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Abstract

The Darboux—Dressing Transformations are applied to the Lax pair associated to the system of nonlinear equations describing the resonant
interaction of three waves in 1 4+ 1 dimensions. We display explicit solutions featuring localized waves whose profile vanishes at the spacial
boundary |x| = oo, and which are not pure soliton solutions. These solutions depend on an arbitrary function and allow us to deal with collisions
of waves with various profiles.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The propagation in 1 4+ 1 dimensions of three resonating waves is modelled by the following system of three coupled PDEs:

Dy Xn = 8n Xp1 Xmgor 7 =1,2,3mod (3), (1)

where the three dependent variables x, = x,(x, t) are generally complex functions of two real independent variables, x (space)
and ¢ (time). The three differential operators D,, n = 1, 2, 3, in their linear (i.e. left-hand-side) part are first-order and read

Dy, := 0; + ¢, 0y, 2

where the three real constants ¢, are taken all different among themselves. Each ¢, is the characteristic velocity at which the field
Xn propagates in the space—time region where no interaction takes place. Here and hereafter a subscripted independent variable
denotes partial differentiation with respect to it, asterisks denote complex conjugation and all indices are considered modulo 3.
The three constants g, are generally complex and have the significance of coupling constants. Their values depend of course on
the physical context to which the 3Wave Resonant Interaction (3WRI) equation applies. It is remarkable, however that, if these
coupling constants satisfy certain conditions (see below), then the 3WRI equation (1) is integrable. In this paper we consider only
such case and apply Darboux (or “dressing”) transformations to construct explicit solutions of the system (1).
The conditions on the complex constants g, which are necessary and sufficient for the integrability of the 3WRI equation (1)
are:
gn = Oulgnlexp(il), ol=1, n=1,223. 3)

n
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Here the three signs o, and the three moduli |g,| are arbitrary and the condition is that the (also arbitrary) phase I' is common to
the three g,’s. It is worth pointing out here that the structure of the system (1) is left unchanged by the transformation

Xn(X, 1) =auxa(x,1), X =Ax+ Bt,t =Cx + Dt, 4

where the three arbitrary constants ¢, are complex and the four constants A, B, C, D are real and arbitrary except for the
requirement AD — BC # 0; indeed it is clear that such transformation only changes the value of the six constants ¢, and g,.
It is easily seen that the transformation (4), as it should, takes g,’s satisfying the integrability conditions (3) into different g,’s
which satisfy the same conditions. Hereafter we choose the coupling constants to have the expressions

8n = Cn41 — Cny2, n=1,2,3mod (3) ®)

in terms of the velocities ¢, with the implication that g; 4+ g» + g3 = 0. With this choice the Lax pair associated to the system (1)
[1] takes a simple look as it reads
Uy =(—ikB+U(x,1) ¥, (6a)
Uy =({kA+V(x, 1)V, (6b)

where A and B are two diagonal, real, traceless matrices

A = diag{a, a», a3}, B = diag{by, ba, b3},

X N (7N
A=A* B=B* tr(A) =t(B)=0.

The 3 x 3 matrix ¥ = W¥(x, ¢, k) is the common solution of the two ODEs (6) while U (x, t) and V (x, t) are off-diagonal matrices
whose entries are related to the three wave fields x, (x, t):

0 X3 =X 0 —c3x3 X
U=|-x3 0 x1|. V=| cx3 0 —cixi]- ®)
x2 —xi 0 —cx2 Xy 0

Moreover, the three characteristic velocities ¢, which appear in (1) are related to the six real constants a, and b, by the relations

0y = ot T2 12 3mod (3). 9)

bn+1 - bn+2 ,
The integrable character of the 3WRI equation (1), together with (5), follows from the compatibility (¥,; = ;) of the two linear
equations (6).

The system (1), as it models the interaction of three resonating waves, has attracted much attention in the study of nonlinear
waves (see for instance [2]). It can be derived in a quite general way via multiscale analysis of a large class of nonlinear wave
equations with weak dispersion and nonlinearity (see for instance [3]). As such, it represents a universal model which is able
to capture the lowest order corrections, due to nonlinear effects, to linear propagation. It is here appropriate to point out two
special properties of the Eq. (1) which make this model peculiar with respect to most of the integrable nonlinear wave equations
(f.i. Nonlinear Schrédinger equation, Korteweg—de Vries equation, Sine—~Gordon equation and others). The first one is that the
system (1) has no (linear) dispersion (see (2)). The second property is that no self-interaction occurs, namely, the forcing of each
wave (i.e. the nonhomogeneous term in the propagation equation (1)) is just the product of the (complex conjugated) amplitudes
of the other two waves; see the right-hand side of (1). If we assume that the spacial profile of each one of the three waves is well
localized in the far past (i.e. as t — —o0), then these two properties imply that each wave-profile ¥, translates with no deformation
with its characteristic velocity ¢, up to the time it encounters an other wave. Then, for some time, the interaction takes place where
two waves (or the three of them) have spacial overlapping, but eventually, in the far future (i.e. as t — +00), each wave is again
free to move with no deformation with its own characteristic velocity. Generally, the three wave-profiles at 1 = —oo are different
from those at + = 400 since the interaction at intermediate time causes a change of the profile. In the (x, #) plane the asymptotic
behaviour is therefore expressed by

lim yu(y+et,) =0, c#cu  lim xa(y+ecat,t) = x5 ), (10)

t—=£00 t—+o00

where y is the spacial coordinate in the moving reference frame, and the functions X,Ei) (x — cpt) are the asymptotic field profiles.
Of course, the relevant physical problem is computing the three wave-packets in the future, X,EH (y), once the packets X,Ef) )
in the past are given. This large time asymptotic behaviour of the three waves may be referred to as “asymptotic freedom”. In
terms of the spectral data associated to the three functions x,(x, t) via the spectral problem ¥, = (—ikB + U(x, t)) ¥, see (6a),
the spectral components of the asymptotic states X}ﬁ” (y) may well be on the continuum spectrum (wave-packets) other than on
the discrete spectrum (solitons). These phenomena are quite in contrast with the well-known “separation” process occurring for
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dispersive nonlinear waves where only the discrete spectrum components (solitons) show up as + — =00, since the continuum
spectrum components (wave-packets) separate from solitons, disperse away and vanish (see for instance [4]). The asymptotic
freedom behaviour of the three interacting waves may be given a spectral formulation [2], which is however not discussed here.

In Section 2 we collect formulae which provide us with the tool of the Darboux—Dressing Transformation (DDT), while in
Section 3 we obtain, via the DDT, explicit solutions of the 3WRI equations (1). In order to show the asymptotic freedom for wave-
packets, we deal with explicit solutions which are not pure soliton solutions, this being the main result of this paper. Section 4
provides an outlook with a few remarks.

2. The Darboux—Dressing transformation

Let us now turn our attention to the method of construction of explicit solutions of the 3WRI equation (1). This construction is
based on the Darboux transformation of ODEs and since this transformation is well-known [5] we limit our presentation below to
a collection of formulae and propositions. To this purpose it is convenient to observe first that, without any loss of generality, we
can give the constants b, and a,, n = 1, 2, 3 which appear in the Lax pair of equations (6a) and, respectively, (6b), see also (7),
the following expressions:

1 1
by = §(gn+1 — 8&n+2)s an = §(Cn+lgn+l —Cny28n+2), n=1,2,3mod (3). (1)

The validity of this statement follows from the expressions (9) of the characteristic velocities and (5) of the coupling constants,
from the relation b1 g; + bag> + bzgz = 0, which is implied by them, and from rescaling the spectral parameter k. As a result,
the spectral parameter k has now the dimension of wave-number/velocity. It should be also noticed, for future reference, that the
relations (11) can be inverted to yield the expressions

gn = —(byy1 —bpt2), n=1,2,3 mod (3), (12)

which can be used as alternative to (5) with the implication that b, = —c, + (c1 + ¢2 + ¢3)/3. We then note that both matrices U
and V in the Lax pair (6) satisfy the reduction condition

U=-Uf, v=-vt, (13)

where the dagger denotes hermitian conjugation. This property (13) induces on the solution ¥ of the two equations (6) the
corresponding condition

WT(x, 1, k%) U(x,t, k) =C(k, k"), (14)

where the matrix C(k, k*) is constant, namely x- and z-independent; its value depends of course only on the arbitrary value
¥ (xo, to, k) that the solution ¥ takes at a given point (xg, 7o) of the (x, #) plane.

Consider now a second pair of off-diagonal matrices U O (x, 1) and VO (x, t) which satisfy the same skew-Hermitian condition
u (()))Jr =-UW0, (V(O))Jr = —V©® as U and V (see (13)); their entries, with obvious notation (see (8)), identify the three complex
functions X,EO) (x,t),n = 1,2,3. Let v©® (x,t, k) be a corresponding nonsingular (i.e. with nonvanishing determinant) matrix

solution of the Lax pair (6), i.e.
vO = (—ikB+ U0, 5 = (kA + V) g© (15)

which have the same form (6) with U and V replaced, respectively, by U©® and V(@ Assume that the initial condition
7O (x, 1o, k) is so chosen that the constant matrix C@ (k, k*) (see (14)),

COU k) = 7O e 1. k5 TO(x 1. k). (16)

takes the same value of C(k, k*), i.e. CO(k, k*) = C(k, k*). If both compatibility conditions, W;?) = @,()?) and ¥, = V¥, are

satisfied, then X,EO) and y,,n = 1, 2, 3, are two different solutions of the same 3WRI equation (1), and the matrix

D(x,t,k) = W(x, t, k) (O (x,1,k)~! (17)
satisfies the pair of differential equations

D, = ik[D, B]+UD — DU, (18a)

D; = —ik[D, A+ VD — DV©, (18b)

Moreover, as a consequence of the reduction conditions (14) and (16) with C = CO . the matrix D(x,t, k) satisfies also the
algebraic equation

DY, t, k") D(x, t,k) = 1. (19)

The proof of these statements is straightforward.



160 A. Degasperis, S. Lombardo / Physica D 214 (2006) 157-168
The definition (17) can be viewed as a transformation of ¥© into ¥,

U(x,1,k) = D(x,1,k) U Ox, 1, k), (20)

which consequently yields a transformation of X,EO) (the bare solution) into ¥, (the dressed solution). Clearly the dressing approach
requires in the first place that X,ﬁ‘)) (x, 1) and WO (x, 1, k) be explicitly known. The next step is the construction of the transformation
matrix D(x,t, k) via the integration of the ODEs (18). This task however is not straightforward since the coefficients of these
differential equations depend on the unknown matrices U and V; see (18a) and (18b). The way to overcome this difficulty goes
through the a priori assignment of the dependence of the transformation matrix D(x, ¢, k) on the spectral variable k.

The simplest instance of this strategy is illustrated by the following proposition (whose proof is a mere exercise): if D is k-
independent, Dy = 0, then D is diagonal, [A, D] = 0, [B, D] = 0, and is x- and ¢-independent, i.e. D, = D; = 0. The associated
transformation of U? is then a gauge transformation, namely D = G, U = GUY G,

In the following we will consider the larger set of k-dependent matrices D (k) which (i) have a rational dependence on the
complex variable k and (ii) have nonvanishing limit as k — oo. As we consider here only rational dependence on k£ which can
be factorized as product of simple-pole terms, we need to deal only with matrices D(x, t, k) which take the following one-pole
expression:

D(x.t.k) =1+ IZ(X’ 2 @1)

the matrix R(x, t) being the residue at the pole k = «. It is plain that the transformation matrices D (k) whose k — oo limit is a
nonsingular matrix, but not necessarily the identity, may be obtained by multiplying the expression (21) by a gauge transformation
G. The transformation characterized by the matrix (21) has received considerable attention in the literature [5]; we refer to it as
Darboux—Dressing Transformation (DDT). Its existence in our setting is proved below by construction.

In general, the way to obtain an explicit expression of the residue matrix R(x, t) depends on whether the pole « is on the real
axis, @ = «*, or not. However, in the case under investigation, it is easily seen that the condition ¢ = «* implies R(x, ) = 0. Thus
we need to consider only the case in which « is not real, @ # «*. The starting point is the requirement that the matrix D(x, ¢, k)
satisfies the algebraic condition (19) and the differential equations (18). The algebraic condition (19) entails the equation

RTR
R+ =0, (22)
o —o*
whose solution is
R(x,t) = (0 —a™)P(x,1), (23)

where the matrix P (x, t) is an Hermitian projector
pl=p, Pi=p (24)
As for the two differential equations (18), replacing D(x, ¢, k) with its expression

Dx.t.k) =1+ (‘1 ) P(x. 1), (25)

(see (21) and (23)) yields two algebraic and two differential equations. The algebraic relations read
U=U9 +i(a—a")[B, Pl (26)
Vv=vO_ia-a"A,P], (27)

and give the dressed quantities y,(x, t), in terms of the bare ones X,ﬁ‘” (x,t) n =1, 2, 3, and the projector P (see below). The two
differential equations are

Po=1-P)(—ia*B+UYP — P(—iaB+ U1 - P), (28a)
P,=1-P)ia*A+VOP - PliaA+VOa - pP). (28b)

Let v be an eigenvector of P with unit eigenvalue, and differentiate with respect to x the eigenvalue equation

Pv=v, v=|uvn]. 29)
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By replacing then P, with the right-hand side of (28a), one obtains the equation
1 - P)[vy — (—ia*B+UDy] =0, (30)

which implies that the vector v, — (—ia*B + U©)v belongs to the subspace on which P projects. At this point we note that,
since the dimension of P is 3, we may well assume, without any loss of generality, that this subspace be one-dimensional. Indeed,
it is easy to show that if P projects on a two-dimensional subspace, then 1 — P projects on a one-dimensional subspace and the
only change in the final result is the value of the parameter «, which goes into o*. Therefore, P projects on the one-dimensional
subspace of the vector v:

T
Plx.t) = vix, vl (x, 1)

N v, Hvx, )’ (€1}

where in this notation we treat vectors as one-column rectangular matrices. This implies, see (30), that the vector v, — (—ia*B +
U )y is proportional to v, i.e.

vy — (—ia*B + UD)yv = hv. (32)

On the other hand, since the vector v is identified only modulo a scalar factor, which may well be a function of x and ¢, we may
choose this factor in such a way that v satisfies this differential equation (32) with 2 = 0.
The differential equation (28b) with respect to the variable # can be handled in a similar way. One obtains therefore that the

vector v(x, t) satisfies the differential equations
vy = (—ia*B + U, (33a)
v = (ia*A+ VD). (33b)
Once the two equations (33) are solved, the DDT transformation matrix D(x, ¢, k) is finally given explicitly by (25) with (31).

At this point, we conclude that the method of construction of a novel solution y, (x, ¢) of the 3WRI equation (1), starting from
the knowledge of a given solution X,EO) (x, t) is explicitly given by (26) with (31) where the vector v(x, ¢) is given by

vix, 1) = PO, 1, a™) vp. (34)

Here W(O)(x, t,a™) is assumed to be a known solution W(O)(x, t, k) of the Lax pair (15), for k = «™, while vy is an arbitrary
constant vector,

V1
v=|»n]. (35)
V3

where y1, y2, y3 are three (arbitrary) complex parameters. With these specifications (see also (12)), the DDT transformation (26)
takes the more explicit form

Unt1V 1o
lv1]? + [v2 ]2 + |v3]?’

xn =1\ —i(a —a*)g,

n=1,2,3mod (3). (36)

3. Solutions

In this section we apply the DDT to known solutions X,§0> (x, 1) of the 3WRI equation (1) to obtain other solutions of the
same equation. Let us consider first the DDT within the class of solutions x,(x,?) of the 3WRI system (1) which are well
localized at all times. This class is left invariant by the DDT if the functions y,(x,¢) vanish sufficiently fast for large |x| at
fixed ¢, limy_, + o, x,(x, ) = O (for instance, if they are in L (R) as functions of the x variable). The simplest choice of the bare
solution X,ﬁ‘” (x, t) in this class is, of course, the vanishing one, i.e. X,EO) (x,t) = 0. The corresponding solution which is obtained
by applying to it the DDT described in the previous section is the well-known one-soliton solution (see below). The more general
class of solutions we compute here originates from the simple observation that even asking that only two of the three fields xi, x2
and x3 are vanishing yields a solution, which depends moreover on an arbitrary complex function of one real variable. Since the
nonvanishing field can be any one of the three, we introduce three different bare solutions as distinguished by the index j:

a0 =8 fxn), j=1,2.3, 37)
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where f(y) is an arbitrary complex function of the real variable y and the three variables x,, n = 1, 2, 3, are the characteristic
coordinates

Xp=x—cpt, n=1,23. (38)

Remark. The distinction of the three solutions (37) by the index j makes sense if the labeling of the three fields x, by the index
n is fixed. From now on, without any loss of generality, we set such labeling by ordering the three characteristic velocities in the
following way:

cl < Cp <c3. (39)

Indeed we remind the reader that all other relevant parameters, namely the coupling constants g,, see (5), and the constants a,, and
by, see (11), which appear in the Lax equations, see (6a) and (6b) with (7), are functions of the c,’s.

The first step in applying the DDT to the seed solution (37) is of course solving the Lax pair of equations (15) for each one of
the three cases (with obvious notation, and see (8))

0 0 0 0 0 —f"(x)
u®b=1o 0 fan], %= 0o o 0 :
0 —f*x1) 0 fx2) 0O 0 40)
0 f(x3) 0 . ,
03 — — F*(x3) 0 0], V(O»J):_ch(OsJ)’
0 0 0

which correspond to the three bare solutions (37). Because of the particular structure of the matrices U ©.7) see (40), and of their
dependence on x and ¢ through the characteristic coordinates, see (38), the matrix solution w00 (x, ¢, k) takes the form

. . k
wOD(x, 1, k) = &Y (x;, k) exp |:i§(bjx —a;t)(1— 3Pj)} , (41)
where the three matrices P; j =1, 2,3, are the three diagonal projectors

1 00 0 0 000
p=(o o o], m=|o0 ol, =10 0 o]. (42)
0 0 0 00 1

E o=

Solving the equations of the Lax pair now reduces to solving only the 3 x 3 matrix ODE

. i . .
o (y, k) = [Egjk(PH] — Pi2) + U““’(y)} D (y, k), 43)

which is however easily seen to be equivalent to the standard Zakharov—Shabat system of two equations

b1y = %Mn D). oy = —%sz — e (44)

for the two functions ¢ (y, 1) and ¢ (y, A). Indeed, once a solution of the system (44) is known, the 3 x 3 matrices @) (v, k), for
j =1, 2, 3, which solve (43) are also known and read

1 0 0
V=0 o1(v.gih) -3, g1k" |, (45a)
0 ¢y, g1k) @1 (y, g1k")
$2(y, 82k) 0 —@](y, g2k™)
& (y, k) = 0 1 0 , (45b)
d1(y, g2k) 0 @5(y, g2k™)
$1(y, g3k)  —d5(y, g3k™) 0

Py, k) = | (v, g3k) B (v, g3k*) 0. (45¢)
0 0 1

For future reference, we display also the asymptotic behaviour of the solution of the Zakharov—Shabat system (44),

) i ) i
¢1(y,k)y_7i>mzl (k)exr’<2)\y), ¢2(y,k)y_7i>ooz2 ()»)exp< 2/\y>, (46)
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which introduces the four functions zﬁi) (1) and zéi) (1), two of which can of course be arbitrarily given while the other two can be
obtained by integrating the ODEs (44).

Let us now consider the dressed solution by applying the DDT given in the previous section to the bare solution (37). Its
expression (see (36)) is

(J) ()
(x,H)v " S(x,1)
])(x t) - Sjl’lf('xn) +2ngl’l (]) ) + ]) n+22 (]) 2’
[v;7 (e, D17+ vy (x, D]+ [vg ' (x, 1]

(47)

where the parameter 7 is the imaginary part of the complex pole « which has been introduced in the DDT formula (25), namely

According to the definition (34), the three 3-vectors v (x, ), with components v(j )(x, t), are provided by the formula (see (41))

*

v (x, 1) = Y (xj, a*) exp [i%(bjx —a;t)(1 — 3P,-)} o, (49)

where the arbitrary complex constant vector vg introduces in the solution an )(x t) the three arbitrary parameters y;, y» and y3;
see (35). This new solution (47) of the 3WRI equation depends on the function f(y) which characterizes the bare solution (37) and
its behavior may be roughly described as the interaction of the bare j-th wave f(x — c;t) with soliton-type bumps in the other two
waves whose speed may be larger or smaller than ¢, a behavior which may be quite complicated at finite intermediate times. Here
we do not dwell in detailing such behavior at finite times, rather we compute the asymptotic states as 1 — 00 whose profile and
properties really matter in an applicative context. According to the general definition (10), we now compute, for each value of j,

the six functions ¥, e )(y) by performing the limits
. j ) (&
tim v+ eat, 1) = 0" ). (50)
t—+o00

This computation is elementary but lengthy, and it is omitted. The relevant results take the following expressions:

o) (*
o ODw ()
im0+ et 0 = 1)+ 2ng; A
. w2 + w0l (51a)
im0 = £ ),
—>—8jo0

(D(=sj)
y;'kuj+2 !

lim x/+1(y +cjti1t, 1) = 2ngj+1exp(ipgj+1Y)

(D(=sj) ’
8100 lyj > exp(—ngj41y) + lujly 12 exp(ng+1y) (51b)
t—>llsr£100X1+l(y +cjt1t,1) =0,
)
JY% 41
,im x/+2(y +cjal, 1) = 20842 eXplipgj+ay) — I ;
i lvj1* exp(ngj+2y) + lu; )7 1> exp(—=ngj+2y) (51¢)
. lsm+ ooxj+2(y +cjtot,1) =0.
The symbols we have introduced here are: the three signs
sj = sign(ng;), slz =1, j=1,23, (52)

the real parameter p which is the real part of the complex pole «, see (48), the three y-dependent vectors (see (45a), (45b), (45¢)
and (35))

wh (y) = 9 (y, a*)v, (53)
and the three constant vectors

Y1
wOE) — szl ) (g1a*) — J/3z2 P (g100) , (54a)

()=

1S (g1e*) + 32 (g10)
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+
Y1257 (g20*) — 32 (g200)
4O — v , (54b)

1z (g20") + y3257* (g200)

J/lzl ) (g3a™) — )/222 S*(g30)
) (E) _
W= P gse®) + 2P g | (54c)

V3

where the four parameters zl )(g,oe) Z5 )(gja) and zl )(g] ), z2 )(gj *), for j = 1,2, 3, are the values that the two functions
i) (A) and z, )(A) introduced via the asymptotic behavior (46), take at A = g ;& and A = g, respectively.

At this point we are in the position to discuss the asymptotic in- and out-states corresponding to our solution. Since we aim to
attract the attention of the reader to potential applications, we chose to have the bare wave f(x — c;t) in the initial state (say as
t — —00). Therefore, as indicated by the limit formula (51a), we have to set s; = 1 for each j, and this implies, according to the
definition (52) and to the signs of the coupling constants, see (5) and (39),

sign(gy) = —1, sign(gy) =1, sign(gz) = —1, (55

that we pick the pole « of the DDT in the lower half of the complex plane, n < 0, for j = 1 and j = 3 and in the upper half of the
complex plane, n > 0, for j = 2. By taking into account that these choices of the sign of the parameter n entail that

sp=—1, s3=1, for j =1,
s1=-—1, s3=-—1, forj=2, (56)
s1=1, s=-1, for j =3,

the final expressions of the asymptotic profiles of the three waves are readily read out of the formulae (51a), (51b) and (51c¢), and
are

fx —cit) F(l)(x—clt)
x VO =[sPx—cn ], xPPw = 0 (57a)
0 SV (x = e31)
SP(x —c11) 0
xPO@ =] flx—c) xPP e, )= FOx —e) (57b)
SP(x — e3n) 0
0 Si3)(x —cit)
xOO00 = sP0 -], xOPan= 0 : (57¢)
f(x —c3t) F(3)(X—C3t)

In these formulae we have expressed the asymptotic profiles by means of the following expressions, which again are just implied
by (51a), (51b) and (51c):

(1) ()*
. _H(J’)w +2(y)
FU(y) = f(y) + 2ng; (J)f e (58)
lw Ly D17+ w01
(=)
1 . yiu
Sy () = 2ng2 explipg2y) — — 55 :
lyil=exp(—ng2y) + |uy " '|* exp(ng2y) (590)
" ” u;1><+)*
S37(y) = 2ng3 explipgzy) — DP :
ly11-exp(ngsy) + |u, = |7 exp(—ng3y)
@) H)x
2 . Y24
Si )(y) = 2ng1exp(ipg1y) 2 @) 2 ’
ly2|=exp(ngry) + lusy " |- exp(—ng1y) (59)
o y*ua)( )
$37(y) = 2ngz explipgsy) — I, :
ly21-exp(—ng3y) + |lu;"" |- exp(ngsy)
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3)(—
)/3*ué )(—)

3 —
lys |2 exp(—ng1y) + [u$ 72

3
7/3145 ) ()%

' .
lys |2 exp(ngay) + 1u” 12 exp(—ngay)

S (y) = 2ng1 expling1y) P
€X
p(ng1y (59)

S (y) = 2ng2 explipgay)

Their meaning is quite transparent: the function F/)(y), which always appears in an out-state, shows how the profile of the
incoming wave-packet f(y) changes because of the collision with solitonic waves, while the functions S,Ej )(y) show the standard
sech-shape of the solitons (see below) appearing in the incoming and/or outgoing states. The three different collision processes
described by these asymptotic states, (57a), (57b), (57c), are controlled by various parameters introduced via the DDT, namely the
complex pole & = p + in and the complex components y; of the vector vy (see (35)) on the one hand, and the (largely arbitrary)
complex function f(y) characterizing the bare solution on the other hand. We note moreover that only in the process with j = 2
there are three nonvanishing waves in the in-state, a feature which is not found in the one-soliton solution (see below). We also note
that not only does the deformation F %) (y) of the initial profile f(y) (see (53)) depend on the solution of the ZS equations (44), but
also the position of the in-coming and out-going solitons (see below) depends on these solutions through their asymptotic behavior,
see (59a), (59b), (59c) together with (54a), (54b), (54c) and (46).

At this point it is evident that numerical experiments, which do not rely on the integration of the 3WRI system of PDEs (1) but
just on analytical explicit expressions, are possible if one chooses the function f(y) as a “solvable potential”, namely a function
such that the general solution of the ZS equations (44) is explicitly known. There exist indeed many such choices. We just pick
one of them here below to produce explicit formulae which one can use to experiment on three-wave interaction processes. Before
doing this however we observe that the asymptotic profiles S,(l] ) (v), see (57a), (57b), (57¢) and (59a), (59b), (59¢), coincide with the
asymptotic states of the one-soliton solution of the 3WRI equation. This solution obtains by applying the DDT to the trivial choice
f(y) = 0 and by using the formulae given above. In this particular case the index j which we use to distinguish three different
initial bare solutions (see (37)) is, of course, useless and it is dropped. The resulting expression of the one-soliton solution then
reads, in our notation,

Xn(x, 1) =2ngn exp(ipgnXn)
N Yo+l Voo
[Vnt1 |2 exp(ngn Xn) + |Vn+2|2 exp(—ngn Xn) + |¥u |2 expln(gn+2 — gn+1) Xul eXp(—21gn+18n+2 1) '

(60)

where the signs s,,, n = 1, 2, 3, are defined by (52) with the order convention (39). The large time limits of this solution are readily
found to be

xn(y +cn t’t)l — 0, (61a)

— —5,00

Y1 Voyn
|Vn+11? exp(ngn ¥) + [Vas2|? exp(—ngn y)

xn(y +cnt,t) —> 2ng, exp(ipgny) (61b)
11— 5,00

and this last expression coincides, apart from obvious replacement of the parameters y’s, with the general expressions (51a) with
f(y) = 0 or (51b) or (51c). If we choose moreover n > 0, it is easily seen that, because of (55), the asymptotic states here
correspond to the expressions given above for j = 2 and f(y) = 0. These states may be given also the familiar sech form

ng1expli (pg1y + 62 — 03)]

=)y
a0 =T g1 (v — &1
=0, (62a)
1O (y) = 183 XD li (pg3y + 61 —62)]

} cosh[ngs (y — &)
xf+)(y) =0, i ou o

(+)(yy _ 182expli (pg2y + 63 — 61 o
20 cosh[ng (y — &)1 ©20)
x3(+)(y) =0,

by introducing the phases 6,, and the positions &, via the relation

o = OXPi0h) x| 3 (8n418nt1 = 8u+260s2) | (63)
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together with the condition
8151 + 82862+ 8353 = 0. (64)
Moreover, we observe that the asymptotic soliton, whose generic expression is

V(+) J/(_)*

S(y) = 2ng exp(ipgy) (65)

ly )% exp(ngy) + |y > exp(—ngy)’

may be characterized in the usual way by its amplitude A = E/2, width A = 4/E and position & = log(|y ™) /y ®|) /(ng) where
E is the “energy”

+0o0
E=/ dylS(I* = 2Ingl. (66)

—00

Let us now look at one explicit solution. To this aim we choose the undressed wave-profile

S (y) = a exp(—qlyl), (67)

where a and q are arbitrary real parameters (@ = a*, ¢ = ¢*) and q is positive, ¢ > 0. The chain of steps we have to make to arrive
at the asymptotic state expressions (57a), (57b), (57¢) is the following: (i) solving the ZS equations (44) and obtaining therefore
also the expressions of zgi) (A) and zéi) (1), see (46), (ii) computing the vector functions wl )(y), see (53) and (45a), (45b), (45¢),
(iii) computing the constant vector u/ &) see (54a), (54b), (54¢), and finally (iv) using the expressions (58) together with (59a),
(59b), (59c¢). These steps can be made by using the properties of Bessel functions J,(z) (see for instance [6]), and we report here
only the resulting expressions with the following notation:

a 1 i

é‘ = = é‘ exp(_QD’Da V4 = = ~ (68)
q 2 24
Ce=J2,, ()= T (©). (69)
The solution of the ZS equations (44) we choose is
#1052) = exp (=2 131) {HOIC Iy (©))s(2) = Codos ()1, D))
+ H(=)C- T, (©)y_(2) = C4. T, (O) (D1} (70a)
#200.2) = oxp (=2 11) {HOIC_ I, ) @) + Codo @I ()]
+ H(=)[C— T, ()T, () + Cdu, (), (D]} (70b)

where H (y) is the standard Heaviside step function (H(y) = 1if y > 0 and H(y) = 0if y < 0). These expressions of ¢;(y, 1)
entail that the asymptotic constants (see (46)) may be chosen as

2\ '+
zii)=i(z) Jo (O)Cx / T'(v5), (71a)
@ _ (27
o) =(7) S @Cs/ IO, (71b)

where I" denotes the Gamma function (see for instance [6]). From these expressions all other relevant quantities can be computed
by simple algebra. For the benefit of the reader we report here the standard properties of the Bessel and Gamma functions which
have been used to derive these expressions:

v 1
h@=(3) [m + 0<z2)], (72)
L OL0-) [J @ @)+ I, (Do ()] =2, (3)

the first one of which showing the leading term of J, (z) for small |z]|.

It is now rather straightforward to play with the various parameters, a, g, p, 17, ¥, and c,, together with the index j = 1, 2, 3,
to explore the interaction of the picked wave-profile f(y) = a exp(—gq|y|), see (67), with solitons in a variety of different regimes
with respect to relative velocities, energies and soliton positions. A few examples of asymptotic in- and out-state profiles for such
processes are graphically displayed in the following figures. These examples have been chosen to display processes which may
be of interest in potential applications of our formulae. They show the effect of collision with one soliton (for j = 1, see Fig. 1)
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4 Initial pulse f (y) b In state soliton Sél) ) C Out state pulse ) (y)
12 12 12
10 10 10
8 8 8
6 6 6
4 4 4
2 2 2
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
Fig. 1. Amplitude amplification.
a . b . () c 2)
Initial pulse f (y) In state soliton S, (y) Out state pulse F (y)
35 35 35
3 3 3
2.5 25 2.5
2 2 2
1.5 1.5 1.5
1 1 1
0.5 0.5 0.5
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Fig. 2. Width-narrowing and amplitude-amplification.
a Initial pulse £ b iton S| ¢ 2
pulse f (y) In state soliton S, (y) Out state pulse F*™ (y)
35 355 3.5
3 3 3
25 2.5 2.5
2 2 2
1.5 1.5 1.5
1 1 1
0.5 0.5 0.5
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

Fig. 3. Width-narrowing and amplitude-amplification.

and with two solitons (for j = 2, see Figs. 2 and 3) on the exponential picked pulse f(y) (67) when such desirable effects as
amplitude-amplification and width-narrowing of the initial in-state profile f(y) occur. In all figures the modulus is plotted.

Fig. 1 refers to the case j = 1, see the asymptotic states (57a), with the following values of the parameters: ¢y = —1, ¢cp = 0,
c3=10,p=0.1,n=—-1,a=2,q =1, y1 = y» = y3 = L. In particular, Fig. 1a shows the initial pulse f(y), Fig. 1b shows the
shape Sél)(y), see (59a), of the in-state soliton and Fig. 1c shows the out-state pulse F m(y), see (58). Figs. 2 and 3 refer instead
to the case j = 2; see the asymptotic states (57b). Here two contra-propagating equally shaped solitons with speeds c; = —1 and
c3 = 1 collide with the standing (c» = 0) initial pulse f(y).

In Fig. 2, with the following values of the parameters: p = 0.1, n = 1,a =1,q = 1, y1 = y» = y3 = 1, it is shown the case
in which the amplitudes and widths of both the two solitons and the pulse f(y) coincide, while in Fig. 3, with the following values
of the parameters: p = 0.1, n = 2,a = —1, g = 0.6, y1 = y» = y3 = 1, the amplitude, respectively the width, of the colliding
solitons is larger, respectively narrower, than that of the initial pulse f(y).

In particular, Figs. 2a and 3a show the initial pulse f(y), Figs. 2b and 3b show the common shape of the initial solitons sz) )

and Séz) (y) (see (57b) and (59b)) while Figs. 2c and 3c display the out-state profile F' @ (y); see (58). Figures in the case j = 3 are
not reported since these collisions feature properties similar to those found in the case j = 1.

We end this section with the observation that our formulae given here are applicable to several other choices of the bare
wave f(y) to yield explicit expressions of solutions of the 3WRI equation, provided, of course, that the ZS equations (44) be
exactly solvable. Indeed our choice here, i.e. f(y) = a exp(—¢q|y|), merely indicates how the interested reader may perform simple
numerical experiments with explicit analytic expressions.
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4. Conclusion and remarks

The system (1) is a model equation for the resonant interaction of three waves. It has been introduced by the method of multiscale
perturbation, as applied to a nonlinear dispersive wave equation, with the purpose of describing the time evolution of the amplitudes
X1, X2, x3 of three plane waves with wave-numbers k1, k2, k3 and frequencies w1, @y, @3 in the resonance conditions k1+k2+k3 = 0
and w1 + w2 + w3 = 0. This system is therefore a rather universal model and it finds itself in several physical applications. Its
integrable version, as characterized by the conditions (3), has been therefore actively investigated by means of the theory of solitons.
In particular explicit solutions have been obtained which correspond to the purely discrete spectrum, i.e. the multi-soliton solutions.
They may be obtained by repeated application of the DDT (see Section 2) to the trivial solution x| = x2 = x3 = 0. Here we have
applied the DDT to a seed solution with only two vanishing wave amplitudes while the third one is a nonvanishing arbitrary function,
and we have thereby constructed a larger class of exact solutions of (1) outside the class of pure discrete spectrum solutions. The
feasibility of such construction is due to two special properties of the 3WRI system, namely its lack of dispersion and of self-
interaction. The computational technique is elementary and mainly algebraic. Only one step, namely solving the Zakharov—Shabat
system (44), requires analytical skills. In this respect we should point out that a similar approach to construct explicit solutions has
already been discussed in [9] in the differential geometric context of n waves depending on n independent variables (and therefore
no spectral parameter appears). However, we should notice that that approach in the present context (i.e. three waves depending
on two independent variables) would require “solving” the differential equations (44) by giving a priori the value of the spectral
parameter A and one of the two “wave-functions”, for instance ¢;(y), and deriving therefore ¢»(y, A) and f(y). This approach,
which arbitrarily assigns the “wave-functions” rather than the “potential”, is certainly easier than the one adopted here but it has
drawbacks as regard to physical applications. One inconvenience is that the incoming wave-profile f(y) would depend on A with
the implication that no separate control of the parameter A (which is related to the shape of the solitons in the in- and out-states)
and of the bare profile f(y) would be possible in numerical experiments. In order to avoid this drawback we prefer to assign f(y)
within the (rather large) class of “solvable potentials”, rather than the “wave-function” ¢1(y) (or ¢»(y)) and to solve therefore the
equations (44) for any A.

We also note that we have confined our construction to the class of localized solutions. However, our formulae apply as well to the
case in which the nonvanishing undressed wave f(y), see (40), is outside the class of localized, or finite-energy, wave-profiles. The
investigation of these “quasi kink” type solutions is left to future work. One remarkable example of such solutions has been recently
displayed in [7]. The soliton solutions introduced there correspond to those obtained by dressing, via the method of Section 2, the
function f(y) = a, a being an arbitrary complex constant (this case may be viewed also as the ¢ — 0 (singular) limit of our present
choice (67)). These solutions of the 3WRI equation (1) describe the resonant interaction of two “bright” solitons with one “kink”
soliton, a process which features various behaviours, such as those of boomerons and trappons or the creation and annihilation of
pairs of bright solitons in the background of a kink. The method of DDT described here yields a rather large class of new solutions
of the 3WRI equation whose generic behavior is of boomeronic type, depending on particular choices of the undressed solution.
This is indeed the first appearance of boomerons as solutions of a model system of PDEs of such wide applicability as the 3WRI
equation. In this respect, it should be also pointed out that several systems of coupled Nonlinear Schrodinger type equations which
possess solutions with similar boomeronic phenomenology have been recently found and investigated in [8].
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