Let also Sy (respectively, Sp ) be the subregion of S, where the density f'
is strictly increasing (decreasing). Denote the lengths of these regions by /, liner, and gecr, respectively. We will
assume that / = liper + ldeer-

If / is symmetric then lqeer = liner for all /. So, for a symmetric distribution the parametric plot of /4eer =
laeer(!) and liner = liner(/) as a function of / is a straight line with slope 1. For asymmetric distributions such a
plot provides comprehensive information about asymmetry. So, we introduce the following definition.

Definition 1. The curve (Zgecr(!), liner(1)), =0, is said to be the asymmetry curve of f and (lgecr(!), liner(I) — é) its
detrended asymmetry curve.

The detrended asymmetry curves of symmetric distributions coincide with the positive x-axis. Asymmetry
may be defined in terms of functions of (lgec({), liner({)) as follows.

Definition 2. The functions /qec(/)//, liner(1)/1, and lyeer (1) /line+(1), where />0, are called right-asymmetry, left-
asymmetry, and odds-asymmetry, respectively.

Symmetric distributions may be thought of as having a constant asymmetry equal to zero. More generally:
Definition 3. A distribution is said to have constant asymmetry if its asymmetry curve is a straight line.

For many common distributions the asymmetry curve for small / is close to a straight line with slope 1,
indicating “‘approximate” symmetry in a neighborhood of the mode. Fig. 1 shows the asymmetry curves of
several gamma distributions. It makes sense to say that the distribution whose curve is “closest” to the line
with slope 1 is the most symmetric one, gamma(1,120) in this case. This is expected here since increasing the
second parameter of the gamma distribution results in a distribution closer to normal, see also the example in
Section 4.3.

Various summary characteristics of the above functions may be considered candidates for the title
“coefficient (or index) of asymmetry”. Let

lg l;
Tpos = Eg <;Cr> 5> Tneg = Eg( 1r}cr> > Tassym = T'pos — T'neg, (1)

where E, denotes expectation with respect to the confidence density g(/). We will call ragsym, Fpos, and ryeq the
mean asymmetry, the mean positive asymmetry and the mean negative asymmetry, respectively. The
expectations above exist since /ge.;// and Iy, /! are positive and less than 1. Moreover,

Theorem 1. The coefficients rpos, Ineg, And Fassym are always finite, rpos and ryeg are in the interval [0, 1], Fassym is in
[-1,1].
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Fig. 1. Asymmetry curves, (/gecr(!), liner(!)), />0, of gamma(l,4), gamma(1,20) and gamma(l,120). When the second parameter is
increased, the curves are closer to the straight line with slope 1 (almost the same in the case of gamma(1,120) over the plotted range), the
interpretation being that the corresponding distributions become more symmetric. All pictured curves, however, have horizontal
asymptotes because the left limit of the support of the gamma distribution is finite.

The mean odds-asymmetry is defined by

ldecr(l)
Fodds = Eg (lincr(l)> )

and infinity is a possible value for it.
From the definitions above it is easy to see that symmetric distributions have constant asymmetry.

)

Theorem 2. Let f be symmetric with median m, i.e., f(m + x) = f(m — x). Then f has constant asymmetry; the
right-asymmetry, left-asymmetry, rpos, and rneg are equal to é; Fodds = 1, Fassym = 0.

Non-symmetric distributions may also have constant asymmetry. A typical example may happen when the
density has several modes and decreases symmetrically around each one of them.

It is clear that the introduced measures of asymmetry are invariant with respect to a shift. Some are
invariant with respect to change of scale as well, others are not. Indeed, let ¥ = ¢X, where ¢>0 is a positive
constant, X is a random variable. We will use the above notation with an additional index x or y for the
probability characteristics of X and Y. The two densities are related by

1,00=21.(2):

Hence, f',(a) = f,(a + 1) if and only if f(a/c) = f \((a + I)/c). In the particular case when f, is unimodal this
shows that /[, is transformed to c¢/,. Similarly, it can be seen that /jcc(/) = clijner(//c) and
Iy deer(l) = ¢l gecr(l/c). Thus, a change of scale leads, in general, to a scale change in the discussed asymmetry
measures. It is easy to see, however, that the change of the asymmetry curve, for example, corresponds to
changing the units of its plot. The odds-asymmetry is invariant under a scale transformation. The assumptions
of unimodality can be removed with the help of Corollary 1 from Boshnakov (2003).
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4. Asymmetry of some distributions
4.1. Symmetric unimodal distributions

Let F be a symmetric unimodal distribution function with mode M. Then its confidence density is
gD =f(M+1/2) =f(M —1/2), i.e., lgeer(!) = liner(/) = 1/2 in this case. So, the asymmetry curve is (//2,1/2),

_ _ 1 — —
I'pos = I'neg = 3> Fassym = 0) Fodds = L.
4.2. Triangular distribution

Let

2x/H, O<x<H,
JI=9 20— 00 - 1), H<x<l,

where H € (0,1). The system [(H — linet) =f(H + lgecr), | = ldecr + liner,s gives lgeer(!) = I(1 — H) and
lincr(l) =/H. SO, ldecr(l) = ((1 - H)/H)lincr(l)a Zdecr(l)/l =1~ H: lincr(l)/l = H: ldecr(l)/l - Zincr(l)/l =1- 2Ha
where / € [0, 1]. Hence, the asymmetry of the triangular distribution is constant. The distribution is symmetric
if H= %, skewed to the right if H <% and skewed to the left otherwise. The odds-asymmetry is equal to
(1-H)/H.

4.3. I'-Distribution

Let f'be a I'-density (Johnson et al., 1994),

. VA 1.
— o X 2
f(x) ) x*7e™, x=0 (3)
We assume here that «> 1. In this case the distribution is unimodal with mode M = («x — 1)/4 such that
f(M)>f(x) forevery x#M. 4

The equation f(M + ldecr) =f(M - lincr)a where ldecr>0 and Zincr>oa will be satisfied if
(M + ldecr)a—le—/l(M-&-ldecr) — (M _ lincr)a—le—)v(/v[_/imr)’

which can be written as

M 4 lgeer \ ™' MM+ lgeer—M+liner) _ I
— ecr iner) — L 5
(M - lincr ¢ ¢ ( )
Also,
M + lgecr _ (M = liner) + (liner + ldecr) =14+ l (6)
M — lincr N M — lincr N M — lincr .
From Egs. (5) and (6) we get
/ ,
1l = eAl/(ot—l)'
M — Zincr
Hence,
/
L ey
M — lincr
So,
/
M -1

incr = 6711/(1_1) 1
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Finally, using the identity lgecr + liner = [, We get

/
=g
/

lincr =M
ldecr =/-M+

Hence, when o> 1 the confidence density of the I'-distribution is

g(l) :f(M + ldecr)s =0

2* ] o—1 )
= _ 1+ e—).(l-ﬁ-l/e"/("*])_l)
I'(o) eH/(a=1) _ ] .

From the way we defined /4e.; and /iy, they should have the following limiting behavior:
Ldecr /—>_o>o 00, lgeer :g 0,

lincr - M: lincr — 0.
- 00 -0

This is indeed so, since it is easy to verify that for any ¢>0

We also have ¢g(0) = f (M), as expected. Thus, the odds-asymmetry tends to infinity as / — oo, the right-
asymmetry and the asymmetry tend to 1.

We see that the asymmetry curve of the I'-distribution depends only on M = (« — 1)//. In other words, for
I'-distributions having the same mode the asymmetry curves and all measures of asymmetry derived from it
are the same. For comparison, the usual coefficient of skewness is equal to 2/./o and so depends on « but not
on A

5. Distributions with given asymmetry

The confidence transformation has a number of desirable properties. In particular, it preserves the entropy
and other information theoretic properties of the original distribution, see Boshnakov (2003) for details. It is
therefore justifiable to classify distributions by their confidence characteristics. By reverting the above process
distributions with specified asymmetry properties may be generated.

5.1. Constant asymmetry

Suppose that g is the confidence density of some unimodal distribution and we wish to create a distribution
with the same confidence characteristic but with odds-asymmetry ¢>0. Using the established notation, the
following relations should be satisfied:

ldecr

=, ldecr + lincr = ls f(M + ldecr) :f(M - lincr) = g(l) (7)

lincr

Let x>0, y>0. The required density is

c
JM —y)=g((1+)y).

f(M+x)=g(1+Cx>,
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5.2. An asymmetric normal family

The confidence distribution function and confidence density of the standard normal distribution are G(/) =
20(1/2) — 1 and ¢(//2) = @(1/2) = exp(—lz/S)/\/27r. The above formulae then give

l 14¢ 2 2
S(M 4 x) = ——=e (V8
V2n
1 22
(M = y) = e 4O,
V2n

The distributions obtained by varying ¢ and M form a family of distributions having constant asymmetry and
the same confidence characteristic as the standard normal distribution.

5.3. Another family

It may be more convenient in some circumstances to express / and /i, in terms of /4. So, let

lincr = u(ldecr)a I = ldecr + u(ldecr)a (8)
where u(.) is an appropriate function. Then we may define a new density f by
f(M + ldecr) =f(M - lincr) = g(l) = g(ldecr + u(ldecr))' (9)

For example, if we take g(z) = Je=** to be the exponential density and u(x) = x?, then we get

f(M + ldecr) Zf(M - Zﬁecr) = g(ldecr + u(ldecr)) = ;Le_)'([dec"ﬂﬁecr)

This can be written as
g(ldecr + lcziecr) = Ae_i(ldecr-‘rlgec') if Idecr =0,
g(|ldecr| + v |ldecr|) = )”e_i(llde— VM aeer) if Idecr<0~

Now the asymmetry is not constant. For example, the odds-asymmetry is /gecr/ lﬁw = 1/l4ecr-

f(M + ldecr) =

6. Conclusion

We defined some measures of asymmetry which provide useful information about this type of property. The
asymmetry curve and its variants provide comprehensive information, while their averaged counterparts
summarize it to single numbers. These measures provide a systematic way to generate asymmetric
distributions.
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