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Abstract

The inclusion of suppression effectiveness in fire line growth models is formulated as a system of differential
equations. The model draws on earlier ideas using ellipses to model fire growth, particularly the head fire
and flank fire rates of spread, combines this with recent studies of the effect of fire line on spread rate and
appends a single equation for the increase of suppressed fire line with time. Representative parameter values
are used to illustrate this way of describing the effect of fire suppression activities on the fire line and to
develop criteria for the likely outcome of containment activities.

Introduction

Wildland fire spread modelling has been an active research topic for many years and is the subject of a recent
review by Pastor et al (2003). Including chemical kinetics, such as in the paper by Assensio and Ferragut
(2002), and the effects of suppression on fire growth and the eventual fire size; for example, Anderson (1989),
are some of the options previously considered in order to make the models more realistic.

In the present paper, we introduce a new option for modelling fireline growth when there is active suppres-
sion applied from a set time after the fire was initiated. In particular, we use ideas from ellipse modelling of
fire growth to provide the head fire and the flanking fire rates of spread. This is combined with information
about the effect of fireline length on these spread rates (Cheney and Sullivan (1997)) and also linked with
the rate of fireline growth in the presence of suppression. We use the mathematical framework of dynamical
systems to illustrate this way of describing the effect of fire suppression activities on the fireline and to
develop criteria for the likely outcome of containment activities.

It is anticipated that each component of the present model could be refined to account for more details of
actual situations and that the result could then form a simulation module within fire incident management
systems.

Fireline Growth Model

Let our fireline at any time t have a total length F (t). The requirement of a point ignition gives the initial
condition that F (0) = 0. The total fireline should increase in length for all t > 0; at least until the fire is
extinguished. We also formally divide the fireline into two parts: an active part L(t) and a suppressed part
S(t) as illustrated in Figure 1.

Inspired by the ellipse models (Anderson et al (1982)) and following on from Weber and Sidhu (2005), we
write an equation for fireline growth as:

dL

dt
= α(

da

dt
+

db

dt
) −

dS

dt
(1)

Here α is a geometric constant with value between 1 and 2 (its precise value in any given fire will depend
on the fire shape), da

dt
represents the head fire rate of spread, db

dt
represents the flanking fire rate of spread

and dS
dt

accounts for the conversion of active fireline into suppressed fireline through suppression activities.

To be able to solve this model, we need several other pieces of information. From the literature; e.g. Cheney
and Sullivan (1997), we deduce that the rate of forward spread depends upon the head fire width (for any
given wind speed) in a way that can be described by the relation

da

dt
= ROSh(1 − e−βL) (2)

where ROSh is the potential rate of head fire spread under the prevailing conditions and β is a constant.
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Figure 1 Schematic of a Partly Suppressed Fireline

We also assume that the flanking rate of spread, ROSf , (typically a significantly smaller number than the
head fire rate of spread) is described be a similar equation:

db

dt
= ROSf (1 − e−βL) (3)

Note that the ratio ROSh/ROSf can be estimated from the length to breadth ratios often quoted for fires.

The rate of suppression is expressed in terms of available resources through

dS

dt
= Q(t) (4)

and this can be used to allow us to arrive at the final model

dL

dt
= α(ROSh + ROSf )(1 − e−βL) − Q(t) (5)

subject to the initial condition L(0) = L0 and which we must solve for L(t).

We note that it is not possible to write a closed form solution for L(t) for this model. Nevertheless it is
reasonably simple to write a program to numerically determine the solution at any time, as we shall discuss
later. First we shall discuss possible parameter values and examine some of the limiting cases where good
approximate solutions can be found.

Parameter Values

To be able to use this model, we need to determine suitable values for each of the parameters. Clearly the
values will depend upon the particular fires that might be considered, but for the purposes of illustration, we
shall select as representative values ROSh = 4, 000m/hr and ROSf = 1, 000m/hr and use these throughout
this paper.

The parameter α will depend upon the geometry of the changing fireline and will probably vary from around
α = 1.4 for typical cases to α = 2 as a likely maximum for extreme fire behaviour. This latter value can be
used to obtain conservative estimates, as in the next section.

The time it takes the fireline to be sufficiently large to have reached its maximum potential spread rate
determines the parameter β and examining the curves in Cheney and Sullivan (1997), we estimate β = 0.03
to be a typical value for moderate fires.

Paper No. 17 2



Bushfire Conference 2006 – Brisbane, 6-9 June 2006
Life In A Fire-Prone Environment: Translating Science Into Practice

Values for the available suppression resources Q can be estimated for a variety of active suppression methods.
A useful guide is McCarthy et al (2003), from which we deduce that numbers such as 700m/hr are possible by
a single dozer and significantly larger values are possible if several appliances and methods can be combined.

The initial fireline length L0 can vary enormously and we will use several possible values in this paper to
illustrate the potential application of the model.

Large Fireline Length

For large fireline length, L(t), the head fire and flank fire rates of spread reach their full potential values. Then
the non-linear exponential term becomes extremely small. If we also have constant available suppression
resources (Q independent of time), then in this case the solution is very well approximated by

L(t) = L0 + (α(ROSh + ROSf ) − Q)t (6)

For the suppression activities to be successful in this limit, we require

Q > α(ROSh + ROSf ) (7)

and we can estimate the suppression time required by

tsup = L0/(Q − α(ROSh + ROSf )) (8)

To illustrate this, we use the values ROSh = 4, 000m/hr and ROSf = 1, 000m/hr as discussed in the pre-
vious section, we set α = 2 to be representative of extreme conditions, we assume quite active suppression
such as Q = 12, 000m/hr and we begin with an initial fireline of length L0 = 4, 000m.

As the available suppression resources satisfies equation (7), we can be confident that in this case the
suppression activities will be successful and we can estimate from the equation for tsup that it will take
approximately two hours to contain this fire.

Note that the time scales linearly, so that if the initial fireline is twice as long, then the suppression time is
also twice as long.

Very Small Fireline Length

For very small fireline length, the head fire and flank fire rates of spread are very small, so that suppression
is the dominating effect and the approximate solution to our model (again assuming constant Q) in this
case is

L(t) = L0 − Qt (9)

reflecting the well known fact that every fire can be extinguished provided suppression arrives sufficiently
early. From this we can also obtain an estimate of the “early extinction time”, tee as

tee = L0/Q (10)

For example, if L0 = 10m and Q = 20m/hr, then tee = 30 minutes.

General Criteria and Estimates

In general, we are interested in the application of the model to situations where there is a dynamical interac-
tion between the fire growth and the fire suppression activities and we are particularly interested in using the
model to obtain criteria for the likely success and estimates of the time it will take for successful suppression.

To this end, in this section we analyse the model with as few assumptions as possible. We begin by noting
that the exponential 1 − e−βL is always less than unity for any fireline length L. Hence, provided that
suppression activities are maintained so that

dS

dt
> α(ROSh + ROSf) (11)
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fire suppression will always succeed no matter how large the initial fireline length is at the commencement
of suppression activities. This is really just a common sense conclusion and as a conservative estimate to
guarantee success we would also let α = 2 and then restate our criteria in words as

• calculate potential head fire and flank fire rates of spread

• add these and multiply by two

• maintain the rate of construction of suppressed fireline so that is greater than this last number

An example calculation illustrating this is as already done in section 5 and we note that this shows that
treating every fireline as a potentially extreme fire will provide conservative estimates for the resources re-
quired for successful suppression.

While this guarantees success, there is still the possibility of suppression success with less suppression
activity. For example, we can maintain decreasing L (i.e. keep dL

dt
< 0) at all times provided

α(ROSh + ROSf)(1 − e−βL) < Q(t) (12)

If we apply this to the initial fireline length L0, assume constant Q and rearrange, we obtain

L0 < −

1

β
ln(1 −

Q

α(ROSh + ROSf )
) (13)

as an estimate for the maximum initial fireline length which can be suppressed with resources Q. Note that
this estimate can only be applied provided that the inequality Q < α(ROSh + ROSf ) is satisfied. This
means that this estimate must be applied with care. An example is the parameter values used in section 5
but with the significantly smaller value for the suppression resources: Q = 9, 000m/hr. Then we obtain a
maximum initial fireline length of only 76m (rounded down) for suppression to be successful.

We could also estimate the time it will take to suppress any such initial fireline with L0 less than this with
the equation

t =
L0

Q − α(ROSh + ROSf )(1 − e−βL0)
(14)

which gives a rather small time of 0.04hr. In fact, these approximations are not uniformly valid as L de-
creases from a value like 70 to zero and it is typically much easier, safer and accurate to simply solve the
differential equation numerically as will be done in the next section.

Contrasting these findings shows that, for this example, suppression resources of 12, 000m/hr would be
able to succeed against any initial fireline, whereas suppression resources of 9, 000m/hr would only be able
to succeed provided that the initial fireline length is less than the rather modest value of 76m (note that
numerical solution techniques as discussed in the next section will revise this value to the more accurate
69m which indicates that there is a small but potentially important level of error with the approximations
that result in equations 13 and 14).

Numerical Solution

The model presented in this paper can be easily solved numerically using a variety of routines and software
applications. Possibly the simplest is the Euler method where the derivatives are approximated by differ-
ences and used to update the solution in small time steps. Provided the time steps are small enough the
error in this method is also kept reasonably small, the results are obtained very quickly and the method can
be easily programmed with any software such as fortran, basic, matlab or excel.

The essence of the method applied to our model can be stated as follows. Begin with an initial fireline
length L0 and update it in small time steps ∆t according to

Lnew = Lold + (α(ROSh + ROSf )(1 − e−βLold) − Q(t))∆t (15)
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We also note that this numerical method easily allows us to calculate the solution even when the suppression
resources, Q(t), vary with time; an obvious improvement on our previous analytical approximations.

To illustrate the numerical solution of the full model, we select the values for the model: α = 1.4, β = 0.03,
ROSh = 4, 000m/hr, ROSf = 1, 000m/hr and the rather modest initial fire line length of L0 = 1, 000m.
Then we can immediately see the consequences of varying the available suppression resources Q. If Q is less
than 7, 000m/hr, the fire will continue to grow and the suppression activity will never be able to contain
the fire.

Conclusion

To recap the essential features of our model and the solutions we wish to highlight the most salient results
in the present paper.

To establish a safe, conservative estimate for successful suppression, we can refer to equation 7 which al-
lows us to calculate a level of suppression activity which will ensure success. Then we can also estimate
the time for which this level of suppression needs to be maintained for any initial fireline length using
equation 8. It should be emphasised that this is most likely to be the usual situation and that equations 7
and 8, with suitable field testing, are most likely to be the most useful simple results from the present model.

On the other hand, if we wish to adopt a strategy of early intervention, then (as long as the initial fireline
length is sufficiently small as estimated by L0 < 1

β
), equation 10 can be applied to determine the time

required for suppression.

The numerical solution presented here provides a way of simulating the growth of the fireline with any
desired suppression strategy. With suitable field verification and calibration this could be used to predict
the likely failure or success depending upon the level of applied suppression resources and the size of the
fireline when the suppression activities first commence.
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Pastor, E., Zárate, L., Planas, E. and Arnaldos, J. (2003). Mathematical Models and Calculation Systems
for the Study of Wildland Fire Behaviour. Prog. Energy Combust. Sci. 29, 139–153.
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