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Abstract

The main objective of the present paper is to compare, by means of a problem permitting a closed-form solution, qualitative behaviour

of solutions based on three models of pressure-dependent plasticity, the coaxial model, the double-shearing model, and the double-slip

and rotation model. The constitutive equations of each model reduce to classical metal plasticity at specific values of input parameters.

Nevertheless, the solution behaviour essentially depends on the model chosen, independently of how close the input parameters are to

these specific values. In particular, such features of the solutions as non-uniqueness, non-existence and singularity are emphasized. It is

concluded that the double-slip and rotation model only retains all features inherent to classical plasticity.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Models of pressure-dependent plasticity are used for
describing deformation of granular materials, soils and
traditional metals (among others Refs. [1–6]). A review of
such models is given in Ref. [7]. In contrast to classical
metal plasticity, there is no commonly accepted model of
pressure-dependent plasticity, though most of such models
reduce to classical plasticity at a specific set of parameters.
Therefore, it is of interest to apply several models for
solving the same problem for understanding the difference
in solution behaviour. Several closed-form solutions,
including the kinematics of the flow, are available in the
literature (for example, among others, Refs. [8–11]).
However, these solutions are based on one specific model
and therefore do not show the effect of different models.

In this paper, we consider an initial/boundary value
problem for rigid/plastic models for the yield and
incompressible flow of metals and granular materials and
obtain analytic solutions to this problem in the case of
three models that have been proposed for materials

exhibiting pressure dependence at yield. For completeness,
the corresponding solution for classical pressure-indepen-
dent metal plasticity is also presented [12]. In each case, the
Coulomb–Mohr yield criterion, see Eq. (2), is assumed to
hold, i.e. the material parameter governing the in-plane
pressure dependence is the angle of internal friction j (the
case of pressure-independent metal plasticity is then
obtained as the special case j ¼ 0). With regard to
the flow, each model contains an equation relating the
principal axes of stress with the principal axes of the
deformation-rate. For the problem that we consider in this
paper, it is this equation that distinguishes the three
models, which are

(a) co-axial model [13], in which the principal axes of stress
and deformation-rate coincide. This, the so-called
coaxiality condition, is also one of the governing
equations for classical pressure-independent metal
plasticity. However, in contrast to classical plasticity,
the characteristic directions for stress and velocity do
not coincide in the co-axial model.

(b) Double-shearing model [1], in which the equation
governing the relationship between the principal axes
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of stress and deformation-rate contains the material
derivative of the major principal stress direction, i.e. the
model contains the stress rate. This non-coincidence of
the principal axes of stress and deformation rate is
usually called non-coaxiality and is in contrast to
classical plasticity. However, the characteristic direc-
tions for stress and velocity coincide, as in classical
plasticity.

(c) Double-slip and rotation model [14], in which the
stress-rate term in the double-shearing equation men-
tioned above is replaced by an intrinsic spin o. In this
paper, we only consider a special case of the model in
which o remains constant, in the general case the
model must be considered in the context of a reduced
Cosserat continuum. As in the case of the double-
shearing model, the principal directions of stress and
deformation-rate tensors do not coincide and the
characteristic directions for stress and velocity coincide
in this model.

The initial/boundary value problem considered here
consists of a planar deformation comprising the simulta-
neous shearing and expansion/contraction of a hollow
cylindrical specimen of material. This combined deforma-
tion ensures that there are no rigid regions, i.e. the material
is everywhere in a state of yield. Symmetry in the
circumferential direction dictates that all quantities are a
function of the radial direction only. Both inner and outer
cylindrical boundaries expand/contract, the inner bound-
ary also rotates, thereby inducing a shearing motion in the
material. Two different regimes may be identified, when the
material sticks to the inner boundary and when the
material slips at the boundary. In the latter case, there is
one boundary condition on the stress and one on the
velocity. In the former, there are two boundary conditions
on the velocity. For the outer boundary there is one
condition on the circumferential velocity.

2. Systems of equations

For later convenience, the systems of equations will be
written in cylindrical polar coordinates ryz under the
assumption that the solution is independent of y and z. The
stress equations are

qsrr

qr
þ

srr � syy
r

¼ 0;
qsry

qr
þ

2sry

r
¼ 0, (1)

srr þ syyð Þ sin jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
srr � syyð Þ

2
þ 4s2ry

q
¼ 2k cos j. (2)

Here Eqs. (1) are the equilibrium equations and Eq. (2) is
the yield criterion. Also, srr, syy and sry are the
components of the stress tensor, k is the cohesion and j
is the angle of internal friction. The velocity equations
consist of the incompressibility equation

qur

qr
þ

ur

r
¼ 0 (3)

and the equation that connects stresses and velocities. The
only difference in the models considered lies in this last
equation. The equation has the following forms:

sin 2c
qur

qr
�

ur

r

� �
� cos 2c

quy

qr
�

uy

r

� �
¼ 0 (4)

in the case of the co-axial model,

sin 2c
qur

qr
�

ur

r

� �
� cos 2c

quy

qr
�

uy

r

� �

þ sin j
quy

qr
þ

uy

r
� 2

qc
qt
� 2ur

qc
qr

� �
¼ 0 ð5Þ

in the case of the double-shearing model, and

sin 2c
qur

qr
�

ur

r

� �
� cos 2c

quy

qr
�

uy

r

� �

þ sin j
quy

qr
þ

uy

r
� 2o

� �
¼ 0 ð6Þ

in the case of the double-slip and rotation model. In Eqs.
(3)–(6), ur and uy are the radial and circumferential
velocities, respectively, c is the orientation of the major
principal stress axis relative to the r-axis and t is the time.
In the case of Eq. (6), we shall assume o to be a constant.
In the more general case where o is a function of r and t, an
extra equation governing o is required. In the case
considered here, o is determined by the initial conditions
of the problem. Using the angle c, the yield criterion (2) is
automatically satisfied by the substitution

srr ¼ sþ q cos 2c; syy ¼ s� q cos 2c; sry ¼ q sin 2c,

(7)

where

s ¼
srr þ syy

2
and q ¼ k cos j� s sin j. (8)

3. Statement of the problem

Consider an infinite circular hollow cylinder of internal
initial radius a0 and external initial radius b0 subject to the
system of loading consisting of normal and tangential
stresses on its internal radius. Due to this system of
loading, the cylinder is both expanded/contracted and
twisted. It is convenient to introduce a cylindrical polar
coordinate system with its z-axis coinciding with the axis of
symmetry of the cylinder. The current internal radius will
be denoted by a, then, in the case of incompressible
materials, the current external radius is given by

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
0 � a2

0 þ a2

q
. (9)

The rate of expansion/contraction of the internal radius
will be denoted by _a � da=dt. For rate-independent
materials, it is not an essential parameter. The external
radius is fixed against rotation. Therefore,

ur ¼ _a (10)
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at r ¼ a and

uy ¼ 0 (11)

at r ¼ b. One of the stress boundary conditions is

srr ¼ �pao0 (12)

at r ¼ a. pa is given, but its value is not essential for
understanding the general features of the solution. The
final boundary condition depends on the regime of friction
at r ¼ a, whether the material is sliding or sticking at the
inner boundary. In the case of sliding, the value of the
shear stress at r ¼ a is defined by a frictional law and in
the present paper, the maximum friction law is adopted. Its
analytical representation depends upon the constitutive
equations chosen, and it is most conveniently formulated in
terms of the angle c. Without loss of generality, it is
possible to assume that sry40. Then, according to Eq. (7),

p=24c40. (13)

The mathematical meaning of the maximum friction law
is that the friction surface coincides with an envelope of
characteristics such that the solution cannot be extended
beyond this surface. In the case of the double-shearing
model and the double-slip and rotation model, the
characteristics for stress and velocity coincide and are
inclined to the r-axis at

f ¼ c�
p
4
þ

j
2

� �
. (14)

In the problem under consideration, the friction surface
makes an angle p/2 with the r-axis. Putting f ¼ p=2 in
Eq. (14) gives

c ¼
p
2
�

p
4
þ

j
2

� �
(15)

at the friction surface. The lower sign in Eq. (15)
contradicts Eq. (13). Therefore, the frictional boundary
condition at sliding for the double-shearing and the
double-slip and rotation models is

c ¼ cw ¼
p
4
�

j
2

(16)

at r ¼ a. In the case of the co-axial model, the orientation
of stress characteristics is given by Eq. (14), and the
orientation of velocity characteristics by

f ¼ c� p=4. (17)

Therefore, it is possible to formulate two possible
conditions at r ¼ a, one given by Eq. (16), the other by

c ¼ cw ¼ p=4. (18)

Which of these two boundary conditions at sliding will
actually occur follows from the structure of the solution. In
Fig. 1 the directions of the major principal stress, velocity
characteristics and stress characteristics are shown at a
generic point of the friction surface. It is possible to
distinguish three qualitatively different cases: (i) c4p=4,
this case is shown in Fig. 1a; (ii) cop=4� j=2, this case is
shown in Fig. 1b; and (iii) p=44c4p=4� j=2, this case is

shown in Fig. 1c. It is seen from Fig. 1a that only a velocity
characteristic envelope can coincide with the friction
surface. Therefore, in this case, condition (18) holds. It
follows from Eq. (7) that for large c, but within range (13),
syy is significantly larger than srr. Therefore, it is reason-
able to expect that the case (i) corresponds to expansion. It
is seen from Fig. 1b that only a stress characteristic
envelope can coincide with the friction surface. Therefore,
in this case, condition (16) holds. It follows from Eq. (7)
that srr is significantly larger than syy. Therefore, it is
reasonable to expect that the case (ii) corresponds to
contraction. Finally, for the case depicted in Fig. 1c, either
condition (16) or (18) may represent the maximum friction
law. Case (iii) may correspond to either expansion or
contraction. The correspondence between the cases (i)–(iii),
the two regimes of friction (sticking or sliding), and the two
types of deformation (expansion or contraction) will be
precisely determined from the solution to the problem.
In the case of sticking, the circumferential velocity is

prescribed,

uy ¼ �ut (19)

at r ¼ a, for all models. The assumption sry40 requires
ut40. The quantity ut can be regarded as the circumfer-
ential velocity of points of the tool surface assuming that
the tool is an expanding/contracting and rotating rod

ARTICLE IN PRESS

Fig. 1. (a) Illustration of the maximum friction law in case (i). (b)

Illustration of the maximum friction law in case (ii). (c) Illustration of the

maximum friction law in case (iii).
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inserted into the hole of the cylinder. The rate of rod
expansion/contraction is indeed equal to _a.

The models under consideration are history-indepen-
dent. Hence, to understand general features it is sufficient
to consider the solutions at one instant, i.e. for a specific
geometry. In particular, b and a may be treated as
independent variables in spite of Eq. (9). The latter
equation should be used only if the process of deformation
for a specific specimen needs to be studied. An exception is
the transition between the sticking regime and sliding
regime where a finite time interval should be considered.
However, even in such cases the specific value b is not
essential. In what follows, the solutions are mainly under-
stood as instantaneous solutions for given b and a.

4. Solution for stresses

The general solution to Eq. (1)2 is

sry

k
¼

g2

r2
, (20)

where g is an arbitrary function of t, or, more conveniently,
a. The latter is possible since _a is a monotonic increasing or
decreasing function of t and, therefore, a is a single-valued
function of t. Combining Eqs. (7) and (20) leads to

srr

k
¼ cot j�

g2 1� cos 2c sin jð Þ

r2 sin 2c sin j
,

syy
k
¼ cot j�

g2 1þ cos 2c sin jð Þ

r2 sin 2c sin j
. ð21Þ

Substituting Eqs. (20) and (21) into Eq. (1)1 gives the
following equation for c:

qc
qr
¼ �

sin 2c
r cos 2c� sin jð Þ

. (22)

This equation can be immediately integrated to give

r

a
¼

cos ca tan
m ca

cos c tanm c
; m ¼

1� sin j
2

, (23)

where ca is the value of c at r ¼ a and is a function of a.
Eq. (23) determines c as a function of r and a in implicit
form. Substituting c in Eq. (21) gives, along with Eq. (20),
the solution for stresses in terms of r and a depending on
two functions, g(a) and ca(a). These functions are to be
found from the boundary conditions.

For later convenience, the value of c at r ¼ b, cb, is
introduced here. It follows from Eq. (23) that

b

a
¼

cos ca tan
m ca

cos cb tan
m cb

. (24)

5. Solutions for velocities

Eq. (3) is involved in all three models and its solution
satisfying the boundary condition (10) is

ur ¼
_aa

r
. (25)

In the case of the co-axial model, Eq. (4), using Eqs. (22),
(23) and (25), can be transformed to

quy

qc
þ uy

cos 2c� sin jð Þ

sin 2c

¼
2 _a cos 2c� sin jð Þ cos c tanm c

cos ca tan
m ca cos 2c

. ð26Þ

The solution to this equation satisfying the boundary
condition (11) is

uy

_a
¼

2

cos ca tan
m ca cos c tanm c

�

Z c

cb

cos 2w� sin jð Þtan2m w cos2 w
cos 2w

dw: ð27Þ

In the case of the double-shearing model, Eq. (5), using
Eqs. (22), (23) and (25), can be transformed to

sin 2c
quy

qc
þ cos 2cþ sin jð Þuy �

2a _a sin 2c
r

� 2 _ar sin j
qc
qa
þ

2a _a sin j
r

sin 2c
cos 2c� sin jð Þ

¼ 0. ð28Þ

Using Eq. (23), it is possible to find the derivative

qc
qa
¼

sin 2c
cos 2c� sin jð Þ

1

a
þ

cos 2ca � sin j
� �

sin 2ca

dca

da

� 	
. (29)

Substituting Eqs. (23) and (29) into Eq. (28) gives

quy

qc
þ

cos 2cþ sin jð Þ

sin 2c
uy

¼
2 _a

cos ca tan
m ca cos 2c� sin jð Þ

�
sin j sin 2ca þ a cos 2ca � sin j

� �
dca=da


 �
2 tansin j ca cos c tanm c

�

þ cos c tanm c cos 2c� 2 sin jð Þ



. ð30Þ

In the case of the solution to this equation satisfying the
boundary condition (11) is
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uy

_a
¼

tanm c
cos ca tan

mþsin j ca sin c

�

Z c

cb

sin j sin 2ca þ a cos 2ca � sin j
� �

dca=da

 �

tansin jwþ tansin j ca sin 2w cos 2w� 2 sin jð Þ

 �

cos 2w� sin jð Þ
dw: ð31Þ
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The double-slip and rotation model, Eq. (6), using
Eqs. (22), (23) and (25), can be transformed to

quy

qc
þ

cos 2cþ sin jð Þ

sin 2c
uy

¼ 2 _a
O cos ca tan

m ca sin j
sin 2c cos c tanm c

þ
cos c tanm c
cos ca tan

m ca

� �
, ð32Þ

where O ¼ oa= _a. The solution to this equation satisfying
the boundary condition (11) is

uy

_a
¼

tan mc
sin c

cos 2cb � cos 2c
� �
2 cos ca tan

m ca

"

þO cos ca tan
m ca sin j

Z c

cb

dw
cos2 w tan2m w

#
. ð33Þ

6. Frictional boundary condition

The solutions obtained in Sections 4 and 5 contain two
arbitrary functions of a, namely g and ca. There are two
boundary conditions to determine these functions, Eq. (12)
and the friction boundary condition. Once ca(a) has been
found, g(a) can be determined from Eqs. (12) and (21) [1]
with no difficulty. Therefore, the key point is the friction
boundary condition from which ca(a) is to be found. In the
case of sliding, ca ¼ cw and the latter quantity is known
due to Eqs. (16) or (18). However, the sliding regime occurs
if and only if the shear stress at the friction surface attains a
certain level. It will be shown that the solutions based on
the models chosen are qualitatively different because of this
frictional condition.

Let u0 denote ut under the sticking condition and usl

under the sliding condition. In the case of sticking, ut is
prescribed and ca may be found from the solution. In the
case of sliding, ca ¼ cw is prescribed according to the
frictional law Eqs. (16) or (18), and usl may be found from
the solution.

6.1. The coaxial model

Eqs. (24) and (27) show that the solution depends on the
ratio b/a rather than on b and a separately. Solution (27)
gives

u0

_a
¼

2

cos2 ca tan
2m ca

Z cb

ca

cos 2w� sin jð Þtan2m w cos2 w
cos 2w

dw:

(34)

It should be noted that the integral in Eq. (34) is
divergent if the point c ¼ p=4 lies between the points c ¼
ca and c ¼ cb. Therefore, the points c ¼ ca and c ¼ cb

lie to one side of the point c ¼ p=4 and so we consider the
sub-intervals 0pcpp=4 and p=4pcpp=2 separately. The
first sub-interval corresponds to case (i), the second to cases
(ii) and (iii) introduced in Section 3. The sub-interval
0pcpp=4 may be further sub-divided as follows. If

caop=4 and cbop=4, corresponding to cases (ii) and
(iii), typical behaviour of the integrand in Eq. (34) and the
function r/a defined by Eq. (23) is illustrated in Fig. 2a. It is
seen from this figure that the function r/a attains its
minimum value at c ¼ p=4� j=2. Therefore, we may
divide the interval 0pcpp=4 into sub-intervals,
0pcpp=4� j=2 and p=4� j=2pcpp=4, and both c ¼
ca and c ¼ cb must lie within one and only one of these
sub-intervals. For, if c ¼ p=4� j=2 were between c ¼ ca

and c ¼ cb, the function r/a would attain its minimum
value between the points c ¼ ca and c ¼ cb whereas, by
definition, its minimum value is at c ¼ ca where r=a ¼ 1.
This further division into sub-intervals separates case (ii)
from case (iii).
Now consider each of the sub-intervals separately. Since

b4a, the order of the points c ¼ ca and c ¼ cb within
each sub-interval must be such as shown in Fig. 2a.
Combining the sign of the integrand, the order of the
points c ¼ ca and c ¼ cb, and the structure of Eq. (34), it
may be seen that the right-hand side of Eq. (34) is negative
in each sub-interval. Since u040, a solution exists if and
only if _ao0. In other words, the interval 0pcpp=4
corresponds to contraction of the cylinder. This confirms
the preliminary conclusion concerning the case (ii) made in
Section 3 and also clarifies the situation with case (iii). It is
seen from Figs. 1b, c and 2a that sliding satisfying
condition (16) may occur in both cases (ii) and (iii).
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Fig. 2. (a) Coaxial model: r/a and integrand of Eq. (34) as functions of c,
0 p c p p/4. (b) Coaxial model: r/a and the integrand of Eq. (34) as

functions of c, p/4 p c p p/2.
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However, in case (iii), where p=4� j=2ocop=4, the
integral in Eq. (34) may approach infinity allowing
arbitrarily large values of ut. But the curve for r/a depicted
in Fig. 2a shows that b/a is small for any ca and cb within
the interval ½p=4� j=2; p=4�. In order to illustrate the
properties of the solution in the case of contraction
combined with twist, numerical calculations have been
performed for the value j ¼ p=6. The solid curves in Fig. 3
have been obtained in the case (ii) under the sticking
condition and show the dependence of the circumferential
velocity of the tool, ut= _a, on the ratio b/a at different values
of ca. The dashed curve corresponds to the sliding regime
at which ca ¼ p=4� j=2 ¼ p=6. Therefore, ut= _a corre-
sponding to this curve is equal to the critical velocity ucr= _a
at which the sticking regime is replaced by the sliding
regime. Fig. 2a shows that in case (iii) the maximum
possible value of the ratio b/a, ðb=aÞmax, is attained if
cb ¼ p=4. The dependence ðb=aÞmax on ca in the range
cw ¼ p=4� j=2 ¼ p=6pcapp=4 is illustrated in Fig. 4.
This maximum value of b/a has been used in calculation of
the dependence of ut= _a on b/a in the case (iii). Under the
sticking condition, this dependence (solid curves) is
depicted in Fig. 5 at different values of ca. The dashed
curve corresponds to the sliding regime at which
ca ¼ p=4� j=2 ¼ p=6. Therefore, ut= _a corresponding to
this curve is equal to the critical velocity ut= _a at which

sticking is replaced by sliding. However, in contrast to the
previous case, for any value of b/a the magnitude of the
critical velocity is less than the magnitude of ut= _a at any
ca4p=4� j=2. Therefore, sliding is the only possible
friction regime in the case (iii). Since the cases (ii) and (iii)
are related to the same process, namely contraction with
twist, it is necessary to compare the values of ucr= _a found
for each case. This comparison is illustrated in Fig. 6 in the
range of b/a where the solution for case (iii) exists. The
dashed curve corresponds to the regime (iii) and the solid
curve to the regime (ii). It is seen from Fig. 6 that the
critical velocity in the regime (ii) is lower than the critical
velocity in the regime (iii) in the entire range of b/a.
Therefore, sliding starts when the critical velocity in the
case (ii) is reached and thus the case (iii) never occurs.
In the case (i), combining the sign of the integrand, the

order of the points c ¼ ca and c ¼ cb (Fig. 2b), and the
structure of Eq. (34), it is possible to see that its right-hand
side is positive at ca4p=4 and cb4p=4. Since u040, we
must conclude that a solution exists if and only if _a40.
Hence the interval p=4pcpp=2 corresponds to the
expansion of the cylinder. This confirms the preliminary
conclusion concerning the case (i) made in Section 3. In this
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Fig. 3. Coaxial model: circumferential velocity versus b/a—contraction.

Fig. 4. Coaxial model: maximum of b/a versus ca.

Fig. 5. Coaxial model: circumferential velocity versus b/a, p/4�j/2 p c
p p/4.

Fig. 6. Coaxial model: transition between sticking and sliding.
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process of the expansion combined with twist, it is seen
from Figs. 1a and 2b that sliding satisfying condition (18)
might occur according to the frictional law. However, since
the integral in Eq. (34) is divergent if ca ¼ p=4, sticking is
the only possible friction regime in this case, which makes a
significant qualitative difference from the process of the
contraction combined with twist. The dependence ut= _a on
b/a is shown in Fig. 7. It is seen from this figure that the
circumferential velocity of the tool is relatively low even at
ca ¼ 3p=10. This means that a very significant increase in
the velocity occurs within a very small interval of ca near
the point ca ¼ p=4. For instance, the ratio ut= _a is about
8 when the difference between ca and p/4 is of the order
of 10�8.

The radial distribution of the circumferential velocity at
b=a ¼ 2 is shown in Fig. 8 for the contraction and in Fig. 9
for the expansion. The dashed curve in Fig. 8 corresponds
to the sliding regime.

6.2. The double-shearing model

In the case of this model, solution (31) gives

At sliding ca ¼ cw is prescribed according to Eq. (16)
and usl may be found from the solution. For the sticking
condition, Eq. (35) is an ordinary differential equation for
ca and a difficulty with this equation is that there is no
initial condition for ca, unless sliding occurs at the
beginning of the process. In the latter case, ca ¼ cw ¼

p=4� j=2 ¼ const and, therefore, dca=da ¼ 0. Substitut-
ing these conditions into Eq. (35) and eliminating m using

Eq. (23) gives

usl

_a
¼

2

h cos j

Z cb

cw

�
sin j cos j tansin jwþ h sin 2w cos 2w� 2 sin jð Þ
� �

cos 2w� sin jð Þ
dw.

ð36Þ

Here and in what follows

h ¼
cos j

1þ sin j

� �sin j

.

It follows from Eqs. (24) and (36) that in the case of the
double-shearing model the solution at sliding depends on
the ratio b/a rather than on b and a separately. Note that it
is not true in general, since dca=da may not vanish under
the sticking condition and, therefore, Eq. (35) may involve
a. In such cases, it is more convenient to adopt b/a and a as
the independent variables instead of b and a.
It is easy to see that the denominator and the numerator

of the integrand in Eq. (36) vanish at w ¼ cw. Applying
l’Hospital rule it is possible to obtain

lim
w!cw

sin j cos j tansin j wþ h sin 2w cos 2w� 2 sin jð Þ

cos 2w� sin jð Þ

� 

¼ h cos j. ð37Þ

Therefore, Eq. (36) where cb should be eliminated using
Eq. (24) determines the finite value of usl. The kinematic
condition for sliding to occur is ut4usl . The critical value
of the velocity ut at which transition between the sliding
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Fig. 7. Coaxial model: circumferential velocity versus b/a—expansion. Fig. 8. Coaxial model: circumferential velocity versus r/a—contraction.

uy

_a
¼

2

sin 2ca tan
sin j ca

�

Z cb

ca

sin j tansin jw sin 2ca þ a cos 2ca � sin j
� �

dca=da

 �

þ tansin j ca sin 2w cos 2w� 2 sin jð Þ

 �

cos 2w� sin jð Þ
dw: ð35Þ
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and sticking regimes may occur, ucr, is determined by the
equation ucr ¼ usl and has been found at j ¼ p=6 (Fig. 10).
The dashed curve corresponds to the expansion,
p=4� j=2pcop=2, and the solid curve to the contrac-
tion, 0ocpp=4� j=2. The radial distribution of the
circumferential velocity is shown in Fig. 11 in the case of
the expansion and in Fig. 12 in the case of the contraction
for different ratios b/a.

Assume that ut4ucr at the beginning of the process when
a ¼ a0, ut ¼ ucr at a ¼ acr and then utoucr. In such a

process, the regime of sticking must replace the regime of
sliding at a ¼ acr Then Eq. (35) considered as the
differential equation for ca(a) may be solved for aXacr in
the case of the expansion or apacr in the case of the
contraction together with the boundary condition

ca ¼ cw at a ¼ acr. (38)

As in the case of Eq. (36), the integrand in Eq. (35)
reduces to the expression 0=0 at ca ¼ cw and a ¼ acr.
However, in contrast to Eq. (36), it is a function of two
variables, w and a for aXacr in the case of the expansion or
apacr in the case of the contraction. To find the asymptotic
behaviour of ca(a) in the vicinity of the point ca ¼ cw and
a ¼ acr, the functions involved in the numerator and the
denominator of the integrand in Eq. (35) can be expanded
in a series with respect to w around w ¼ cw. The result is

tansin jw ¼ h 1þ 2 w� cw

� �
tan j


 �
þ o w� cw

� �
,

sin 2w cos 2w� 2 sin jð Þ ¼ � cos j sin j� 2 w� cw

� �
þ o w� cw

� �
,

cos 2w� sin j ¼ �2 w� cw

� �
cos jþ o w� cw

� �
. ð39Þ

Neglecting terms of order of o w� cw

� �
Eq. (35), using

Eq. (39) in the vicinity of the point a ¼ acr, may be
rewritten in the form

ut

_a
¼

2

h cosj

Z cwþcd

ca

l að Þ þ
m að Þ

w� cw

� �
" #

dw

þ I1 að Þ as ca ! cw, ð40Þ

where

l að Þ ¼ h cosjþ 2 tanj
dca

da
cosjþ acr sinj

dca

da

� �� 	�

� a� acrð Þ



þ o a� acrð Þ,

m að Þ ¼ acrh sinj
dca

da

� �2

a� acrð Þ þ o a� acrð Þ. ð41Þ

In Eq. (41), the derivatives are understood to be calculated
at a ¼ acr (or ca ¼ cw). Also, cd51 is a constant such that
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Fig. 9. Coaxial model: circumferential velocity versus r/a—expansion.

Fig. 10. Double-shearing model: transition between sticking and sliding.

Fig. 11. Double-shearing model: circumferential velocity versus r/a—

expansion.

Fig. 12. Double-shearing model: circumferential velocity versus r/a—

contraction.
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cwpcapcw þ cd and I1(a) is a non-singular function of a

resulting from Eq. (35) after integration from cw þ cd to
cb. After integration equation (40) takes the form

ut

_a
¼ �

2

h cosj
m að Þ ln ca � cw

�� ��þ I2 að Þ, (42)

where I2(a) is the non-singular term consisting of I1(a) and
the non-singular term obtained after integration in
Eq. (40). It follows from Eq. (41) that the singular term
in Eq. (42) approaches zero for any function ca(a) with a
bounded derivative at ca ¼ cw. Therefore, its contribution
to the magnitude of ut is negligible. However, some
derivatives of ut may be controlled by the singular term
near the point ca ¼ cw. In fact, assuming that dca=dta0
at ca ¼ cw and differentiating Eq. (42) using Eq. (41) gives

d

da

ut

_a

� �
¼ �2acr tan j

dca

da

� �2

ln ca � cw

� �
(43)

to leading order. To avoid infinity in this equation, it is
necessary to put dca=dt ¼ 0 at ca ¼ cw. The latter
condition is sufficient to get a bounded value for the
second derivative of ut= _a. However, the condition that the
third derivative is bounded requires that d2ca

�
dt2 ¼ 0 at

ca ¼ cw. This process may be continued to the derivative
of any order. The same result can be obtained directly from
Eq. (35). The denominator of the integrand is independent
of a. Therefore, as ca ! cw, the derivative of any order
contains a singular term in the formZ cb

ca

F að Þ

cos 2w� sin jð Þ
dw, (44)

where F að Þ may include derivatives of ca as ca ! cw. In
the original expression (35), the function F að Þ ! 0 as a!

acr (or ca ! cw) leading to a converging integral
independently of the value of dca=da at ca ¼ cw. This
condition is however not satisfied when Eq. (44) is the
singular term involved in a derivative of ut= _a and it is
necessary to put dnca=dan ¼ 0 at ca ¼ cw for obtaining
bounded values of dn ut= _a

� ��
dan and dnþ1 ut= _a

� ��
danþ1.

Therefore, it must be concluded that transition from sliding
to sticking with a continuous function ca(a) is possible if
and only if the function ut= _a satisfies certain restrictions. In
particular, its derivatives of order n and higher do not exist
(i.e. they approach infinity) at ca ¼ cw. The specific
number n is determined by the behaviour of the function
ca(a) in the vicinity of the point a ¼ acr. The larger the
value of n, the higher the order of the derivative of ca(a)
vanishing at a ¼ acr must be. On the other hand, ut= _a is an
independent function determined by the motion of the tool.
Since this motion may be incompatible with the aforemen-
tioned behaviour of the function ca, the solution for
transition between the sliding and sticking regimes may not
exist. On the other hand, it is possible to show that the
solution at ut ¼ usl is not unique. To this end, a solution
under the sticking condition is found below assuming that
ut ¼ usl . It is sufficient to consider the initial instance when

a ¼ acr. In Eq. (35), u0 should be replaced with usl. Then,
this equation may be treated in the following manner.
Prescribe any value of ca within the interval
p=4� j=2; p=2
� �

in the case of the expansion or within
the interval 0; p=4� j=2

� �
in the case of the contraction.

Eq. (35) should be now solved for adca=da. If such a
solution exists, the corresponding value of ca can be used
as the boundary condition to solve Eq. (35) and by the
choice of this value the sticking regime occurs. The
existence of the solution is illustrated in Figs. 13 and 14
at j ¼ p=6. In Fig. 13, for several ratios b/a, the curves
determine the couples ca and a dca=da such that ut ¼ usl in
the expansion where usl is shown in Fig. 10 by the dashed
curve. Fig. 14 shows similar results for the compression. In
this case, the difference in curves for different b/a is
relatively small because usl is almost constant at b=a42
(Fig. 10). Therefore, two curves only are shown, the dashed
curve corresponds to b=a ¼ 1:5 and the solid curve to
b=a ¼ 4.
Thus in the case of the double-shearing model there are

two types of non-uniqueness where ut ¼ usl : (i) one can
obtain the solution either under the sliding condition or
under the sticking condition, (ii) in the case of sticking, it is
possible to get an infinite number of solutions by selecting
different couples ca and adca=da satisfying Eq. (35) at
a ¼ acr (possible couples are illustrated in Figs. 13 and 14).
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Fig. 13. Double-shearing model: stress-rate versus stress—expansion.

Fig. 14. Double-shearing model: stress-rate versus stress—contraction.
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If utausl , the solution is not unique because there is no
initial condition for Eq. (35) considered as the ordinary
differential equation for ca, which is somehow similar to
the case (ii) when ut ¼ usl .

6.3. Double-slip and rotation model

Eq. (24) and (33) show that the solution depends on the
ratio b/a and a (through O). In the case of the double-slip
and rotation model, Eq. (33) combined with the frictional
boundary condition gives

u0

_a
¼

tanm c
sin c

cos 2ca � cos 2cb

� �
2 cos ca tan

m ca

þ O cos ca tan
m ca sin j

"

�

Z cb

ca

dw
cos2 w tan2m w

#
. ð45Þ

It is seen from this equation that the integral is not singular
at ca ¼ cw, in contrast to both the double-shearing and
coaxial models. Therefore, for any given value of O,
specific values of acr and ucro1 can be found from
Eq. (45) at ca ¼ cw. If utoucr, the unique solution at

sticking exists and if ut4ucr the unique solution at sliding
exists. At ut ¼ ucr, transition between the regimes occurs
such that ca is a continuous function of a. At j ¼ p=6, the
variation of usl with b=a for different O is shown in Fig. 15
for the extension of the cylinder, cwpcop=2, and in Fig.
16 for the contraction of the cylinder, 0ocpcw. At
b=a ¼ 2, the radial distribution of the circumferential
velocity obtained by means of Eqs. (24) and (33) is
illustrated in Fig. 17 for the expansion and in Fig. 18 for
the contraction. The dashed curves in these figures
correspond to the sliding regime.

7. Solution of pressure-independent plasticity

The solution based on the equations of rigid/perfectly
plastic material with a pressure-independent yield criterion
has been proposed in Ref. [12]. The system of equations
consists of the equilibrium equations (1), the yield
condition in the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

srr � syyð Þ
2
þ 4s2ry

q
¼ 2k, (46)
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Fig. 15. Double-slip and rotation model, circumferential velocity—sliding

and expansion.

Fig. 16. Double-slip and rotation model, circumferential velocity—sliding

and contraction.

Fig. 17. Double-slip and rotation model: circumferential velocity versus

r/a expansion.

Fig. 18. Double-slip and rotation model: circumferential velocity versus

r/a—contraction.
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the incompressibity Eq. (3) and the co-axiality condition
(4). Eq. (46) may be obtained from Eq. (2) at j ¼ 0,
and c in this section has the same meaning as before and k

is the shear yield stress. The maximum friction law is
defined by Eq. (18). Even though the co-axiality condition
is satisfied, an essential difference from the co-axial
model is that in the case under consideration the
characteristics for stresses and velocities coincide, which
is a property of the double-shearing and double-slip and
rotation model.

The yield condition (46) is satisfied by the substitution

srr � syy ¼ 2k cos 2c; sry ¼ k sin 2c. (47)

As before, the distribution of the shear stress is given by
Eq. (20). Using Eqs. (20), (25) and (47), the solution to Eq.
(4) satisfying Eq. (11) can be found in the form

uy

_a
¼ �

ra

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4
� g4

q
b2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 � g4

p
r2

0
@

1
A. (48)

Here and in what follows the upper sign corresponds to the
contraction, 0ocpp=4, and the lower sign to the
expansion, p=4pcop=2.

In the case of sliding, it follows from Eqs. (18), (20) and
(47) that g ¼ a. Substituting this equation into Eq. (48) at
r ¼ a gives

usl

_a
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

a

b

� �4r
. (49)

In the case of sticking, it follows from Eqs.(19) and (48)
that

ut

� _a
¼

a2

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

g
b

� �4r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

g
a

� �4r !
. (50)

This equation determines g at given a and b. In particular,
it follows from Eq. (50) that

0ogpa. (51)

At given a and b, the right-hand side of Eq. (50) is a
monotonically increasing function of g in the interval
0ogpa. Therefore, within this interval the maximum is
attained at g ¼ a. Hence taking into account Eq. (51), it is
possible to conclude that the solution under the sticking
condition does not exist for ut4ucr where ucr is determined
from Eq. (50) at g ¼ a. Comparing with Eq. (49) shows
that ucr ¼ usl . Therefore, in the case of classical plasticity,
both regimes, sliding and sticking, may occur and the
solution is unique for both processes, the expansion and
contraction.

8. Singularity in velocity fields

In the case of sliding, the velocity fields in the solutions
based on the double-shearing model, double-slip and
rotations model and the classical plasticity model are
singular. To show this it is necessary to find the shear strain

rate. In the problem under consideration it is defined by

2xry ¼
quy

qr
�

uy

r
. (52)

The first term may be rewritten in the form

quy

qr
¼

quy

qc
qc
qr

. (53)

It follows from Eq. (30), using Eqs. (37), that for the
double-shearing model the derivative quy=qc is bounded
and, in general, is not zero at c ¼ cw. The same conclusion
may be drawn from Eq. (32) for the double-slip and
rotation model. On the other hand, it follows from Eq. (22)
that qc=qr!1 as c! cw. Therefore, it is clear from
Eqs. (53) and (52) that xry!1 as c! cw and thus the
velocity field is singular. In the vicinity of the point c ¼ cw

(or r ¼ a), Eq. (22) can be rewritten in the form

qc
qr
¼

1

2a c� cw

� � (54)

to leading order. The solution to Eq. (54) satisfying the
condition c ¼ cw at r ¼ a is

c� cw ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
r� a
p ffiffiffi

a
p . (55)

Substituting Eq. (55) into Eq. (54) gives

qc
qr
¼ O

1ffiffiffiffiffiffiffiffiffiffiffi
r� a
p

� �
. (56)

Then, it follows from Eqs. (52) and (53) that

xry ¼ O
1ffiffiffiffiffiffiffiffiffiffiffi

r� a
p

� �
. (57)

Since xry!1 as r-a, its magnitude controls the
behaviour of the equivalent strain rate, xeq, in the vicinity
of the friction surface,

xeq ¼ O
1ffiffiffiffiffiffiffiffiffiffiffi

r� a
p

� �
. (58)

This is also a general property of the equations of classical
plasticity [15]. In particular, in the problem under
consideration, Eq. (58) can be obtained from Eq. (48) by
inspection. Alexandrov and Lyamina [16] have found the
behaviour (58) in the case of plane-strain deformation of
materials obeying the double-shearing model.
In the case of the co-axial model, Eq. (26) shows that

quy=qc is proportional to cos 2c� sinjð Þ. Therefore, the
product on the right in Eq. (53) is bounded at the friction
surface, as follows from Eqs. (22) and (58) does not hold
for this model.

9. Summary, conclusions and discussion

The planar quasi-static initial/boundary value problem
comprising simultaneous ring shear and expansion/con-
traction of a hollow cylinder filled with incompressible
rigid/perfectly plastic material in which the material is
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everywhere in a state of yield is solved. Four different
kinematic models are considered, namely pressure-inde-
pendent metal plasticity and three pressure-dependent
models, coaxial, double-shearing and double-slip and
rotation. The equations governing the flow comprise
Eqs. (1)–(3), together with one of the Eqs. (4)–(6). The
boundary conditions for the problem fall into two
categories, firstly, Eqs. (10) and (12) prescribe the radial
velocity and radial component of stress at r ¼ a, and
equation Eq. (11) prescribes the circumferential velocity
component at r ¼ b. Secondly, two kinematic regimes at
the inner boundary are considered, namely sliding and
sticking, each of which has an associated stress or velocity
boundary condition. Thus in the sliding regime, either
Eq. (16) holds (in the case of the double-shearing and
double slip and rotation model) or one of Eqs. (16) and
(18) hold (in the case of the coaxial model). For the sticking
regime, Eq. (19) holds.

The stress field also imposes one of two possible
kinematic conditions, namely, expansion or contraction
of the hollow cylinder. For pressure-independent plasticity,
the case of expansion corresponds to 1

4
ppcp1

2
p, while

contraction corresponds to 0pcp1
4
p, where c denotes the

angle of inclination of the algebraically greater principal
stress direction to the radial direction. For the coaxial
model, expansion corresponds to 1

4
ppcp1

2
p, while con-

traction corresponds to 0pcp1
4
p� 1

2
j. For the double-

shearing and double-slip and rotation models, contraction
corresponds to 0pcp1

4
p� 1

2
j, while expansion corres-

ponds to 1
4
p� 1

2
jpcp1

2
p.

It is well known that, for quasi-static flow, the stress
equilibrium equations uncouple from the kinematic equa-
tions and are determinate, i.e. may be solved independently
of the kinematic equations, provided there are sufficient
stress boundary conditions. The kinematic equations may
then be solved using the stress solution. For the problem
considered here, the stress field, for all of the models, is
given by Eqs. (20), (21) and (23).

Turning to the velocity field, the radial velocity
component satisfies Eq. (3), together with the boundary
condition Eq. (10) and, for all three models, the solution is
given by Eq. (25). The remaining kinematic equation,
governing the circumferential velocity uy is Eq. (26) for the
coaxial model, Eq. (28) for the double-shearing model and
Eq. (32) for the double slip and rotation model. The
corresponding solutions, satisfying the velocity boundary
condition equation (11), are Eq. (27) for the coaxial model,
Eq. (31) for the double-shearing model and Eq. (33) for the
double slip and rotation model. The stress boundary
condition Eq. (12) and the stress representation Equation
(21)1 determine g in terms of a and the value of c(a).
Finally, Eqs. (27), (31) or (33) are used to determine a
relationship between uy(a) and c(a) , and this is given by
Eq. (34) for the coaxial model, Eq. (35) for the double-
shearing model and Eq. (45) for the double-slip and
rotation model. Then, in the sticking regime, uy(a) is
prescribed and c(a) is determined in terms of uy(a), while in

the case of sliding, c(a) is prescribed by Eqs. (16) or (18)
and uy(a) is then determined in terms of c(a). For each
model, the equation relating uy(a) and c(a) involves an
integration over the interval ½cðaÞ;cðbÞ� or ½cðbÞ;cðaÞ�.
For the coaxial model, the interval [0,p/2] may be

decomposed into three sub-intervals, ½0;p=4� j=2�,
½p=4� j=2;p=4�, ½p=4;p=2�, the integral is singular at c ¼
p=4 and the interval of integration must itself be a sub-
interval of one of these three sub-intervals. Corresponding
to contraction, in the sub-interval ½0; p=4� j=2�, cboca

and sticking occurs if caop=4� j=2 while sliding occurs
at ca ¼ p=4� j=2. The sub-interval ½p=4� j=2; p=4� never
occurs. Corresponding to expansion, in the sub-interval
½p=4� p=2�, caocb, only sticking occurs, there can be no
sliding, and the velocity component uy is unbounded at
r ¼ a if c ¼ p=4.
For the double-shearing model, in the sliding regime,

Eq. (36) determines uy(a). In this case the integrand in
Eq. (36) is indeterminate but the integral exists and uy(a) is
finite. In the sticking regime, Eq. (35) may be regarded as a
linear first-order differential equation for c(a), however, in
the sticking regime, the initial value of c(a) is not
prescribed unless it happens that at this instant the
regime is changing from sliding to sticking. Thus, in
general, in the sticking regime there are infinitely many
solutions, one for each pair of values cðaÞ; adca=da

� �
.

The transition from sliding to sticking with a continuous
c(a) places restrictions on the derivatives and it is possible
that a solution may not exist.
The solution for pressure-independent metal plasticity is

simpler than the solutions for the other models in that all
quantities may be found explicitly in terms of r, whereas for
the other models, c must be obtained implicitly in terms of
r and the velocity uy is then obtained, via an integral
representation of the solution, as a function of c , i.e. uy is
also obtained implicitly as a function of r. Now, for both
the coaxial and the double-shearing models there are values
of c for which the integral representation for uy is singular
for physically realizable values of c, whereas for the
double-slip and rotation the integral is never singular for
such values. In this sense, the double-slip and rotation
model behaves in a manner similar to pressure-independent
metal plasticity. Also, for both pressure-independent metal
plasticity and the double-slip and rotation model, the
solutions in the sticking and sliding regimes exist and are
unique, and for both models there is a critical value of uy
which governs the transition between the two regimes and
at which c(a) is continuous. On the other hand, as noted
above, the coaxial model has problems with existence of
solutions for physically realizable values of c, for example
there is no solution in the interval ½p=4� j=2;p=4�. Also,
the double-shearing model has non-uniqueness of solutions
in the sticking regime, it is possible that the transition from
sliding to sticking may not exist, there are restrictions on
the function ut= _a as a function of a in order for a solution
to exist. This indicates that the further investigation of the
full double-slip and rotation model in the context of a
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reduced Cosserat continuum may well prove to be
worthwhile and this will be the subject of future papers.

Finally, we note that the models considered here, being
based upon incompressibility and a pressure-dependent
yield condition, are necessarily of the non-associated flow
rule type. The next step in the analysis of these models is to
introduce a general non-associated flow rule which will
enable dilatation/consolidation to be incorporated into the
model. This will complicate the equations since, in this
case, the two velocity equations become coupled, even in
the case of constant dilatation/consolidation and recourse
will have to be made to numerical methods of integration.
In reality, the situation is even more complicated since the
yield condition for such materials involves the porosity
which itself depends on the velocity field. Hence in this case
the stress and velocity equations are coupled and hence
must be solved simultaneously. One method of simplifying
the analysis when compressibility is incorporated is to
adopt an associated flow rule. A review of such models can
be found in Ref. [17] and models of this class are usually
used to analyse and design processes in powder metallurgy.
The disadvantage of an associated flow rule is that there is
only one parameter to model both the pressure-dependence
and the degree of compressibility, while real materials
require two parameters. In the case of pressure-indepen-
dent plasticity, the analysis for an associated flow rule is
presented in Section 7. It is of interest to note that all three
models considered here reduce to the same associated flow
rule. The solution of the equations governing the models
when compressibility is included will be a subject of the
further research.
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